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Abstract: It was recently reported that the designed
peptide, whose sequence is INYWLAHAKAGYIVHWTA,
has both of the two structures, R-helix and �-hairpin, in
aqueous solution. However, the detailed transformation
between these two structures is still unclear. In order to
study this transformation, we applied a generalized-
ensemble simulation to the designed peptide in aqueous
solution and deduced the pathways of the designed
peptide between R-helix structures and �-hairpin structures.

1. Introduction
Many proteins transform their tertiary structures to carry out
their proper biological functions in vivo. Transformations of
secondary structures play a role in such tertiary-structure-
transformation processes. Therefore, it is important to understand
the detailed transformations of the secondary structures. How-
ever, it is difficult to investigate the detailed transformations in
experiments. Computer simulations are now widely used for
such studies.

In order to investigate protein structures and their structure
changes, we must realize effective samplings in the conforma-
tional space. In the conventional canonical-ensemble simu-
lations,1-6 however, it is difficult to achieve this in complex
systems such as proteins. This is because the usual canonical-
ensemble simulations tend to get trapped in a few of the many
local-minimum-energy states. To overcome these difficulties,
the generalized-ensemble algorithms have been proposed (for
reviews, see, for instance, refs 7 and 8).

We recently developed a new generalized-ensemble algo-
rithm, which is referred to as the multicanonical-multioverlap

algorithm.9,10 This algorithm combines the advantages of the
multicanonical11-14 and multioverlap algorithms.15-17 The
multicanonical algorithm is one of the most well-known
generalized-ensemble algorithms and realizes effective sam-
plings in the conformational space. The multioverlap algorithm
also samples effectively the vicinity of specific conformations.
The multicanonical-multioverlap algorithm realizes effective
samplings in the conformational space more than these two
algorithms.9,10 It is useful to apply this algorithm to protein
systems in order to investigate detailed protein-structure
changes.18

One of the present authors recently designed a new peptide,
whose sequence is INYWLAHAKAGYIVHWTA, in order to
understand stabilizing mechanisms of protein structures.19 This
peptide has both an R-helix structure (PDB ID code 2DX3) and
a �-sheet structure (PDB ID code 2DX4) in aqueous solution.
However, the detailed transformation between these two struc-
tures is still unclear. Therefore, we applied the multicanonical-
multioverlap algorithm to this designed peptide to study the
transformation between R-helix and �-sheet structures.

In section 2, we summarize the multicanonical-multioverlap
algorithm. In section 3, we describe the details of the
multicanonical-multioverlap molecular dynamics (MD) simula-
tions that we performed. We present their results in section 4.
Section 5 is devoted to conclusions.

2. Methods

2.1. Multicanonical-Multioverlap Algorithm. In the
multicanonical-multioverlap algorithm,9,10 by employing the
non-Boltzmann weight factor Wmco, which we refer to as
the multicanonical-multioverlap weight factor, a uniform
probability distribution with respect to the potential energy and
a dihedral-angle distance is obtained:

where E is the potential energy and d is a dihedral-angle
distance. The dihedral-angle distance is defined by

where n is the total number of dihedral angles, Vi is the dihedral
angle i, and Vi

0 is the dihedral angle i of the reference
conformation. The distance d(Vi,Vi

0) between two dihedral angles
is given by
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The multicanonical-multioverlap weight factor at a constant
temperature T0 can be written as

where �0 is defined by �0 ) 1/kBT0 (kB is the Boltzmann
constant) and Emco(E,d) is the multicanonical-multioverlap
potential energy. Equation 1 implies that multicanonical-
multioverlap simulations realize a random walk in the two-
dimensional potential-energy and dihedral-angle-distance space
and are able to effectively sample the conformational space.
Accordingly, we can obtain accurate free-energy landscapes of
protein systems and estimate folding pathways and the transition
states among the specific conformations.9,10 We remark that we
employed the MD version of the multicanonical-multioverlap
algorithm18 in this article.

2.2. Reweighting Techniques. The results from a multi-
canonical-multioverlap simulation can be analyzed by the
reweighting techniques. Suppose that we have determined the
multicanonical-multioverlap potential energy Emco in eq 4 at a
constant temperature T0 and that we performed the simulation
at this temperature. The expectation value of a physical quantity
A at any temperature T is calculated from

where the best estimate of the density of states is given by the
single-histogram reweighting techniques20,21 (see eq 1):

and Nmco(E,d) is the histogram of the probability distribution
that was obtained by the multicanonical-multioverlap simulation.

We can also calculate the free energy (or the potential of
mean force) with appropriate reaction coordinates. For example,
the free energy F(�1,�2;T) with reaction coordinates �1 and �2

at temperature T is given by

where Pc(�1,�2;T) is the reweighted canonical probability
distribution of �1 and �2 and given by (see eq 5)

and Nmco(�1,�2;E,d) is the histogram of the probability distribu-
tion that was obtained from the multicanonical-multioverlap
simulation.

3. Computational Details
It was reported that the designed peptide, whose sequence is
INYWLAHAKAGYIVHWTA, has the two characteristic struc-
tures, R-helix and �-hairpin, coexisting in a pH 4.5 solution in
experiments.19 In our simulation, the histidine residues of the

designed peptide were protonated in order to conform our
simulation conditions to the low pH ones in the experiment.
The force field that we adopted is the CHARMM 22 parameter
set.22 We employed the Generalized Born/Surface Area (GB/
SA) model23-25 as an implicit solvent model.

In multicanonical-multioverlap simulations, we must have
a reference conformation. We adopted the conformation in
Figure 1 as the reference conformation in this article. This
conformation was obtained by minimizing the R-helix structure
of the designed peptide which corresponds to the model 1
structure in the 2DX3 PDB file.19 We list the backbone-dihedral
angles of the reference conformation in Table 1, and these values
were employed as the reference dihedral angles Vi

0 of the
dihedral-angle distance in eq 2. Hence, we took into account
only the backbone-dihedral angles φ (the rotation angles around
the N-CR bonds) and ψ (the rotation angles around the CR-C
bonds) of the residues 2-17 of the designed peptide as the
reference dihedral angles in our simulations. We remark that,
although we employed the R-helix structure as a reference

Wmco(E, d) ) e-�0Emco(E,d) (4)
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Figure 1. Reference conformation in our multicanonical-
multioverlap simulation. The N terminus and the C terminus
are on the top side and on the bottom side, respectively. The
figure was created with RasMol.28

Table 1. Backbone Dihedral Angles of the Reference
Conformation in Figure 1

angle (deg) angle (deg)

φ2 -153.7 φ10 -76.4
ψ2 153.0 ψ10 -30.0
φ3 -96.8 φ11 -95.4
ψ3 -51.5 ψ11 15.5
φ4 -67.6 φ12 -70.7
ψ4 -44.6 ψ12 -3.9
φ5 -83.9 φ13 -69.8
ψ5 22.6 ψ13 -8.9
φ6 -125.9 φ14 -64.5
ψ6 -56.3 ψ14 -46.4
φ7 -83.3 φ15 -84.4
ψ7 -29.0 ψ15 -45.6
φ8 -85.3 φ16 -64.1
ψ8 -1.4 ψ16 -83.8
φ9 -101.3 φ17 -161.2
ψ9 -50.2 ψ17 143.1
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conformation, results of multicanonical-multioverlap simula-
tions are independent of selection of reference conformations
as long as sampling is performed sufficiently.9,10

The multicanonical-multioverlap weight factor was first
determined so that a free random walk was realized in the two-
dimensional energy-overlap space. As for the potential-energy
random walk, this weight factor covered the temperature range
from 300 to 600 K (see Supporting Information for the
determination of the multicanonical-multioverlap weight fac-
tor). We then performed a multicanonical-multioverlap produc-
tion run, in which the time step was 0.5 fs, for 44.5 ns after an
equilibration of 0.5 ns. The initial conformation of the designed
peptide for the production run was a random-coil conformation.

4. Results and Discussion
We show the free-energy landscape at 300 K in Figure 2. The
free-energy landscape was obtained from the results of the
multicanonical-multioverlap MD simulation by the reweighting
techniques in eqs 7 and 8. The abscissa is the root-mean-square
distance (RMSD) of the backbone CR atoms with respect to the
reference conformation in Figure 1. The RMSD with respect
to the reference conformation is defined by

where N is the number of atoms, {qi
0} are the coordinates of

the reference conformation, and the minimization is over the
rigid translations and rigid rotations of the coordinates of
the conformation {qi} with respect to the center of geometry.
The ordinate is the RMSD with respect to the hairpin structure
of the designed peptide in Figure 3. This structure was obtained
by minimizing the hairpin structure of the model 1 structure in
the 2DX4 PDB file.19 Three free-energy local-minimum states
and two transition states among these local-minimum states are

identified in Figure 2. We label the three local-minimum states
as A, B, and C; the transition state between the local-minimum
states A and B as D; and the transition state between the local-
minimum states B and C as E. These local-minimum states were
not completely coincident with the experimental conformations
in Figures 1 and 3. In other words, RMSDs between the local-
minimum states and the experimental conformations were more
than 2 Å at 300 K. This is because conformations whose RMSDs
were less than 2 Å had high potential energy with the
CHARMM force field. We remark that the free-energy land-
scape with respect to the dihedral-angle distance d is described
in the Supporting Information as a reference.

In Figure 4, we show typical conformations of the designed
peptide in each local-minimum state (see the Supporting
Information for how these typical conformations were obtained).
In the free-energy local-minimum state A, the designed peptide

Figure 2. Free-energy landscape obtained from the results
of the multicanonical-multioverlap MD simulation at 300 K.
The abscissa and the ordinate are the RMSDs of the
backbone CR atoms with respect to the R-helix structure in
Figure 1 and the hairpin structure in Figure 3, respectively.
Contour lines are drawn every 1 kcal/mol. The labels A, B,
and C locate the free-energy local-minimum states. The labels
D and E stand for the saddle points between A and B and
between B and C, respectively.

RMSD ) min[� 1
N ∑

i

(qi - qi
0)2] (9)

Figure 3. The hairpin structure of the designed peptide. The
N-terminus and the C-terminus are on the right-hand side and
on the left-hand side, respectively. The figure was created
with RasMol.28

Figure 4. Typical structures in the corresponding local-
minimum states in Figure 2. The N-terminus and the C-
terminus are on the right-hand side and on the left-hand side,
respectively. The arrows indicate possible pathways of the
designed peptide from R-helix structure to hairpin-like struc-
ture. The figures were created with RasMol.28
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has R-helix structures with an extended C-terminus. In B, this
extended C-terminus is close to the N-terminus. The extended
C-terminus forms a �-ladder with the N-terminus in the local-
minimum state C. These hairpin-like structures are similar to
the structure in Figure 3. We also show typical conformations
in transition states in Figure 4. In the transition state D between
the free-energy local-minimum states A and B, the extended
C-terminus is almost vertical with respect to the helix axis.
Because the C-terminal parts are extended to the upper side of
the R-helix structure in A and to the lower side of the R-helix
structure in B such as the conformations in Figure 4, the
conformation in the transition state D is very reasonable as an
intermediate conformation between those in A and B. The
structures in the transition state E between the local-minimum
states B and C have an extended N-terminus, and this extended
N-terminus is created by breaking the corresponding part of
the R-helix structure in B. We remark that, although we
determined the conformations in the transition states in Figure
4 simply as shown in the Supporting Information, there is a
useful analysis method to obtain more accurate transition states
among free-energy local minima that was presented in ref 26.

We list in Table 2 the expectation values of the R-helicity
and end-to-end distance and the values of the free energy in
the local-minimum states in Figure 2. Moreover, we listed the
R-helicity and end-to-end distance of the conformations in
Figures 1 and 3 as references. Here, an R-helicity of a
conformation is defined by

where NR is the number of residues that have helix structures
and Nres is the number of the residues of the peptide (Nres ) 18
for the designed peptide). We employed the definition of
secondary structure of proteins (DSSP) criteria27 to determine
the secondary structures of the peptide. The R-helicity in the
local-minimum state C is small in comparison with those in
the local-minimum states A and B from this table. This is
because the structures in C have a short extended N-terminus
by breaking apart of N-terminal R-helix structures in A and B
as mentioned above. Furthermore, the average end-to-end
distance gets smaller when the state is transferred from A to B
or from B to C. The expectation value of the end-to-end distance
in the local-minimum state C is close to the end-to-end distance
obtained from the experimental conformation in Figure 3.

From Figures 2 and 4 and Table 2, we deduce the
transformation process of secondary structures of the designed
peptide between R-helix structures and hairpin-like structures

as follows. Stage 1: The designed peptides have an R-helix
structure with an extended C-terminus such as the structure
in A in Figure 4. Stage 2: The extended C-terminus is bent
(transition state D) and comes close to the N-terminus like
the structure in B. Stage 3: A part of the R-helix on the
N-terminus is broken, and the extended N-terminus is formed
(transition state E). Stage 4: The extended C-terminus and
the extended N-terminus create the �-ladder such as the
structure in the local-minimum state C. These pathways are
summarized in Figure 4 (see the arrows).

The �-hairpin structures of the designed peptide were
observed in an experiment.19 Although the typical conformations
in the local-minimum did not have complete �-hairpin structures
in our simulation, complete �-hairpin structures did exist
during the simulation, where the conformations were in C.
Figure 5 shows the complete �-hairpin structure found in
the free-energy local-minimum state C. This structure is
formed by breaking the remaining R-helix structure of the
typical conformation in C.

5. Conclusions
It is important to understand the transformations of the secondary
structures of proteins. This is because the protein functions are
closely associated with the tertiary structures, and the tertiary
structure changes are caused by the secondary structure changes.
The typical secondary structures for the proteins are R-helix
and �-sheet structures, and the transformations between R-helix
and �-sheet structures are often important for the protein
function. For instance, amyloidogenesis is caused by the
transformations from R-helix to �-sheet structures for certain
proteins.

In the present work, we calculated the free-energy landscape
at 300 K for the designed peptide in aqueous solution from the
results of a multicanonical-multioverlap MD simulation. The
designed peptide has the two structures, R-helix and �-hairpin,
coexisting in an experiment. We observed these structures in
our simulation and identified intermediate structures and transi-
tion states between the two structures. We also deduced the
transformation pathways of the designed peptide between
R-helix structures and �-hairpin structures. In other words, it

Table 2. Expectation Values of the R-Helix Content and
the End-to-End Distance and Values of Free Energy in the
Local-Minimum States in Figure 2a

A B C Figure 1 Figure 3

R-helicity (%) 27.1 (2.2) 29.5 (5.0) 22.0 (0.3) 38.9 0.0
end-to-end

distance (Å)
23.8 (0.8) 13.2 (0.9) 4.5 (0.3) 25.7 7.0

free energy
(kcal/mol)

-9.2 (0.4) -8.9 (0.3) -8.5 (1.5)

a The corresponding values for the conformations in Figures 1
and 3 are also given as reference. Errors were estimated by the
jackknife method.29-31

NR

Nres
(10)

Figure 5. A �-hairpin structure in the free-energy local-
minimum state C in Figure 2. a and b correspond to the same
conformation viewed from different angles. The figures were
created with RasMol.28
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was clarified that the R-helix structure of the N-terminus is
broken step by step, and the �-ladder is created between the
broken parts and the extended C-terminus in the transformations
from R-helix to �-hairpin structures. Therefore, we believe that
our results for the transformations between R-helix and �-sheet
structures will play an important role in understanding the
protein functions, while our results are still with a small designed
peptide.
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Molecular Dynamics of Methyl Viologen-Cucurbit[n]uril
Complexes in Aqueous Solution
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Abstract: In this work, molecular dynamics (MD) simulations have been used to study the
dynamics of the inclusion complexes of methyl viologen (MV) with cucurbit[n]uril, CBn (where
n ) 6, 7, and 8) in aqueous solution. The obtained MD trajectories were analyzed and post-
processed using the Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA)
method to shed some light on the host-guest intermolecular forces that play a significant role
in the formation of the CB inclusion complexes. MV exhibits partial inclusion into CB6 cavity,
while deep inclusion was observed for the larger macrocyclic hosts with the two cationic groups
interacting with the carbonyl portals. The extracted snapshots reveal an increase in the
macrocycle distortion of CB6 and CB7 upon inclusion of the guest molecule. MM-PBSA
calculations indicate that CB7 forms the most stable complex with MV. The host-guest
electrostatic interactions are the dominant contribution to the complex stability. Furthermore,
van der Waals interactions add significantly to the complex binding free energy. The Potential
of Mean Force (PMF) for the host-guest distance was obtained by umbrella sampling. No energy
barriers were obtained for the guest movement inside the host cavity except in the case of
CB6.

Introduction

Cucurbit[n]urils (CBn) are macrocyclic molecules consisting
of n number of glycouril repeated units forming symmetric
barrel-shaped structures with two oxygen-crowned portals
and a hydrophobic interior.1-5 Due to these structural
features, CBs form inclusion complexes with a variety of
guest molecules. CB6 was the first member synthesized in
1905 by Behrend et al.,6 yet the supramolecular chemistry
of CB6 was not launched until the 1980s and 1990s. Other
sizes of Cucurbiturils, CB5, CB7, CB8, and CB10, were
prepared and made commercially available.7-9 CBs have
been explored as supramolecular catalysts, and they play an
important role in the construction of polyrotaxanes10 and
supramolecular switches,11 the removal of contaminants such
as colorants from water,12 and in the pharmaceutical field.13

Many experimental studies were performed to examine
the inclusion complexation of different types of molecules
with CBs.14-23 One of the guest molecules that showed
strong binding with CB host molecules is methyl viologen
(MV), a dication molecule, and hence it received great
attention. Ong et al. also studied the complexation of an MV
guest molecule with CB7. The obtained 1H NMR spectra
showed that CB7 forms stable 1:1 inclusion complexes with
the guest molecule in aqueous solution. The binding constant
was measured by electronic absorption spectroscopy and was
found to be 1.0 × 105 M-1. The smaller host CB6 was also
found to bind with MV but with a lower binding constant
(20 M-1). On the basis of their 1H NMR data, they described
the complex as partial inclusion of MV into a CB6 cavity.24

The interactions between CB7 with MV showed that a 1:1
host-guest complex in an aqueous solution was evidenced
by 1H NMR and mass spectroscopy with a high binding
constant of 2.0 × 105 M-1, in contrast to �-cyclodextrin
which shows a formation constant of about zero. This strong
binding was explained by the favorable ion-dipole interac-

* Corresponding author e-mail: musab@hu.edu.jo (M.I.E.-B.),
rawash@yu.edu.jo (A.M.M.R.).

† The Hashemite University.
‡ Yarmouk University.
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tions between the positive charges of the guest and the portal
oxygen atoms of CB7 in addition to the hydrophobic effect
inside the cavity.25 Moon and Kaifer studied the host-guest
interactions between CB7 and a series of dialkyl viologens
by 1H NMR spectroscopy. The results showed two modes
of inclusion, one with short-chain viologenes, which showed
inclusion for the aromatic group, and one with long-chain
viologens, which showed inclusion of the terminal alkyl
groups into the inner cavity of the host.26 Recent studies
have shown that CB8 forms 1:2 (guest/host) and even
possibly a 1:3 inclusion complex with N,N′-dialkyl-viologens
when the alkyl chain consists of more than four carbon
atoms, while it forms 1:1 for the shorter chains. MV was
shown to form a 1:1 complex with a 2.7 × 104 M-1 binding
constant.27 Other studies have reported a value of 1.1 × 105

M-1 for the binding constant of CB8 with MV.28

In this work, the inclusion complexation of MV with CB6,
CB7, and CB8 in water will be explored using MD
simulation techniques. MV is selected in this study as a
model guest molecule due to the availability of numerous
experimental data regarding its complexation with several
CB hosts, including binding constants and complex geom-
etries. The corresponding MD trajectories will be analyzed
to measure the effect of CB cavity size on the inclusion
process as well as to gain detailed information on the guest
dynamics inside the CB cavity. The flexibility and the
distortion of the CB macrocycle in the presence and absence
of the guest molecule will be addressed. The Molecular
Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA)
method will be used to estimate the binding free energy of
each CBn complex. The components of the binding free
energies will also be estimated and used to explore the type
of host-guest interactions responsible for complex forma-
tion, which may provide further insights into the inclusion
phenomenon. The variation of the free energy values or
Potential of Mean Force (PMF) with the host-guest distance
will be employed by means of the umbrella sampling method
to understand more about the energy barriers that may exist
during the inclusion process.

Computational Methods

The X-ray structures of CB6, CB7, and CB8 were used as
initial geometries.5,7 The geometry optimization and elec-
trostatic potential of the guest molecule were computed using
ab initio HF/6-31G* calculations using the Gaussian 03W
package.29 The atomic charges for the guest molecule
reproducing these electrostatic potentials were obtained using
the RESP methodology,30 whereas AM1-BCC charges were
used for CBn.31 The AMBER 8 software32 was used
throughout this work using the general force field parameter
sets.33 Each system was solvated by a cubic box of TIP3P
water molecules with a closeness parameter of 10 Å.34 Cl -

anions were added when needed to neutralize the system.
Periodic boundary conditions were adopted, and the Particle
Mesh Ewald method (PME) was used for the treatment of
long-range electrostatic interactions.35 The nonbonded cutoff
was set to 10.0 Å. Energy minimization was performed for
each solvated complex using the conjugate gradient algo-
rithm, heated up to 298 K for 60 ps, and followed by 200 ps

equilibration at 298 K and 1 atm. Production runs were
carried out for 5 ns; the system was coupled in the NPT
ensemble to a Berendsen thermostat at 298 K and a barostat
at 1 atm. A 2 fs time step with a saving of the structure
every 2 ps was used, and the nonbonded pair list was updated
every 25 steps.

Analysis of the obtained MD trajectories was conducted
using the PTRAJ module of AMBER. For hydrogen bond
analysis, a hydrogen bond cut distance e 3.0 Å and angle
g 120° were used. Visualization of the obtained trajectories
was done using the VMD program.36

For MM-PBSA calculations, 2500 snapshots of the
unbound guest molecule, CBn, and their complexes were
taken from their independent MD trajectories. The explicit
water molecules and the added ions were removed in each
snapshot. Details on estimating the binding free energy
∆Gbind and its components are described below.

The binding free energy ∆Gbind was estimated as follows:

where ∆Egas is the interaction energy between the guest and
host in the gas phase and is given by

where ∆EINT is the change in the internal energy upon
complexation. ∆Eelect and ∆EvdW represent the host-guest
electrostatic and van der Waals interactions, respectively.

The solvation free energy ∆Gsolv was estimated as the sum
of electrostatic solvation free energy ∆GPB and apolar
solvation free energy ∆GNP:

∆GPB is computed in a continuum solvent using the PBSA
program of AMBER 8, while the ∆GNP was calculated from
the solvent-accessible surface area (SASA), which was
estimated by the MSMS program using a probe radius of
0.14 nm,37 which is given by

where γ ) 0.00542 kcal/(mol Å2) and b ) 0.92 kcal/mol.
The change of the solute entropy upon complexation,

T∆Sconf, was estimated from normal-mode analysis using the
NMODE module of the AMBER 8 program.

Since prediction of the solute configurational entropy
contribution (T∆Sconf), computed by the normal-mode analy-
sis of the NMODE module in the AMBER 8, is associated
with a relatively large error,38,39 two values of the binding
free energies of the complexation process were calculated
in this work: ∆G, which is the complexation free energy
excluding the solute configurational entropy contribution
(T∆Sconf), and ∆G*, which includes the solute configurational
entropy contribution (T∆Sconf). Potentials of mean force,
PMF, were generated for the inclusion of the guest molecule
into the host cavity. The reaction coordinate used in the
umbrella sampling was the distance (r) between the methyl
carbon atom attached to the nitrogen atom (dark spot) in
MV and the center of mass of one CB carbonyl portal (gray
portal), as shown in Figure 1. The values of r ranged from

∆Gbind ) ∆Egas + ∆Gsolv - T∆S (1)

∆Egas ) ∆EINT + ∆Eelect + ∆EvdW (2)

∆Gsolv ) ∆GPB + ∆GNP (3)

∆GNP ) γ · SASA + b (4)
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0 to 16 Å in 1.0 Å intervals. The initial distance corresponds
to the inclusion of the guest molecule for CB7 and CB8,
while it corresponds to the partial inclusion of the guest in
the CB6 cavity. Then, the distance was varied to pull out
the guest molecule from each rim of CB. Umbrella potential
with a force constant of 6 kcal/mol/Å2 for each position was
applied. Each biasing MD simulation consists of an equi-
librium run of 260 ps using a protocol similar to the
conventional MD simulations described above, followed by
a production run of 500 ps. The distance data for each
simulation were collected in 5.0 fs intervals. The results were
post-processed using the Weighted Histogram Analysis
Method (WHAM).40,41

Results and Discussion

Five-nanosecond MD simulations for CB6, CB7, and CB8
and their 1:1 complexes with MV were performed in water
to study the dynamics of the host and guest molecules and
the intermolecular forces responsible for the complex
formation.

The average structures of the corresponding 1:1 complexes
obtained from the 5 ns MD trajectories of the complexes
are shown in Figure 2. The average structure of CB6/MV
showed a partial inclusion of MV into the cavity, where one
of the pyridinium rings was located inside the cavity while
the other ring interacted with the surrounding water mol-
ecules. On the other hand, the average structure of CB7/
MV showed a complete inclusion of the guest molecule, in
harmony with earlier 1H NMR spectroscopic experiments,
in which the � aromatic protons of MV exhibited an upfield
shift in the presence of the host. Moreover, irradiation of
the methyne and methylene protons of CB7 gave rise to
nuclear Overhauser effects for the R and � aromatic protons
of MV.24 These data could only be explained by the deep
inclusion of the guest molecule in the cavity of CB7.24 This

Figure 1. Definition of the distance used in umbrella sampling.

Figure 2. Average structures of the studied complexes, (a) CB6/MV, (b) CB7/MV, (c) CB8/MV.

Figure 3. Dynamics of 1:1 complexes, shown as a clustered
molecular display for CB/MV (side and top views).
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structure reveals the favorable ion-dipole interaction be-
tween the positive charge on each end of the guest molecule
and the portal oxygen atoms of CB7, while the hydrophobic
part of the guest molecule was accommodated in the
hydrophobic cavity. Similarly, CB8/MV average geometry
also depicts complete inclusion. It seems that MV has more
room inside the cavity because of the larger cavity size of
CB8. Although the cavity of CB8 is large enough to
accommodate two aromatic ring guest molecules, Kim and
co-workers found that CB8 binds a single molecule of
MV.27,28

The guest dynamics inside the host cavity, monitored by
the superposition of 10 snapshots extracted from the MD
trajectory for each complex, superimposed on a representative
host structure, are given in Figure 3. A first assessment of
the snapshots shows restricted translational movement of the
guest in and out of the cavity in all CBs. This indicates the
stability of the ion-dipole interaction in CB7 and CB8
during the simulations. The electrostatic potential of the CB

cavity is negative,2 which may explain the stable location
of the cationic group of the guest molecule inside the CB6
cavity. Rotational motion of MV inside the cavity was
observed in all complexes. Only in CB8 was the guest
molecule found to translate within the cavity due to space
availability.

Figure 4 shows the internal diameter (see scheme 1) values
of CB6, CB7, and CB8 as a function of time in the absence
and presence of the guest molecule. The MD averaged values
and the corresponding standard deviations for the diameter
are given in Table 1. Examining the standard deviations
reveals that the fluctuation of the diameter increased upon
complexation with MV in CB6 and CB7 but not in CB8.
No noticeable change in the average value of the diameter
upon inclusion of the guest molecule was observed for CB6
and CB8 (0.03 Å), but a change of 0.18 Å was measured
for CB7. Free CB8 exhibits the largest fluctuation, while
upon inclusion, CB7 fluctuates more.

Figure 4. CB internal diameter as a function of simulation time.
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To better understand the conformational changes of the
macrocyclic host upon guest inclusion, the values of two
perpendicular internal diameters were traced in the MD
simulation (Scheme 1). The absolute difference between the
diameters as a function of simulation time and its distribution
function for each system are given in Figure 5. Furthermore,
the MD-averaged values and the corresponding standard
deviations for the absolute difference are given in Table 2.

The difference between the diameters for CB6 shows a
high probability around 0.2 Å for the free host. This value
shifted to 0.8 Å in the complex. This indicates more sampling
of a less symmetric structure than CB6 (oval shape) upon
inclusion of the guest. The corresponding average value also
increased after complexation (Table 2). This clearly dem-
onstrates conformational changes of the macrocyclic structure
induced by the guest inclusion. The situation is more
dramatic in the case of CB7, upon whose inclusion, a severe
broadening of the probability distribution peak was observed.
The sampled structures for the complexed CB7 were found
to span from 0 to 4 Å. The high extent of distortion in the
case of CB7 (average value increased by ∼230%) may be
explained by the complete inclusion of the guest molecule
in CB7, compared to partial inclusion in CB6. Inspection of
the CB7/MV trajectory indicates that the rotation of the
molecule inside the cavity induces a change in the diameter
that passes the guest molecular plane (Figure 6). Figure 5
shows that CB8 exhibits more or less similar distortion before
and after complexation, although complete inclusion of the

guest molecule was found in accord with the higher cavity
size compared to MV size.

Hydrogen Bond Analysis. A summary of the intermo-
lecular hydrogen bonds that exist between each CB and the
surrounding water molecules is presented in Table 3. For
hydrogen bond analysis, a hydrogen bond cut distance e
3.0 Å and an angle g 120° were used. Results in Table 3
demonstrate, as expected, that the number of hydrogen bonds
increases as the number of glycouril units increases. The
portal oxygen atoms in the glycouril unit establish hydrogen
bonds with the water molecules nearby, while the nitrogen
atoms in CB do not play a role in the hydrogen bond network
with the solvent. All complexes showed a reduction in the
total number of hydrogen bonds upon complexation, indicat-
ing rearrangement of water molecules near both rims in the
inclusion process.

MM/PBSA Results. Table 4 lists the binding free energies
(kcal/mol) resulting from the MM/PBSA analysis of the 5
ns MD trajectories obtained for the studied complexes.
Results show that the major contribution to the binding free
energy is the host-guest electrostatic interactions (∆Eelec),
indicating the pronounced role of the ion-dipole interactions
in such systems. CB7/MV shows the highest electrostatic
contribution to the complex stability. This is expected since,
unlike the CB6 complex, the two cationic groups interact
with both carbonyl portals and associate in closer contact to
the crowns than the CB8 complex does. van der Waals
interactions (∆EvdW) were also found to be the highest in
the CB7 complex. This is a direct result of the complete
inclusion of the hydrophobic part of the guest molecule into
the CB7 cavity accompanied by the fact that the guest has a
better complementary size to the CB7 cavity than the CB8
does. The internal bonded interaction (∆EINT) values reflect
significant conformational changes upon binding, especially
in the CB6 system. The obtained ∆EINT values are correlated
well with the cavity size of the CB in which the values are
getting more positive with decreasing the size of CB.

∆GNP values are negative for all complexes, indicating that
the nonpolar surface term contributes positively to complex
stability, though to a much lower extent when compared to
the host-guest electrostatic and van der Waals interactions.
Results also indicate unfavorable electrostatic solvation
energy (positive values of ∆GPB) evidenced by an overall
positive value of the solvation free energy for all complexes.
This is attributed to the reduction of contact area with the
solvent of both host and guest molecules upon inclusion and
hence less electrostatic interactions of the complexed mol-
ecules with the solvent than the free molecules. The resulting
rank of ∆GPB (or ∆Gsolv) is expected, in which the CB7
complex exhibits the largest positive values, followed by
CB8, and then CB6.

The computed binding free energies (∆G) reveal that the
tendency of MV to complex with CBs is in the order CB7
> CB8 > CB6, in agreement with the experimental trend.

NMODE calculations indicate that negative values of
T∆Sconf are obtained for all studied complexes, thus dem-
onstrating a loss in the degrees of freedom upon binding.
The T∆Sconf value obtained for the CB8 complex is more
negative (-13.5 kcal/mol) when compared to the expected

Scheme 1. Perpendicular Internal Diameters Traced in MD
Simulation

Table 1. MD-Averaged Values of the Internal Diameter of
CB

complex CB6 CB6/MV CB7 CB7/MV CB8 CB8/MV

average
diameter (Å)

9.96 9.93 11.33 11.15 12.95 12.92

standard
deviation (Å)

0.24 0.46 0.38 0.81 0.50 0.45
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stiffer CB7 complex (-11.5 kcal/mol). The results are in
contrast with the fact that the guest molecule has more room
in the CB8 cavity than CB7, thus having more mobility in
CB8, as can be seen in Figure 3. This might be attributed to
the approximate nature of NMODE calculations. However,
results in Tables 1 and 2 and Figures 4 and 5 show that the
fluctuation of the diameter and the difference between the
perpendicular diameters increased upon complexation with

MV in CB7 but slightly decreased in CB8. This might
explain the obtained T∆Sconf values of CB7 and CB8
complexes.

It should be noted here that including the configurational
entropy term in the binding free energy (∆G*) also gives a
similar trend of MV desiring to complex with CBs.

Attempts to conduct MD simulation of MV with �-cy-
clodextrin (�-CD) prove that MV does not enter into the
�-CD cavity since the guest molecule escapes from the �-CD
cavity after a few hundred picoseconds. This is due to the
presence of two cationic groups in the guest molecule, which
interacts more with the surrounding water molecules. This
also indicates that, although there is a similarity in the sizes
of the hydrophobic cavities in CB7 and �-CD, the interaction
at the cavity entrances with guest molecule in both systems
is different.25 This result is in accord with the experimental

Figure 5. Distribution functions for the difference between two perpendicular internal diameters of CB. The difference as a
function of simulation time is superimposed in each figure.

Table 2. MD-Averaged Values of the Absolute Difference
between Two Perpendicular Internal Diameters of the Host

complex CB6 CB6/MV CB7 CB7/MV CB8 CB8/MV

average
difference (Å)

0.44 0.85 0.59 1.36 0.82 0.72

standard
deviation (Å)

0.34 0.54 0.43 0.78 0.58 0.54
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data which showed that the �-CD/MV complex has a very
low formation constant (∼0) with MV.25 It is worth
mentioning here the results of a recent MD study conducted
by our group for the complexation of N-methyl-4-(p-methyl
benzoyl)-pyridinium methyl cation with CB7 and �-CD.
Results show that �-CD formed a more stable complex with
the guest molecule than CB7 (∆∆G ≈ 1.9 kcal/mol).42 The
guest molecule in that study possesses only one cationic site
(methyl pyridinium cation), whereas MV has two cationic

sites (two methyl pyridinium cations) capable of interacting
with both CB7 portals by the favorable ion-dipole interac-
tions, hence forming a more stable complex than �-CD.
Moreover, the higher solubility of the dicationic guest
compared to the monocationic guest is also responsible for
a very small interaction with �-CD.

Umbrella Sampling (PMF Calculations). Figure 7 shows
the results of PMF along the r coordinate (described in Figure
1). The PMF for the guest moving inside the CB6 cavity
shows two minima at 5 and 11 Å with PMF values of -4.81
and -2.69 kcal/mol, respectively. Both minima correspond
to more or less similar complex geometries which are
composed of partial inclusion of the guest molecule. The
difference in free energy between the two minima could be
attributed to the distortion suffered by the macrocyclic
compound when the guest passes from the unfavored
complete inclusion to a partial inclusion, causing the differ-
ence in the free energy values. This is clear by the barrier
existing at 8 Å which represents complete inclusion of the
guest. The presence of the barrier explains the lack of
sampling of snapshots composed of deep inclusion in the
conventional MD simulation. There are also two barriers
when the guest approaches both portals due to their small
size. These barriers were not found for the bigger hosts, CB7

Figure 6. Extracted snapshots of the CB7/MV complex to show the effect of guest rotation on the diameter of the host molecule.

Table 3. Water-CB Intermolecular Hydrogen Bond
Analysis for the Free and Complexed Host Molecules

HB/complex CB6 CB6/MV CB7 CB7/MV CB8 CB8/MV

oxygen 8.13 5.67 9.68 7.33 10.36 9.53
nitrogen 0.02 0.01 0.01
total 8.13 5.67 9.70 7.33 10.37 9.54

Table 4. Binding Free Energies (kcal/mol) Resulting from
MM/PBSA Analysis of the Studied Complexesa

kcal/mol CB6/MV CB7/MV CB8/MV

host Eelec -1033.7 -1118.3 -1378.2
EvdW -34.0 -35.8 -36.9
EINT 257.6 303.1 350.7
GNP 4.4 5.2 6.0
GPB -135.1 -167.7 -181.0
Gsolv -130.7 -162.5 -175.0
TS 81.7 94.5 107.2

guest Eelec 142.7
EvdW 12.7
EINT 25.7
GNP 2.1
GPB -160.6
Gsolv -158.5
TS 36.0

complex Eelec -1003.1 -1118.1 -1360.0
EvdW -46.5 -54.8 -47.9
EINT 289.0 330.6 375.7
GNP 4.6 4.9 6.0
GPB -177.0 -170.9 -206.6
Gsolv -172.4 -166.0 -200.6
TS 98.7 119.0 129.7

∆bind -∆Eelec -112.1 -142.5 -124.5
∆EvdW -25.2 -31.7 -23.7
∆EINT 5.7 1.8 -0.7
∆GNP -1.9 -2.4 -2.1
∆GPB 118.7 157.4 135.0
∆Gsolv

b 116.8 155.0 132.9
∆Gc -14.8 (2.2) -17.4(2.1) -16.0 (1.8)
T∆S -19.0 (0.8) -11.5 (0.7) -13.5 (0.9)
∆G*d 4.2 (2.4) -5.9 (2.2) -2.5 (2.0)
∆Gexpt -1.8e -7.2f -6.1g, -6.9h

a Numbers in parentheses are standard deviations of the
results. b ∆Gsolv ) ∆GNP + ∆GPB

c ∆G ) ∆Eelec + ∆EvdW + ∆EINT

+ ∆GNP + ∆GPB. d ∆G* ) ∆Gb - T∆Sconf
e Ref 24. f Ref 25. g Ref

27. h Ref 28.

Figure 7. PMF profiles for inclusion of MV.
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and CB8. The latter systems show only one minimum
attributed to the complete inclusion geometry (8 Å).

Conclusion

The complexation of methyl viologen with cucurbit[n]urils
was studied by molecular dynamics simulations, MM-PBSA
and umbrella sampling. Deep inclusion of the guest was
observed in CB7 and CB8 complexes, while partial inclusion
occurs in the case of CB6. The CB macrocycle distorted upon
inclusion of the guest molecule, and this was clear when
the dimensions of the cavity and the guest molecule were
close. MM-PBSA calculations revealed that host-guest
electrostatic interactions were of major importance for the
stability of the complexes. The movement of the guest
molecule through the CB6 cavity involved energy barriers,
while no barriers were found in CB7 and CB8 for the guest
movement.
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Abstract: Static quantum chemical calculations and Car-Parrinello molecular dynamics (CPMD)
simulations were used to investigate the structural characteristics and the stability of pentameric
aluminum clusters in both gas phase and aquatic environments. The accuracy of several
generalized gradient approximation (GGA) and hybrid exchange-correlation functionals were
tested with and without empirical van der Waals corrections to ensure the accuracy of the selected
methods. Conformational analysis was performed for experimentally detected (electrospray
ionization mass spectrometry, ESI MS) structural isomers of cationic [Al5O6H2Cl4]+, [Al5O7H4Cl4]+,
[Al5O8H6Cl4]+, and [Al5O9H8Cl4]+ complexes. Conductor-like screening model (COSMO) was
used to investigate the stability of the gas phase optimized structures in aquatic environments.
Four of the main pentameric aluminum complexes were then selected for the CPMD investigation.
The effect of the long-range empirical vdW corrections (-D) was also tested employing two
identical simulations, with and without the corrections. During these simulations, several
spontaneous associative hydration reactions were detected. The open and highly symmetric
hexagonal prism-like structures were found to be dominating geometries in liquid conditions.
Overall, CPMD calculations produced distinctly different geometries for the pentameric molecules
than for the static calculations.

1. Introduction

The speciation of aluminum compounds in aquatic environ-
ments has been widely studied both experimentally and
theoretically during the past few decades. Experimental
methods, such as potentiometric titration,1,2 27Al nuclear
magnetic resonance (NMR) spectroscopy,3-10 X-ray crystal-
lography,11,12 and electrospray ionization mass spectrometry
(ESI MS)13-17 have been used to reveal the hydrolysis of
aluminum salts during coagulation in aquatic solutions. At
the same time, several computational studies have addressed
the structures and energetics of different sized aluminum
compounds and ions in gas phase and in liquid environ-
ments.18-29 As a result of these investigations, a wide variety

of different aluminum species have been detected from small
monomeric to large polynuclear aluminum complexes.
However, there are still a number of unknown factors
concerning the exact nature and composition of the hydroly-
sis products of aluminum salts in aqueous environments. One
of the most interesting factors is the role of small oligomeric
species, like pentameric aluminum complexes in the afore-
mentioned hydrolysis processes.

The first real evidence of the existence of pentameric
aluminum complexes in aquatic solutions was detected in
the high-field 1H and 27Al NMR studies of Akitt et al.30 They
postulated that, at higher aluminum concentrations (>0.02
mol dm-3) and at intermediate levels of hydrolysis, an
oligomeric mixture of [Al(OH)2.5]0.5+ is formed, which can
then be composed of pentameric aluminum complexes, like
[Al5(OH)12]3+ and [Al5(OH)13]2+.30 However, the results of
Akitt et al. indicated that these oligomeric aluminum species
were only intermediate forms in polymerization from mono-
mers to the tridecameric “Keggin” cation [AlO4Al12-
(OH)24(H2O)12]7+, especially in low aluminum concentrations
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(<0.02 mol dm3).30,31 Two decades later, Sarpola et al.
investigated the hydrolysis products of aluminum in the
aquatic environments using the ESI MS method and detected
around 20 different cationic pentameric aluminum complexes
mainly at 10-100 mM aluminum concentrations in acidic
solutions (pH < 4.7).13-15 They also postulated that pen-
tameric structures seemed to be surprisingly stable in aquatic
environments.32

Recently, Zhao et al. studied the effect of pH to the
hydrolysis of aluminum salts using the ESI MS method
and discovered only one pentameric aluminum complex
([Al5O7]+), which was present mainly at the pH range of
4.0-5.0.17 Zhao et al. postulated also two mechanisms for
the coagulation of aluminum salts, the “core-link” and “cage-
like” models. In the “cage-like” model, there are only
monomeric, dimeric, and tridecameric polycations and larger
polynuclear aluminum species in the aquatic solutions.17

However, the “core-links” model gives a distribution of
continuously changed aluminum compounds from mono-
meric species to smaller oligomeric aluminum complexes,
etc.17 Zhao et al. claimed that pentameric aluminum com-
plexes can either fragment to tetrameric aluminum com-
pounds by loosing an aluminum atom or aggregate by self-
assembly to form larger aluminum complexes (Al10) in
aquatic environments.17 They also postulated that small
oligomeric aluminum compounds (Al3-Al5) are dominating
in the pH range of 4.6-4.8 at very low aluminum concentra-
tions (1.5 × 10-4 mol dm-3).

Das et al. combined quantum chemical density functional
calculations with anion photoelectron and mass spectroscopy.
They investigated the structural characteristics of neutral and
anionic Al5O4 clusters.33,34 Highly symmetric planar geom-
etry was detected to be the ground state structure for the
anionic aluminum oxide cluster Al5O4

-. In addition, a neutral
Al5O4 cluster was observed to have very large electron
affinity, equivalent with the affinity of the chlorine ion.34

The results of the photoelectron spectroscopy revealed the
high reactivity of the anionic cluster toward an aqua ligand.
Reactivity was then confirmed in the static quantum chemical
density functional calculations.33 Although pentameric alu-
minum clusters have been studied both experimentally and
theoretically, there are still a number of uncertainties
concerning their stability and structural characteristics in the
hydrolysis processes.

In this investigation, we have studied the characteristics
of cationic pentameric aluminum complexes in aquatic
environments using static quantum chemical methods and
Car-Parrinello molecular dynamics (CPMD) simulations.
Pentameric complexes were taken directly from the ESI MS
results of Sarpola et al.13-15,32 It should be noted that most
of the time, especially when the fragmentation series of aqua
ligands or isotopic patterns are lacking in the spectra, ESI
MS gives only the sum mass of the complex.14 Hence,
quantum chemical conformational analysis was performed
to obtain the lowest energy conformations of the chosen
pentameric species prior to the ab initio molecular dynamics
(AIMD) simulations. The main goal of this study was to
reveal the stability of the pentameric aluminum complexes
in aquatic environments and, in addition, to elucidate their

role in the aforementioned hydrolysis processes. The second-
ary objective was to investigate the applicability of the
empirical van der Waals corrections to both static calculations
and CPMD simulations.

2. Computational Details

2.1. Static, Gas Phase Studies. We investigated the
structures of aluminum complexes with the molecular
formulas of [Al5O6H2Cl4]+, [Al5O7H4Cl4]+, [Al5O8H6Cl4]+,
and [Al5O9H8Cl4]+. We note that these were the main
pentameric aluminum species detected in the ESI MS studies
of Sarpola et al.13-15,32 Geometry optimizations were carried
out without symmetry constraints. The structural optimization
of the clusters were performed using density functional theory
(DFT) with the Perdew-Burke-Ernzerhof (PBE) func-
tional35 and polarized valence triple � (TZVP) basis set.36

Calculations were performed using the Turbomole 6.0
program suite.37 Resolution-of-the-identity (RI) approxima-
tion was used to accelerate the calculations.38

The choice of PBE density functional was justified with a
test of four trimeric, four tetrameric, and four pentameric
aluminum (chloro)hydroxide complexes, which were then
optimized in the gas phase with different methods (Becke88
exchange and Lee-Yang-Parr correlation functional (BLYP),
Becke’s three parameter hybrid functional (B3LYP)) with
the TZVP basis set. The accuracy and the effect of empirical
van der Waals corrections (-D) were also tested here (PBE
and B3LYP).39 For the usage of these corrections, three sets
of parameters must be defined, density functional dependent
global scaling factor s6, dispersion coefficients C6 ([Jnm6

mol-1]), and van der Waals radii R0 ([Å]) for the elements.40

Scaling factor s6 for PBE was 0.75 and 1.05 for B3LYP.
The C6 and R0 parameters for aluminum were 10.79 and
1.639, for oxygen 0.70 and 1.342, for hydrogen 0.14 and
1.001, and for chlorine 5.07 and 1.639. The total energy is
then given by equation

Nat denotes the number of atoms in a system, C6
ij is the

dispersion coefficient for atom pair ij that can be written as
geometric mean ((C6

iC6
j)1/2). We note that the selected

trimeric and tetrameric complexes came from the previous
studies of the author.41 Second-order Møller-Plesset per-
turbation theory (MP2) with the frozen core approximation
and quadruple � valence with double polarization (QZVPP)
was chosen for the reference method, see Table 1.42-44

The justification of the frozen core approximation is that
the inner-shell electrons of an atom are less sensitive to their
environment than the valence electrons. Thus, the error
introduced by freezing the core orbitals is nearly constant
for molecules containing the same types of atoms. The
accuracy of this approximation was also tested by fully
optimizing the selected aluminum structures in the MP2/
QZVPP level of theory with and without frozen core
approximation. Approximation clearly accelerated the opti-
mization procedure but had only a mild affect to the relative

EDFT-D ) EDFT + (-s6 ∑
i)1

Nat-1

∑
j)i+1

Nat C6
ij

Rij
6
fdmp(Rij)) (1)
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energy differences between chosen aluminum conformations
(0.1-5.9 kJ mol-1). The accuracy of the chosen theory was
also tested against the second-order approximate coupled-
cluster (CC2/QZVPP) method. This was done optimizing five
dimeric ([Al2O6H9Cl2]+

41), and eight trimeric (four
[Al3O7H8Cl3]+ and four [Al3O7H8SO4]+)16,41 aluminum
conformations with the CC2 level of theory without frozen
core approximation and comparing the relative energy
differences to the MP2 results. The linear regression analysis
of the relative energy differences were very close to linear
dependency; the goodness of fit (R2) was 0.9996. The results
of these tests confirmed clearly that the accuracy of the MP2/
QZVPP/frozen core approximation level of theory is suf-
ficient for the reference method.

The comparison of the accuracy of the chosen methods
(Table 1) was performed by subtracting the relative energy
differences of trimeric, tetrameric, and pentameric aluminum
complexes calculated with different density functional or
hybrid methods from the corresponding relative energy
differences of the reference method. This was followed by
taking the absolute values of the extractions. Then, the
averages and standard deviations were calculated of the
absolute values; see Table 1. Note that the ground state
energies were also included (n ) 12). The results showed
that the PBE functional gives slightly more consistent results
compared to the BLYP density functional45,46 and B3LYP
hybrid functional45-48 with lower mean value and standard
deviation. The van der Waals-corrected functionals yielded
the following results; the PBE-D had the lowest mean value
and standard deviation of the test, whereas B3LYP-D had
the highest. The results indicated clearly that the empirical
corrections can either enhance the accuracy of the functional
(PBE) or worsen it (B3LYP). Due to this test, the PBE
density functional with triple � basis set was chosen for the
preliminary optimizations and the PBE with empirical van
der Waals corrections was chosen for the verification.

During the test, we examined also the double-hybrid
functional B2PLYP-D with long-range empirical dispersion
corrections.45-47,49,50 We tested its accuracy using the
second-order approximate coupled cluster (CC2/QZVPP) as
the reference, although B2PLYP-D can only be used for
single point calculations in Turbomole. It is a new type of
hybrid density functional with global parameters of ax for
describing the mixture of Hartree-Fock (HF) and generalized

gradient approximation (GGA) exchange and c for describing
the perturbative second-order correlation part (PT2) and GGA
correlation.49,50 The relative energy differences of different
dimeric and trimeric aluminum chlorohydrate conformations
calculated with the B2PLYP-D/TZVP level of theory were
then subtracted from CC2/QZVPP results taking the absolute
values from the differences. The high standard deviation
(15.6) and rather high mean value (8.2) of the differences
indicate that the new double-hybrid density functional
(DHDF) is not the best choice for describing the chemical
nature and relative energy differences of aluminum (chlo-
ro)hydroxide complexes. The new DHDF was also tested
for tetrameric and pentameric aluminum chlorohydrates using
MP2/QZVPP with frozen core approximation as a reference.
In the case of small oligomeric aluminum complexes, not
only the standard deviations and mean values increased but
also the functional failed to describe the trends in energy
differences of different conformations compared to the results
of any other density functional or reference method. These
observations show clearly that the B2PLYP-D is not a
suitable method for cationic aluminum (chloro)hydroxide
calculations and, hence, was not used in further investigations
in this study.

2.2. Static, Liquid Phase Calculations. The stability of
gas phase optimized structures in aqueous environments was
investigated using conductor-like screening model (COSMO)
with triple � valence with double polarization.36,51,52 COS-
MO is a solvation model, where the solute forms a cavity
within the dielectric continuum of the permittivity ε that
represents the solvent.37 In this study, water (ε ) 78.39) was
chosen for the solvent. Most of the parameters employed
were the default parameters of COSMO, e.g., optimized van
der Waals radii for O, H, and Cl atoms existed in the code.
The radius for chlorine was 2.05 Å, for oxygen 1.72 Å, and
for hydrogen 1.30 Å, and the scaling factor was ap-
proximately 1.89. However, the van der Waals radius of the
aluminum ion (RAl) had to be defined computationally. It
was determined as follows. The literature value for the Gibbs
free energy of hydration of Al3+ ion is -4619 kJ mol-1.53

Burgess introduced Gibbs free energies of the hydration for
the cations relative to the estimated free energy of the
hydration of a proton (-1090.7 kJ mol-1).53 Tissandier et
al. corrected and updated the value of the absolute Gibbs
free energy of the hydration of the proton by less than 14 kJ

Table 1. Comparison of the Gas Phase Energy Differences [kJ mol-1] of Aluminum Chlorohydrates

cluster PBE BLYP B3LYPa PBE-D B3LYP-Da MP2/QZVPP

[Al3O7H9Cl3]+_1 19.0 25.3 25.5 26.5 35.7 23.3
[Al3O7H9Cl3]+_2 32.9 27.0 28.6 32.9 28.5 32.7
[Al3O7H9Cl3]+_3 3.1 1.5 2.0 3.3 1.9 4.2
[Al3O7H9Cl3]+_4 0 0 0 0 0 0
[Al4O8H9Cl4]+_1 25.7 22.5 23.5 27.8 25.9 24.8
[Al4O8H9Cl4]+_2 57.4 47.5 51.2 49.8 40.2 52.3
[Al4O8H9Cl4]+_3 35.0 24.1 32.7 39.4 33.7 45.5
[Al4O8H9Cl4]+_4 0 0 0 0 0 0
[Al5O7H4Cl4]+_1 56.9 44.8 50.0 45.9 34.4 49.3
[Al5O7H4Cl4]+_2 40.4 28.3 31.9 35.6 25.3 38.2
[Al5O7H4Cl4]+_3 49.8 53.0 55.9 47.4 53.0 49.9
[Al5O7H4Cl4]+_4 0 0 0 0 0 0
averageb 2.7 4.7 3.1 2.0 6.2
standard deviationb 3.5 6.0 3.8 1.9 6.0

a Without resolution-of-the-identity (RI) approximation. b Calculated from the absolute values of |∆EMP2 - ∆EDFT|.
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mol-1 (-1104.5 kJ mol-1) in their Cluster-Pair-Based
approximation studies.54 The value of the Gibbs free energy
of aluminum ion was then corrected according to the
correction of Tissandier et al.54

The optimized COSMO radius for aluminum ion was
calculated using eq 2, where ∆ECosmo(Al3+,RAl) is the COSMO-
corrected total energy of Al3+ ion and ∆EVacuum(Al3+) is the
total energy of Al3+ ion in gas phase. The optimized van der
Waals radius for aluminum ion was then specified to 1.3287
Å. Coskuner et al. postulated a similar van der Waals radius
for aluminum (1.33) in their coordination studies of Al-EDTA
in aqueous solutions.55

During this research, all COSMO calculations were made as
single point calculations. The choice was made to compare the
solvation energy differences of gas phase optimized conforma-
tions without altering the gas phase structures. The choice can
be rationalized with the fact that the measuring process in the
ESI MS method takes place in vacuum conditions.13-16

However, the choice of single point COSMO calculations has
been tested in reference to the full COSMO optimization
calculations in our previous computational studies.16,41 More
detailed description of the tests can be found in refs 16 and 41.

2.3. Car-Parrinello Molecular Dynamics Simulations.
Pentameric aluminum complexes were also studied in a liquid
environment using ab initio molecular dynamics (AIMD)-
simulations. The selected pentameric species were
[Al5O6H2Cl4]+ (m/z ) 373) and [Al5O7H4Cl4]+ (m/z ) 391).
The initial molecular formulas for the pentameric aluminum
clusters came from the ESI MS studies of Sarpola et
al.13-16,32 The minimum energy structures for chosen oli-
gomeric aluminum clusters were then deduced in gas phase
in the static part of this study. Three different conformations
including the gas phase minima of the cationic [Al5O6H2Cl4]+

complex were taken and placed into a 17.0 Å cubic shell
and solvated by 141 explicit water molecules, producing a
density of 1.04 g cm-3. In addition, the gas phase minima
of the cationic [Al5O7H4Cl4]+ cluster was solvated by 169
water molecules in a cubic shell of 18.0 Å sides, producing
a density of 1.04 g cm-3. Note that densities were calculated
for a deuterated system. The initial guess of the water
molecule positions was based on the simple point charge
(SPC) water model.56,57

We used 24 Ry cutoffs for the plane wave expansion and
periodic boundary conditions. Simulations were performed
in the canonical ensembles (NVT) using a Car-Parrinello
molecular dynamics approach (CPMD).58 The temperature
of the simulations was scaled to 350 K using a chain of Nose-
Hoover thermostats59-62 with characteristic frequency of
2500 cm-1, which was fixed high enough to ensure that the
OH moieties were thermostatted properly and to have better
control of fictitious kinetic energy. The core electrons were
described using Vanderbilt ultra soft pseudopotentials63-65

for all atoms in a system. The time step for electrons and
ions in these simulations was 6 atomic units (0.145 fs), which
was possible using deuterium instead of hydrogen in the
simulations. The following atomic masses for the nuclei were

used 2.0 amu for hydrogen, 16.0 amu for oxygen, 27.0 amu
for aluminum, and 35.4 amu for chlorine atoms. Fictitious
electron mass (µ) was 650 atomic units, and the total charge
of the system was +1. The equations of motion were solved
using velocity Verlet algorithm.

PBE density functional35 was used throughout the simula-
tions. It was selected for the investigations due to the proven
accuracy in describing the structural characteristics and
stability of the aluminum chlorohydroxides in aquatic en-
vironments.66 The effect of empirical van der Waals cor-
rections was also tested during this research. Simulations
were performed with and without van der Waals corrections.
Corrections were employed using the ALL GRIMME ap-
proach, where long-range dispersion forces are considered
by explicitly including damped pairwise interatomic poten-
tials of C6

ijRij
-6 form in the total energy.39,40 The average

simulation times were from 30 to 45 ps throughout this
investigation.

3. Results and Discussion

3.1. Static Calculations. In this part, we will focus on
the structural characteristic of the cationic pentameric
aluminum complexes, [Al5O6H2Cl4]+, [Al5O7H4Cl4]+,
[Al5O8H6Cl4]+, and [Al5O9H8Cl4]+. We will discuss the
conformational isomers of the aluminum clusters above and
compare the characteristics of the most interesting low energy
conformations. In total, we have investigated hundreds of
planar and nonplanar configurations of the oligomeric
aluminum species for the geometry optimizations. The
structures were optimized in gas phase using the PBE/TZVP
approach. The optimization procedure was then divided into
two stages: first, the core of the clusters was optimized,
followed by the optimization of the ligand orientations. The
lowest energy conformations including the gas phase minima
were then selected for the cross-checking with PBE-D/
TZVPP level of theory and for the COSMO calculations in
order to compare their relative energy differences in aquatic
solutions.

We first focus on the structural characteristics and solva-
tion of the cationic [Al5O6H2Cl4]+ (m/z ) 373) aluminum
(chloro)hydroxide clusters. The core of the gas phase
minimum of this cluster is composed of a netlike structure
of Al5O4 and resembles closely the minimum energy structure
of [Al5O4]- anion introduced in the studies of Das et al.33,34

However, the two hydroxo bridges between the corner
aluminum atoms are bending the core structure from the
symmetric planar configuration to a asymmetric form, see
structure (a) in Figure 1. The minimum energy structure
seems to be a combination of a trimeric ([Al3O3(OH)Cl2]0)
with C3v symmetry and dimeric ([Al2O(OH)Cl2]+) aluminum
complexes, which both have cores resembling closely to the
dimeric and trimeric aluminum (chloro)hydroxides intro-
duced in our previous studies.41,66 However, these substruc-
tures were not seen individually in the ESI MS studies of
Sarpola et al.13-16

The structure (a) consists of four equivalent three coor-
dinated oxygen atoms and two hydroxo bridges. The core
aluminum-oxygen (RAl-O) bond distances varied from 1.79

∆ESolv(Al3+) ) ∆ECosmo(Al3+,RAl) - ∆EVacuum(Al3+) (2)
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to 1.89 Å, being the shortest between the center aluminum
atom and trivalent oxygen bridges located between corner
aluminum atoms. The corner aluminum and hydroxo bridge
oxygen atom (RAl-OH) bond lengths were around 1.86 Å,
whereas the corner aluminum atom and trivalent core oxygen
atom bond distances varied from 1.83 Å to 1.89 Å, indicating
the asymmetry of the structure. All aluminum-oxygen bond
lengths mentioned above differed slightly from the equivalent
bond distances in the [Al5O4]- anion of Das et al.33,34 This
is mainly due to the strongly electronegative chlorido ligands
attached to all four corner aluminum atoms. The chlorido
ligands attract valence electrons from the aluminum atoms,
thereby weakening other bonds of the cluster. The aluminum-
chlorine (RAl-Cl) bond lengths were around 2.07 Å. Despite
this ligand effect, all aluminum-oxygen (RAl-O) bond lengths
were within the typical Al-O single bond distance range.67,68

According to the previous studies, aluminum prefers
octahedral coordination in aquatic environments.27,28,69

However, also 5-fold coordination has been detected for the
aluminum ions in solutions.66,70 In the case of cationic
[Al5O6H2Cl4]+ minimum, all five aluminum atoms in the
structure were four coordinated, indicating that the complex
is an ideal Lewis acid for accepting an electron pair from
surrounding aqua ligands in the aquatic environments. In
other words, it has a vacant coordination position in the
valence shell making it ideal for acting as an acceptor of a
new donor aqua ligand. Due to these hypotheses, the gas
phase minima of this oligomeric aluminum complex was
chosen for the CPMD simulations.

The structure (b) was chosen here not only due to its low
energy but also because it has a core structure that resembles
closely to the core of an intermediate tetrameric aluminum
chlorohydrate [Al4O2(OH)3Cl4]+ form between adamantane-
like and cubane-like structures.41 The aluminum-oxygen
(RAl-O) bond lengths varied from 1.78 to 1.89 Å, and the
RAl-Cl bonds varied from 2.05 to 2.08 Å, respectively. The
structure had also four equivalent trivalent oxygen atoms
bridging simultaneously three different aluminum atoms
leading to a tetrahedral coordination of the aluminum
atoms. Structure (b) was also selected for the CPMD
investigations in order to investigate its stability in aquatic
environments.

The structure (c) can be considered as a combination
of neutral dimeric [Al2O2Cl2]0 and cationic trimeric
[Al3O2(OH)2Cl2]+ (C3v symmetry) aluminum complexes, as
seen in Figure 1. The core structure has a hexagon part
and a compact trimeric part sharing one aluminum and
one oxygen atom. It consists of two trivalent oxygen, two
bivalent oxygen atoms, and two hydroxo bridges. The
aluminum-oxygen bond distances varied from 1.69 to 1.88
Å, being the shortest on the aluminum and oxygen atoms in
the hexagon. The aluminum-chlorine bond distances were
around 2.07 Å. Structure (c) differs from the rest of the
conformations by having two three coordinated aluminum
atoms in the hexagon side. However, all three aluminum
atoms in the trimeric side preferred 4-fold coordination. The
structure (c) was also selected for the CPMD simulations.
The results of the simulations will be discussed more closely
in the following sections.

The stability of the gas phase optimized structures was
then investigated in aquatic environments with COSMO.
Results showed clearly that the gas phase minimum of the
cationic [Al5O6H2Cl4]+ cluster was solvated most effectively
having the lowest solvation energy. The structure (b) had
around 94 kJ mol-1 and the structure (c) had around 166 kJ
mol-1 higher solvation energies compared to the structure
(a).

The minimum energy structure of the cationic [Al5O7H4Cl4]+

complex consists of two trimeric parts facing in the opposite
direction; see structure (a1) in Figure 1. The trimeric part on
the left-hand side is facing away from the viewer, and the
trimeric part on the right-hand side is facing toward the viewer,
respectively. The orientation seems to be crucial, since the
conformation where both trimeric parts are facing in the same
direction is over 40 kJ mol-1 higher in energy (PBE-D/
TZVPP). The structure of the complex consists of three
equivalent three coordinated oxygen atoms and four hydroxo
bridges. The aluminum-oxygen bond lengths varied from
1.81 to 1.92 Å, being the longest between center five
coordinated aluminum atom and top trivalent oxygen atom,
which is linking the two trimeric parts together. The RAl-OH

bond lengths varied from 1.86 to 1.88 Å. The structure
consists of four chlorido ligands attached to the corner
aluminum atoms. The aluminum chlorine bond distances
were around 2.08 Å. All aluminum atoms were four
coordinated except the shielded center aluminum atom, which
had 5-fold coordination. The core structure of the gas phase
minimum was also slightly bent, which can be seen from

Figure 1. Optimized low energy configurations for the cationic
[Al5O6H2Cl4]+ and [Al5O7H4Cl4]+ aluminum complexes. The
energy differences are calculated relative to the gas phase
and COSMO minima. Aluminum is presented in blue, oxygen
in red, chlorine in green, and hydrogen in white.
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the 130° angle between the oxygen atom of the hydroxo
bridge, center five coordinated aluminum atom, and the
oxygen atom of the bridging hydroxo group of the other
trimeric part.

As a gas phase minimum, the structure (a1) was also
selected for the CPMD simulations. The selection was based
also on the geometrical characteristics of the cluster because
the compact trimeric unit is also one of the main components
of the tridecameric Keggin cation, which can be viewed as
four trimeric Al3O(OH)6(H2O)3 groups linked together at
polyhedral edges around the central Al(O)4 unit.71-74

Furthermore, Keggin cation is widely considered to be one
of the main hydrolysis products of aluminum in acidic aquatic
solutions.13-17,28 Thus, the investigation of the stability of
the structure (a1) in aquatic environments is justified.

The structure (b1) differs from the gas phase minimum
by the orientation of the trimeric units. In (b1), they are both
facing toward the viewer, see Figure 1. Furthermore, the two
four-rings in both sides of the center five coordinated
aluminum atom are in the same horizontal plane. The
structure consists of four hydroxo bridges and three trivalent
oxygen bridges. The RAl-O and RAl-Cl bond lengths were very
similar compared to the equivalent bond distances in the
structure (a1). The RAl-O bond lengths varied from 1.81 to
1.93 Å. The core of the structure (c1) is identical to the
structure (a), although an additional aqua ligand is attached
to the center aluminum atom increasing the coordination of
aluminum from four to five. The RAl-OH2 bond length was
1.90 Å. In the structure (d1), the aqua ligand is attached to
the apical position of the left aluminum atom at a distance
of 1.93 Å. In this position, the aqua ligand changed also the
orientation of the chlorido ligand attached to the same
aluminum atom. This can be detected by comparing the bond
angles between chloride, corner aluminum, and center
trivalent oxygen atoms. The normal angle is around 123.0°;
however, due to the aqua ligand, this angle decreased to
107.6°, changing also the bonding of the aluminum atom
from tetrahedral to trigonal-bipyramidal.

The solvation of the gas phase optimized structures with
COSMO changed the energy differences of the reported
structural isomers. According to the results, the two most
effectively solvated structures were (c1) and (d1), as seen
in Figure 1. Cavity model results indicated also that the
additional water molecule is most likely attached as aqua
ligand to the primary hydration shell of structure (a) without
changing the core. Furthermore, COSMO calculations re-
vealed that the hydration reaction from the structure (a) to
structure (d1) is strongly exothermic. The Gibbs free energy
of hydration (∆Ghyd) was under -40 kJ mol-1. This shows
unambiguously that the structure (a) is most likely spontane-
ously hydrated in aqueous environments.

The search of the ground state structure of the oligomeric
[Al5O8H6Cl4]+ complex was demanding. Not only the amount
of structural isomers in the energy surface increased com-
pared to the previous clusters but also three different
pentameric aluminum conformations within 2 kJ mol-1

(PBE-D/TZVPP) to the ground state structure were detected;
see structures (a2), (b2), and (c2) in Figure 2. The common
structural characteristic of these conformations was that they

all were consisted of four- and six-rings. In addition, the
coordination of aluminum varied from four to five.

The core of the (a2) structure consists of a chain of four-
rings linked together to a hexagonal shaped ring from both
ends with a single hydroxo bridge; see Figure 2. From three
to five aluminum atoms were four coordinated, the rest
having 5-fold coordination. The two apical aluminum atoms
were also joined together with a hydroxo bridge. Structurally,
the most interesting detail is the protonated oxygen atom
between the two apical aluminum atoms, located behind the
hydroxo bridge. It is joining three different aluminum atoms
together while being protonated. The RAl-O bond distances
varied from 1.68 to 2.14 Å, being the shortest between the
center aluminum and oxygen atom of hydroxo ligand. The
longest aluminum-oxygen distances were between four
coordinated protonated oxygen atoms and the two apical
aluminum atoms. The rest of the aluminum-oxygen bond
distances varied from 1.79 to 1.94 Å, and RAl-Cl bond lengths
varied from 2.08 to 2.09 Å.

The structure (b2) can be considered as a combination of
tetrameric [Al4O2(OH)3Cl3]2+ and monomeric [Al(OH)3Cl]-

linked together through hydroxo bridges. The tetrameric part
consists of three four-rings of Al-O or Al-OH sides. The
monomeric part is then bridging three corner aluminum
atoms of the tetrameric part. The core RAl-O bond lengths
varied from 1.77 to 1.95 Å. The RAl-OHligand bond distance
was around 1.68 Å, whereas RAl-Cl bond lengths varied from
2.08 to 2.10 Å.

Structure (c2) consists of two six-rings sharing one Al-O
side and linked together with one hydroxo and one trivalent

Figure 2. Optimized structures for the cationic [Al5O8H6Cl4]+

and [Al5O9H8Cl4]+ aluminum complexes.
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oxygen bridge; see Figure 2. It consists of four equivalent
aluminum atoms with 4-fold coordination and one aluminum
atom with 5-fold coordination. The core RAl-O bond lengths
varied from 1.76 to 1.98 Å whereas the RAl-Cl bond distances
were around 2.8 Å. The RAl-OHligand bond distance was around
1.71 Å. Compared to the other two structures close in energy,
(c2) was most open. Although the structure (b2) was slightly
lower in energy compared to the other two structures, one
cannot say which one of these conformations is the real gas
phase minimum. The energy difference of these structures
was investigated also with second-order Møller-Plesset
perturbation theory with triple � valence with double
polarization basis set (TZVPP).36,42-44 However, all three
conformational isomers remained within 5 kJ mol-1.

The core structure (d2) consists of a trimeric part
[Al3O(OH)3(H2O)Cl2]2+ linked together with a dimeric part
[Al2O2(OH)Cl2]- via divalent oxygen bridges. The structure
consists of two four-rings and one eight-ring. The RAl-O bond
lengths varied from 1.65 to 1.95 Å, whereas RAl-Cl distances
varied from 2.07 to 2.13 Å. The shortest (1.65 Å)
aluminum-oxygen bond lengths were between aluminum
atoms of the dimeric part and divalent oxygen bridges. The
core of (d2) resembles closely to the core of (c2) but is even
more open. The core of (e2) is almost identical with the core
of (a). The only difference is the orientation of the two
chloride ligands caused by the addition of two aqua ligands
to the corner aluminum atoms in the opposite sides of the
structure. Due to these ligands, the bond angles between
chloride, corner aluminum, and center trivalent oxygen atoms
decreased to 108°. In the case of four coordinated aluminum
atoms, the equivalent bond angle stayed in 121°. The RAl-OH2

bond lengths were around 1.93 Å.

The solvation of the gas phase optimized structures showed
that the structure (c2) was lower in energy in aquatic
solutions compared to the more compact structures (a2) and
(b2); see Figure 2. In addition, the structure (e2) was
detected to be the liquid phase minimum, although the
(d2) seemed to be the best solvated structure overall. This
is clearly due to the more exposed core structure of (d2).
According to the COSMO calculations, the hydration
reaction from (d1) to (e2) was exothermic (∆Ghyd ) -40
kJ mol-1). This indicated that the structure (a) experiences
most likely at least two spontaneous hydration reactions in
aquatic environments. The Gibbs free energy of the hydration
of (d1) to (d2) was also negative (∆Ghyd ) -27 kJ mol-1),
indicating that the core of the structure (a) can also open up
in aquatic solutions.

The structural isomers of oligomeric [Al5O9H8Cl4]+,
especially the structure (a3), (b3), and (c3) had almost
identical adamantane-like cores. The differences in energy
were due to the different ligand orientations. The structures
(a3) and (c3) were basically combinations of tetrameric
[Al4O(OH)5Cl3]2+ and monomeric [Al(OH)3Cl]- aluminum
species. Their only difference was the additional hydroxo
bridge between center aluminum atoms in the tetrameric part
of the structure (c3). The structure (a3) was lacking this
bridging agent, and the hydroxo group was attached as a
ligand to the center aluminum atom in the left side of the
tetrameric part; see Figure 2. This change in the orientation

affects to the total energy of the cluster over 15 kJ mol-1.
The structure of the tetrameric part closely resembled the
highly compact cyclic structures of the largest stable
configurations of cationic [Al4O(OH)5Cl4(H2O)0-2]+.41 The
RAl-O bond lengths varied from 1.81 to 2.15 Å, whereas
RAl-Cl bond distances varied from 2.09 to 2.13 Å.

The core of the structure (b3) can be considered as a
combination of the tetrameric [Al4O(OH)4Cl4]2+ and mon-
omeric [Al(OH4)]- units. The only difference between the
structures (a3) and (b3) was the location of the hydroxo
ligand. In structure (b3), the hydroxo ligand is attached to
the aluminum atom of the monomeric part, whereas in (a3)
it is attached to the center aluminum in the left side of the
tetrameric part, as seen in Figure 2. This, however, affects
very mildly the relative energy differences of the structural
isomers. The RAl-O bond distances of the (b3) varied from
1.81 to 2.06 Å, and RAl-Cl bond lengths varied from 2.08 to
2.14 Å. Every one of the aforementioned structures ((a3),
(b3), and (c3)) consists of three aluminum atoms with 5-fold
coordination and two aluminum atoms with 4-fold co-
ordination.

The structure (d3) had the same core as the structure (a)
having three aqua ligands attached to the corner aluminum
atoms. The bond angles between chloride, corner aluminum,
and center trivalent oxygen atoms were approximately 108°
for aluminum atoms with 5-fold coordination and 123° for
aluminum atoms with 4-fold coordination. The RAl-OH2 bond
lengths varied from 1.94 to 1.95 Å. Note that all aqua ligands
were oriented to the back of the structure.

COSMO calculations changed the ground state conforma-
tion from the gas phase minimum (a3) to (c3). In total, the
structure (c3) had over 80 kJ mol-1 lower solvation energy
compared to the gas phase minimum. The Gibbs free energy
of hydration from (e2) to (c3) was strongly exothermic
(∆Ghyd < -200 kJ mol-1). On the grounds of these COSMO
calculations, it is clear that the low coordinated pentameric
aluminum clusters are most probably spontaneously hydrated
in aquatic solutions. Furthermore, there is a high probability
that the core structure of the pentameric complexes changes
from compact to more open in liquid conditions. Thus, one
of the main goals of the proceeding CPMD part is to
investigate the hydrolysis and stability of the aforementioned
oligomeric aluminum complexes in aquatic environments.

3.2. Car-Parrinello Molecular Dynamics Studies. In
this part, we will concentrate on both the stability of the
chosen pentameric aluminum complexes and their hydrolysis
reactions in aquatic environments. We note that none of the
previous computational studies have focused on the stability
and solvation of this kind of oligomeric aluminum com-
pounds. Thus, on the grounds of the results, we are able to
improve the prevailing conception of the role of pentameric
aluminum clusters in the hydrolysis of aluminum species.

3.2.1. [Al5O6H2Cl4]+ (a) without VdW Corrections. The
initial system contained 141 explicit water molecules around
the cluster (a) in a cubic box with 17 Å sides. The total
duration of the simulation was 40 ps (ps). During this time,
we detected significant changes in the primary hydration shell
of the cluster. In addition, due to these spontaneous reactions,
the core structure of the pentameric aluminum cluster

Hydrolysis of Pentameric Aluminum Complexes J. Chem. Theory Comput., Vol. 6, No. 4, 2010 999



changed from a compact cyclic form to an open structure;
see Figure 3.

The first two aqua ligands were attached to the center
aluminum atom of the ground state structure (a). Due to these
associative hydration reactions, two of the intramolecular
bonds between center aluminum and trivalent oxygen atoms
on the left and right side of the core of cluster (a) were
broken; see Figure 3. Bond dissociation was then followed
by three associative hydration reactions to the corner
aluminum atoms of the structure. We note that all of these
hydration reactions occurred during the first 7 ps. During
these reactions, the coordination of aluminum increased from
four to five. However, one of the corner aluminum atoms
was not hydrated, maintaining a 4-fold coordination. The
lifetime of this highly symmetric and coordinated intermedi-
ate structure was from 7 to 8 ps; see the valley in the lower
right corner in Figure 3. In addition, the core of this
intermediate structure closely resembled the core of (a2).
Before the addition reaction of a new aqua ligand to the open
coordination position of the four coordinated aluminum atom,
the dissociation of one of the already attached aqua ligands
occurred (12 ps), leading to a opening of the structure.

The mechanism for the structural reorganization was as
follows; first, the Al-O bonds between the center aluminum
and trivalent oxygen atom (between bonds x and y) and x
were broken, following the breakage of the bond y around
23 ps; see Figure 3. The newly formed structure consisted
of one six- and one eight-rings, as seen from the final
structure in Figure 3. During these reactions, the coordination
of aluminum decreased back to four. The final open structure
stayed intact for the last 15 ps without any hydration
reactions. The opening of the structure indicated clearly that
the gas phase ground state structure was unstable in aquatic
solutions, which agrees well with the earlier COSMO
findings.

3.2.2. [Al5O6H2Cl4]+ (a) with Empirical VdW Corrections. The
effect of the van der Waals corrections was investigated by
employing empirical parameters to describe the vdW interac-
tions within DFT-PBE. The starting geometry of the system

was identical compared to the previous simulation. The total
duration of the simulation was around 30 ps. During the
simulation, six spontaneous associative hydration reactions
occurred. The mechanism for the reactions was as follows;
the first two water molecules were attached to the center
aluminum atom raising its coordination temporarily from four
to six; second, two of the corner aluminum atoms were
successively hydrated raising the coordination of aluminum
from four to five; see Figure 4. The fifth additional water
molecule was attached to the same corner aluminum atom
as the fourth aqua ligand (circulated in the middle structure
in Figure 4.) raising its coordination temporarily from five
to six. Finally, the sixth aqua ligand was attached to the same
aluminum atom as the third aqua ligand leading to a 6-fold
coordination of aluminum. During these reactions, the
structure experienced also two intramolecular aluminum-
oxygen bond breakings leading to an opening of the structure.

The mechanism of the spontaneous hydration reactions
occurred with similar mechanism compared to the same
simulation without empirical vdW corrections. The first four
hydration reactions followed the same path with only one
exception: the fourth aqua ligand (circulated in the third
structure in Figure 4) was attached to the equatorial position
herein, whereas it was attached to the axial position in the
previous simulation. In addition, the first two intramolecular
Al-O bond breakings followed an identical path compared
to the previous simulation. The most significant difference
between the simulations mentioned above was that the third
intramolecular Al-O bond y was broken in the simulation
without empirical corrections whereas it stayed intact during
the vdW-corrected simulation, preventing the structure to
fully open. During this simulation, spontaneous dissociation
of one of the chlorido ligands was also observed. After the
breakage of the aluminum-chloride bond, the newly formed
chloride ion diffused and solvated around 5 Å off the cluster,
decreasing the coordination of aluminum to five. The detected
dissociation reaction is consistent with the Al-Cl bond
dissociation energy barriers determined in our previous
computational studies.67

Figure 3. Detected spontaneous associative and dissociative hydration reactions in the simulation of pentameric aluminum
complex (a). The oscillation of the Al-O bond distances (x and y) (lower left) and the oscillation of the Alcenter-O* bond (lower
right) indicating the metastability of the hexagonal prism-like structure.
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We note that the first five hydration reactions and the
dissociation of the chlorido ligand occurred during the first
5 ps of the simulation, indicating faster reaction speeds
compared to the previous simulation. The hydration seemed
to proceed further even with shorter simulation times. This
agrees well with the results of the liquid water investigation
of Lin et al.75 They postulated that the vdW-corrected DFT-
BLYP produces improved structural and dynamical proper-
ties of the liquid water increasing the self-diffusion coefficient
and making the water softer and more liquid-like.75 The final
sixth additional aqua ligand in the equatorial position
(circulated in Figure 4) was attached to the primary hydration
shell of the cage-like complex around 28 ps of the simulation.

The final cage-like structure consists of one four-, one six-,
and one eight-ring; see Figure 4. It closely resembles the
intermediate structure after the first two internal aluminum-
oxygen bond breakages in the previous simulation. The
oscillation (no visible drift) of the corner Al-Al distances
of the eight-ring revealed that, although the structure was
asymmetric, it remained intact during the last 25 ps of the
simulation. The core remained intact also after the final sixth
spontaneous hydration reaction. The structural reorganization
and the opening of the cluster strengthened our previous

conclusions that the original structure is not stable in aquatic
environments. The final sum molecular formulas of the
simulations of the ground state structure (a) were [Al5O4(OH)3-
(H2O)5Cl3]+ with and [Al5O3(OH)4(H2O)3Cl4]+ without vdW
corrections.

3.2.3. [Al5O6H2Cl4]+ (b) without VdW Corrections. The
structure (b) was also surrounded by 141 water molecules
to a cubic cell of 17 Å sides. The total duration of the
simulation was around 33 ps, in which the core of the gas
phase optimized structure experienced six spontaneous
hydration reactions. We note that all of these associative
hydration reactions occurred in the first 4 ps of the simula-
tion. In addition, one of the aqua ligands dissociated from
the primary hydration shell back to the solution around 5
ps; see Figure 5. The sum reaction mechanism for the
hydration reactions was as follows

The first two aqua ligands were attached to the aluminum
atom without chlorido ligand, increasing the coordination
of aluminum from four to six; see structure (b) in Figure 1.
This was followed by the hydration of the two top corner
aluminum atoms of the cubane-like moiety. During these
reactions, the coordination of the corner aluminum atoms
raised from four to five. After the fourth spontaneous
associative hydration reaction, the intramolecular Al-O bond
between the aforementioned six coordinated aluminum and
trivalent oxygen atom was broken, slightly opening the
structure and decreasing the coordination of aluminum from
six to five. This was then followed by the hydration of the
remaining four coordinated aluminum atoms. After the
associative hydration reactions, the fourth additional aqua

Figure 4. Detected spontaneous associative hydration reactions and the dissociation of the chloride ion. The oscillation of the
Al-Al distances (lower left) of the corner aluminum atoms in the eight-ring of the cage-like structure in the vdW-corrected simulation
indicating the stability of the cluster and the Al-Cl bond oscillation and the bond breaking in the lower right corner.

Figure 5. Final geometry in the simulation of the pentameric
complex (b) (left) and the oscillation of the Al-O bond
distance pointing the dissociation of one of the aqua ligands
from the primary hydration shell (right).

[Al5O4(OH)2Cl4]
+ + 5H2O f [Al5O4(OH)2(H2O)Cl4]

+ +

4H2O f [Al5O4(OH)2(H2O)2Cl4]
+ + 3H2O f

[Al5O4(OH)2(H2O)3Cl4]
+ + 2H2O f

[Al5O4(OH)2(H2O)4Cl4]
+ + H2O f

[Al5O3(OH)4(H2O)4Cl4]
+ (3)
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ligand dissociated off from the cluster; see Figure 5. During
this simulation, one of the aqua ligands was also deproto-
nated. The dissociated proton was then captured by one of
the core oxygen atoms. This intramolecular proton transfer
led to a formation of bridging hydroxyl group and additional
hydroxo ligand; see the final formula in eq 3.

The final structure after the last step of the simulation
consisted of three equivalent oxygen bridges with 3-fold
coordination and three hydroxyl bridges. Furthermore, the
coordination of aluminum varied from four to six. Besides
the hydration reactions, the structure (b) experienced only
minor structural changes during the simulation. The sum
molecular formula of the final structure was
[Al5O3(OH)4(H2O)4Cl4]+, as seen in Figure 5.

3.2.4. [Al5O6H2Cl4]+ (b) and (c) with Empirical VdW
Corrections. The simulation was performed as before and
the total duration was around 32 ps. During this time, the
cluster experienced seven spontaneous hydration reactions.
The first six associative hydration reactions occurred during
the first 5 ps, and the last seventh aqua ligand was attached
to the primary hydration shell of the cluster around 21 ps.
The mechanism for the reactions went as follows; first, two
aqua ligands were attached to the aluminum atom without
chlorido ligand, followed by three successive hydration
reactions of the four coordinated aluminum atoms. The sixth
additional aqua ligand, however, was attached to the corner
aluminum atom of the cubane-like moiety with 5-fold
coordination. Finally, the seventh associative hydration
reaction occurred in the only remaining four coordinated
aluminum atoms; see Figure 6.

During the simulation, the core of the complex (b)
experienced significant topological changes, triggered by the
breaking of the intramolecular Al-O bond (arrow in Figure
6) around 6 ps. The bond was broken between the center
aluminum atom without chlorido ligand and the trivalent
oxygen bridge facing toward the viewer; see Figure 1. The
newly formed structure consisted of a chain of four Al2O2-
rings linked together to a hexagonal shaped ring from both
ends of the chain with a single hydroxo bridge. The core of
this highly symmetric structure closely resembled the core
of the gas phase optimized (a2) and was almost identical
with the core of the metastable (∼8 ps) intermediate structure
in the simulation of the structure (a) without empirical
corrections; see Figures 2 and 4. In the case of the newly
formed hexagonal prism-like structure, however, the structure
stayed intact during the rest of the 25 ps of the simulation,

indicating the stability of the structure in aquatic environ-
ments; see Figure 6. This is due to the different ligand
orientation compared to the metastable structure in the
simulation of the structure (a).

The most noticeable differences were the following: first,
the center aluminum atom in the structure is six coordinated
whereas in the metastable structure it was five coordinated;
second, one of the chlorido ligands is attached to the center
aluminum atom while chlorido ligands were attached only
to the corner aluminum atoms in the intermediate structure.
The differences in the stability can then be explained by
decreased ligand repulsion and structural straining in the
complex. The final structure ((b) in Figure 6) closely
resembles also the hexagonal prism-like crystal structure of
Harlan et al.76 However, their crystal structure analogue
contained six aluminum atoms instead of five.76 The final
sum molecular formula of the newly formed pentameric
aluminum complex can be written as [Al5O3(OH)4-
(H2O)6Cl4]+, indicating further hydrolysis compared to the
identical simulation without empirical vdW corrections.

The stability of the structure (c) was investigated only in
a simulation of 141 explicit water molecules with empirical
van der Waals corrections. The structure experienced six
spontaneous associative hydration reactions during the 41
ps production run. The only topological change of the cluster
during the simulation besides aforementioned hydration
reactions was the opening of the Al-O bond between center
aluminum atom and the trivalent oxygen bridge of the
trimeric moiety. This was caused by intramolecular proton
diffusion from one of the aqua ligands in the primary
hydration shell to the trivalent oxygen atom. Otherwise, the
core of the structure remained intact during the simulation,
indicating that the structure is rather stable in liquid condi-
tions; see Figure 6. The final sum molecular formula of the
cluster can be written as [Al5O3(OH)4(H2O)5Cl4]+.

3.2.5. [Al5O7H4Cl4]+ (a1) without VdW Corrections. The
initial system contained 169 explicit water molecules around
the cluster (a1) in a cubic box with 18 Å sides. The total
duration of the simulation was around 44 ps. During this
time, the topology of the cluster changed significantly from
highly symmetric cyclic to an open structure. A pentameric
aluminum complex (a1) experienced in a total of four
associative hydration reactions. In addition, the breaking of
the intramolecular Al-O bond between the center aluminum
atom and the topmost trivalent bridging oxygen atom
occurred; see Figure 1. The final structure of the simulation

Figure 6. Al-O bond (arrow) oscillation indicating the opening of the structure (b) in vdW-corrected simulation (left), the final
structure of (b) in vdW-corrected simulation (middle), and the final structure of (c) in the vdW-corrected simulation (right).
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can be considered as a combination of adamantane-like
tetrameric moiety [Al4O3(OH)3(H2O)2Cl2]+ and a monomeric
moiety [Al(OH)(H2O)2Cl]+; see Figure 7. We note that the
four hydration reactions and the intramolecular bond break-
age occurred during the first 9 ps.

During the simulation (∼35 ps), the dissociation of one
of the chlorido ligands was also observed; see Figure 7. After
the breakage of the aluminum-chlorine bond, the newly
formed chloride ion (circulated) was diffused further and
solvated 6 to 8 Å off the cluster, decreasing the coordination
of aluminum from five to four. The breaking of one of the
intramolecular Al-O bonds between the center aluminum
atom and oxygen atom of the bridging hydroxo group in the
left trimeric moiety was also detected, leading to a formation
of an additional hydroxo ligand. Akitt et al. suggested that
this kind of hydroxo ligand formation can trigger the
polymerization of monomeric aluminum species to dimeric
complexes.3 In the case of monomeric species, the formation
of the hydroxo ligand is due to proton transfer, but in the
case of oligomeric aluminum complexes, such as (a1), the
formation can be caused also by intramolecular topological
changes. Detected associative hydration reactions and changes
in the core structure indicated clearly that the original
structure was unstable in aquatic environments. In addition,
the formation of hydroxo ligand strengthened the conclusion,
indicating that the structure is a likely candidate for further
polymerization reactions. The final sum molecular formula
of the cluster can then be written as [Al5O3(OH)4(H2O)4-
Cl3]2+. The charge was due to the dissociation of the chlorido
ligand.

3.2.6. [Al5O7H4Cl4]+ (a1) with Empirical VdW Corrections.
The stability of (a1) was also tested in an identical vdW-
corrected simulation of 32 ps. During this time, the gas phase
optimized structure (a1) experienced four hydration reactions
and three intramolecular bond breakings, leading to a
significant topological changes and the opening of the ground
state structure. The intramolecular Al-O bond breakings
followed the same mechanism compared to the aforemen-
tioned simulation without empirical vdW corrections. The
final structure of the simulation consisted of two Al-O four-
rings linked together from both ends by an eight-ring, as
seen in Figure 8.

Transformation of one of the bridging hydroxo groups to
a hydroxo ligand was also detected, as in the previous
simulation without vdW corrections. The breaking of the
Al-O bond, which triggered the conversion, occurred around
16 ps of the simulation. This strengthened the previous
conclusions that the structure (a1) is unstable in aquatic
environments. After the structural reorganization, the newly
formed open complex stayed intact experiencing only one
attempt for the intramolecular Al-O bond dissociation
between 16 and 23 ps of the simulation; see Figure 8. The
final sum molecular formula of the cluster can be written as
[Al5O3(OH)5(H2O)3Cl4]0. The neutral charge of the complex
is due to the proton transfer reactions between the cluster
and surrounding water molecules.

During these seven individual simulations, we detected
several (4/7) structural rearrangements of the compact
symmetric structures to an open or cage-like structure. The
open structure and highly symmetric hexagonal prism-like
structures were found to be dominating geometries for the
pentameric aluminum complexes in liquid conditions. Fur-
thermore, several spontaneous associative hydration reactions
occurred in every simulation, indicating that the structures
detected in the ESI MS experiments are low coordinated.13-16

The same phenomenon was also detected in our previous
CPMD studies of the dimeric aluminum chlorohydrates in
aquatic environments.66 An interesting observation of these
simulations was that the hydrolysis proceeded further in the
simulations with empirical long-range vdW corrections
compared to the simulations without corrections. In addition,
the hydration reactions occurred faster, enabling shorter
simulation times in the vdW-corrected simulations. We note
that the majority of the Al-O bond lengths detected during
the CPMD part of this study were within the typical Al-O
single bond distance range.67,68

3.2.7. SolVation of the Clusters. In this section, we
concentrate on the structural characteristics of the surround-
ing water. This was done by investigating the total HO-
and OO- radial distribution functions from the cationic
[Al5O7H4Cl4]+ (m/z ) 391) system with and without empiri-
cal van der Waals corrections. The first peak in HO-RDF
with the distance of 0.87-1.16 Å, maximum at 0.99 Å,
corresponds to the OH distances in water molecules and in
the cluster, Figure 9. The second peak at the distance of
1.29-2.40 Å gives us the total amount of acceptor and donor
hydrogen bonds in the systems. The maximum of the second
peak of around 1.78 Å for both systems is close to the
experimental value (1.8 Å) of the hydrogen bond.77,78 The
shapes and positions of the g(O,H) and g(O,O) RDFs in both
systems are in good agreement with the water diffraction
data of Soper et al.77,78 In OO-RDF, the first peak at the
distance of 2.33-3.31, maximum at 2.73 Å, and the second
peak at the distance 3.51-5.51, maximum at 4.49 Å, are
almost identical to the experimental values.77,78 The results
are also in very good agreement with the CPMD results of
Sillanpää et al.21 and with the results of liquid water studies
of Kuo et al.79

It is known that the PBE density functional tends to slightly
overstructure pair correlation functions and, in addition, the
self-diffusion coefficient is much smaller than in experiments

Figure 7. Initial gas phase structure (left), the Al-Cl bond
oscillation indicating the dissociation of the chlorido ligand,
and the final geometry of the simulation (right).
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making the water sluggish.80,81 However, according to the
findings of Lin et al., the usage of empirical van der Waals

corrections in CPMD decreases the difference in the self-
diffusion coefficient between computations and experi-

Figure 8. Oscillations of the Al-O (green) bond between the topmost aluminum atom and the center trivalent oxygen atom and
Al-Al (red) distance between the topmost aluminum and the corner aluminum atom in the same four-ring are indicating the
stability of the final open structure (right). The peak in the figure corresponds to the intramolecular Al-O bond breaking.

Figure 9. Differences in the total OH- and OO-RDFs of the [Al5O7H4Cl4]+ (m/z ) 391) simulation with and without empirical
vdW corrections. Dashed line indicates the system with empirical corrections in g(O,O)(r) and in g(O,H)(r); the solid line indicates
the vdW-corrected system. The upper integral belongs to the vdW-corrected system, and the lower belongs to the system without
empirical corrections.

Figure 10. Oscillation of the covalent O-H bond of the aqua ligand (lower right) and the solvent water molecule (lower left).
The formation of the hydronium ion (circulated) to the secondary hydration shell is in the upper left corner and the oscillation of
the O-H distances indicating the intramolecular proton transfers from aqua ligand (green) to the trivalent unprotonated core
oxygen atom (red) is in upper right corner.
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ments.75 Although the diffusion coefficient was not measured
in this study, the g(O,O) of the vdW-corrected system
displayed softer structure (dashed line in Figure 9) for the
water compared to the DFT-PBE simulation and closer to
the experimental results of Soper et al.77,78 Slow diffusion
should not be a problem in the systems without empirical
corrections either due to the rather long simulation times and
higher temperatures (350 K).66

During the simulations, we detected several attempts of
the protons of aqua ligands to jump to the surrounding water,
indicating the acidity of the pentameric aluminum complexes.
In the majority of the cases, the protons stayed intact in the
cluster without diffusion to the surrounding solvent. In almost
every simulation, however, transient proton jumps were
detected. The mechanism for these proton transfers was
always the same: a nearby solvent molecule captured the
proton from the aqua ligand or bridging hydroxo group; see
Figure 10. As a result, the hydronium ion ([H3O]+) was
formed in the secondary hydration shell. This is in good
agreement with the studies of Tuckerman et al.82,83 The
acidity of the aqua ligands was also seen by observing the
covalent oxygen-hydrogen bond distances. For the solvent
water molecule, this distance oscillated from 0.92 to 1.1 Å
with an average around 1.0 Å; whereas for the aqua ligands,
the distance varied from 0.92 to 1.6 Å; see Figure 10. During
these simulations, we detected also several (4/7 cases)
intramolecular proton transfers from aqua ligands to the
trivalent unprotonated core oxygen atoms.

4. Conclusions

We used a static quantum chemical and Car-Parrinello
molecular dynamics (CPMD) approach to investigate the
structural characteristics, the stability, and the hydrolysis of
pentameric aluminum complexes in both gas phase and in
aquatic environments. We tested the accuracy of several
generalized gradient approximation (GGA) and hybrid
exchange-correlation functionals in reference to the second-
order Møller-Plesset perturbation theory (MP2). The PBE
density functional with empirical van der Waals corrections
gave the most coherent results and was selected (PBE-D/
TZVPP) for the gas phase conformational analysis. In total,
we analyzed hundreds of experimentally detected (ESI MS)
structural isomers to find the ground state structures for
cationic [Al5O6H2Cl4]+, [Al5O7H4Cl4]+, [Al5O8H6Cl4]+, and
[Al5O9H8Cl4]+ complexes. The analysis revealed that the
minimum energy structure was always changed when
switching from one cluster to another, indicating that there
is not any structural explanation for the crystallization
detected in ESI MS studies of Sarpola et al.13-16,32

Conductor-like screening model (COSMO) was used to
investigate the stability of the gas phase optimized structures
in aquatic environments. COSMO calculations revealed that
the low coordinated pentameric aluminum clusters are
spontaneously hydrated in aquatic solutions. Furthermore,
COSMO results indicated that there is a high possibility for
the gas phase ground state structures to open up in aquatic
solutions, especially when the amount of aqua ligands
increases in primary hydration shell. The hydration reactions

from [Al5O6H2Cl4]+ to [Al5O9H8Cl4]+ were also detected to
be strongly exothermic (∆G < 0).

We performed seven different CPMD simulations to reveal
the stability of the chosen pentameric clusters in aquatic
solutions. The effect of the long-range empirical van der
Waals corrections (-D) was also tested, employing two
identical simulations one with and one without the correc-
tions. During these simulations, we detected several spon-
taneous associative hydration reactions in the primary
hydration shell, indicating that the structures detected in the
ESI MS experiments are low coordinated. Hydrolysis was
also detected to proceed further in vdW-corrected simula-
tions. In addition, the hydration reactions occurred faster,
enabling shorter simulation times in the DFT-PBE-D
simulations.

During most of the simulations, the chosen structures
experienced significant topological changes. In four out of
seven cases, the compact cyclic structure was opened leading
to a formation of an open or cage-like structure. The open
structure, cage-like, and highly symmetric hexagonal prism-
like structures were found to be dominating geometries for
the pentameric aluminum complexes in liquid environments.
Several spontaneous associative hydration reactions were also
detected in every simulation. Although we did not find any
unique structure for the clusters, the dynamics and the ability
of the pentameric complexes to transform in aquatic environ-
ments was seen within the picosecond time scales of the
simulations. In addition, the structural reorganization and the
composition of the open structures (e.g., (a1) simulations)
indicated that the Al5-clusters are most likely only metastable
intermediate forms in the aluminum salt hydrolysis during
coagulation, which is in good agreement with the ESI MS
findings of Zhao et al.17
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R. S.; Rämö, J. J. Mass Spectrom. 2004, 39, 1209.

(15) Sarpola, A. T.; Hietapelto, V. K.; Jalonen, J. E.; Jokela, J.;
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(21) Sillanpää, A. J.; Päivärinta, J. T.; Hotokka, M. J.; Rosenholm,
J. B.; Laasonen, K. E. J. Phys. Chem. A 2001, 105, 10111.

(22) Martinez, A.; Sansores, L. E.; Salcedo, R.; Tenorio, F. J.; Ortiz,
J. V. J. Phys. Chem. A 2002, 106, 10630.

(23) Martinez, A.; Tenorio, F. J.; Ortiz, J. V. J. Phys. Chem. A
2003, 107, 2589.

(24) Bock, C. W.; Markham, G. D.; Katz, A. K.; Glusker, J. P.
Inorg. Chem. 2003, 42, 1530.

(25) Gowtham, S.; Lau, K. C.; Deshpande, M.; Pandey, R.;
Gianotto, A. K.; Groenewold, G. S. J. Phys. Chem. A 2004,
108, 5081.

(26) Ahu Akin, F.; Jarrold, C. C. J. Chem. Phys. 2004, 120 (18),
8698.

(27) Pophristic, V.; Klein, M. L.; Holerca, M. N. J. Phys. Chem.
A 2004, 108, 113.

(28) Pophristic, V.; Balagurusamy, V. S. K.; Klein, M. L. Phys.
Chem. Chem. Phys. 2004, 6, 919.

(29) Ikeda, T.; Hirata, M.; Kimura, T. J. Chem. Phys. 2006, 124,
074503-1.

(30) Akitt, J. W.; Elders, J. M. J. Chem. Soc., Dalton Trans. 1988,
5, 1347.

(31) Akitt, J. W.; Elders, J. M.; Fontaine, X. L. R.; Kundu, A. K.
J. Chem. Soc., Dalton Trans. 1989, 10, 1889.

(32) Sarpola, A. The Hydrolysis of Aluminum, A Mass Spectro-
metric Study. Ph.D. Dissertation, University of Oulu, Oulu,
Finland, Acta Univ. Oul., 2007; C 279, pp 1-104.

(33) Das, U.; Raghavachari, K.; Jarrold, C. C. J. Chem. Phys.
2005, 122, 014313-1.

(34) Das, U.; Raghavachari, K. J. Chem. Theory Comput. 2008,
4, 2011.

(35) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996,
77 (18), 3865.
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Abstract: The adaptive biasing force (ABF) scheme is a powerful molecular-dynamics based
method for overcoming barriers of the free-energy landscape. Integration of the mean force
measured along a chosen reaction coordinate (RC) yields the so-called potential of mean force
(PMF). The RC is a coarse-grained description of the transition mechanism. The mean force is
estimated by accruing and averaging the instantaneous force exerted on the system. The PMF
is then used to bias the standard dynamics of the system in order to improve sampling in the
RC. We show that faster exploration of the reaction pathway can be achieved by running multiple
walkers in parallel and exchanging information at fixed intervals in the course of the simulation.
Numerical experiments performed on the prototypical deca-alanine peptide demonstrate that
the convergence properties of the free-energy calculation are globally improved through a more
efficient exploration of compact configurations reflected in parallel valleys of the free-energy
landscape. Diffusion along the RC is further enhanced by a selection mechanism, whereby
far-reaching walkers are cloned, replacing less effective ones.

1. Introduction

Central to the understanding of most processes of either
physical, chemical, or biological interest, the determination
of the underlying free-energy change occupies a prominent
position in the arena of numerical simulations. Over the past
decades, a variety of methods have been devised to compute
free-energy differences efficiently (see, for example, refs 1
and 2). Roughly speaking, these methods can be classified
into two main categories: (i) the free energy is computed
directly, or (ii) its first derivative is determined and subse-
quently integrated. Perturbation techniques,3 probability
density function-based methods such as histogram methods,4-6

nonequilibrium computations,7 and adaptive biasing potential
methods,8,9 for example, fall into the first category. Ther-
modynamicintegration10andadaptivebiasingforcemethods,11,12

which are the core of the present work, belong to the second
category. Adaptive methods are designed to compute free-
energy profiles and favor transitions between metastable
states by using a current estimate of the free energy as a
biasing potential.

In this contribution, we are interested in a particular class
of adaptive methods, referred to as adaptive biasing force
methods.11-13 Specifically, we endeavor to investigate a
novel implementation of this class of methods, using a
number of walkers simulated in parallel, in the spirit of the
ideas put forth by Lelièvre et al.14 The advantage of the
present, novel implementation is 3-fold. First, the parallel-
ization is straightforward, and its theoretical parallel ef-
ficiency is very good since the only shared information is
the biasing force, or the marginal law, namely, low-

* To whom correspondence should be addressed: E-mail:
kimiya.minoukadeh@cermics.enpc.fr.
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dimensional functions. In turn, this yields efficient, scalable
algorithms to compute free-energy differences, well adapted
to the massively parallel architecture of high-performance
computers. Second, we will show that the implementation
relying upon many walkers is particularly interesting when
the reaction coordinate does not describe well all the
metastabilities of the system, which, quite unfortunately,
constitutes a generic situation for the vast majority of
nontrivial molecular systems. This is typically the case, for
instance, of the so-called bichannel scenariosnamely, the
free-energy landscape features two parallel valleys, which
are orthogonal to the isocontours of the reaction coordinatesor,
more generally, when several transition mechanisms are
associated with a single reaction coordinate, which is,
therefore, not sufficient to parametrize fully the transforma-
tion. The underlying idea is that, when many walkers are
involved, they can visit more efficiently in parallel all the
valleys in the direction of the reaction coordinate. A
mathematical proof is currently underway to show that, in
the limiting case of a very large number of walkers, and
with suitable assumptions, the rate of convergence of the
ABF method is in fact not limited by free-energy barriers
orthogonal to the RC direction. Third, as will be detailed
below, this new implementation allows selection mechanisms
to be introduced, consisting of duplicating effective walkers,
while deleting poor ones, according to a fitness function that
ought to be chosen. An example of such a fitness function,
which favors rapid exploration of the reaction coordinate,
will be provided hereafter.

As a proof of concept, the present approach was probed
on a realistic test case, using a high-level Tcl implementation
of the algorithm in the scalable molecular dynamics program
NAMD.15-17 The efficiency of the overall procedure is,
however, expected to be enhanced by embedding and
optimizing the algorithm at a deeper level of the molecular-
dynamics platform.

In the following section, the mathematical framework
of the method is introduced and the adaptive biasing force
method reviewed. Next, the discretization and implemen-
tation details are presented. The present contribution closes
with a discussion of the numerical results obtained for
the reversible folding of the paradigmatic deca-alanine
peptide.

2. General Setting

In the canonical ensemble, a system of dimension d is
equipped with the Boltzmann-Gibbs probability measure,
i.e., the canonical measure:

where φ is the density of the measure, � ) 1/(kBT) is
proportional to the inverse temperature, q ∈ Rd is the system
configuration, V : Rd f R is the potential energy function,
and Z ) ∫Rd exp(-�V(q)) dq is the normalization constant
or the so-called partition function. To sample this measure,
one can use the overdamped Langevin dynamics:18

where (Xt)tg0 is the system trajectory and Wt is an Rd-valued
standard Brownian motion (or Wiener process). Under
suitable regularity assumptions on the potential, the dynamics
(eq 2) is ergodic and admits the canonical measure as its
unique invariant measure. It must be emphasized that, for
the sake of simplicity, the method is described in the
framework of the overdamped dynamics. The method can,
nevertheless, be generalized to the Langevin dynamics as is
done in the numerical simulations at the end of the paper.

The canonical measure (eq 1) gives us microscopic
information about the system, the probability that it is to be
found at any particular point q in configuration space. A
practitioner, however, is generally interested in some coarse-
grained collective variable �(q), where � is typically a smooth
mapping from Rd to R. In what follows, � will be referred
to as the reaction coordinate (RC). The RC typically
represents an end-to-end distance of a protein chain, a
structural angle in a protein, or a measure of the evolution
of a chemical system. If X is a random variable with
probability µ, then �(X) is a random variable with a law
whose density φ� is defined by

and the distribution φ�(z)dz is called the marginal distribution
of µ in �. The free energy, or so-called potential of mean
force (PMF), A, is related to this marginal density in the
following way

Sampling the canonical measure using the standard
overdamped Langevin dynamics (eq 2) can in fact be
inefficient in practice. The convergence to equilibrium can
be very slow due to metastable states where the dynamics
remains trapped for long periods of time. To explore the
whole configuration space, one often needs to overcome
very large energy barriers. From Arrhenius’s law, it
follows that the typical time needed to overcome these
barriers scales exponentially with the barrier height.
Regular molecular-dynamics methods are, therefore, typi-
cally not used to calculate statistical averages for systems
prone to metastabilities.

Several methods have been proposed to ameliorate sam-
pling methods in these situations, such as the blue moon
method19 or importance sampling methods such as umbrella
sampling.20 More recently, adaptive importance sampling
methods have been developed such as the Wang-Landau
method8 and the adaptiVe biasing force (ABF) method.11

The latter and its variations will be the focus of this
contribution.

Before detailing the ABF method, the reader is reminded
that the main quantity of interest in the study of chemical
reactions is a free-energy difference and not an absolute free
energy. Free energies are, therefore, computed only up to
an additive constant. The free-energy difference between two
coarse-grained states, labeled by the RC values za and zb,
can be written as

µ(dq) ) φ(q)dq ) Z-1 exp(-�V(q)) dq (1)

dXt ) -∇V(Xt)dt + √2�-1 dWt (2)

φ
�(z) ) ∫

Rd φ(q) δ(�(q) - z) dq (3)

A(z) ) -�-1ln φ
�(z) (4)
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where ′ is the derivative with respect to the collective variable
value z and A′ is called the mean force. The integrand can
be shown to be the Boltzmann average of a real-valued
function FV, conditioned to being at a fixed point z in the
reaction coordinate space

where

and 〈 · 〉µ represents the canonical averagesi.e., the average
with respect to the measure µ. Note that FV is the negative
projection of the force onto the RC plus some correction
term. For the derivation of eq 7, the reader is referred to
refs 21, 22, and 23. The aim of the ABF method, which will
be detailed hereafter, is to compute A′ as efficiently as
possible.

3. Adaptive Biasing Force Methods

In this section, we will present the framework behind ABF
methods for free energy computations.

3.1. Framework. The basic idea of ABF is to use the
mean force estimate to bias the dynamics and help the system
overcome free-energy barriers. An estimate of A′(z) is
obtained as the statistical average of the force field FV at
specified points z along the RC by accruing instantaneous
forces FV(Xt) for a single system trajectory Xt when �(Xt) )
z. In the long-time limit, one obtains a good approximation
for A′, and ∆A can be computed by numerical integration.
The resulting biased dynamics is

where AtO� denotes the composition of At with �, so that
AtO�(x) ) At(�(x)), and At′ is the estimated mean force. [Note
that the gradient term in the biased dynamics can be rewritten
as -∇V + (At′O�)∇�; thus, only estimated mean force
information is needed and not the estimated free energy.]
The estimated mean force is thus defined as a conditional
average of FV(Xt) at a fixed value of �(Xt). In practice, it can
be approximated as an average over many walkers or as an
on-the-fly average over the trajectory Xt (see the next section
for more details). The above can be viewed as an overdamped
Langevin dynamics, with the potential V replaced by the time
varying potential Vt ) V - AtO�. In the following, ψt will
denote the density of the law of Xt. The consistency of the
method may be justified by noticing that, if a stationary state
A∞′ for At′ is obtained, then ψ∞ is proportional to exp(-�V∞),
and thus A∞′ ) A′ since

As a result, At converges to A up to an additive constant,
and the equilibrium marginal density in � is constant, since

is constant by the definitions of µ and A in eqs 1 and 4,
respectively. Precise convergence results can be found in
ref 24. The aim of ABF is, therefore, to estimate the biasing
force as efficiently as possible in order to bias the dynamics
by reducing and eventually eliminating any force along �. It
serves as an adaptive importance sampling method, driving
the system out of its metastable states, using on-the-fly
estimates of the mean force.

3.2. Calculating the Bias. Different approaches have been
proposed in recent literature11,24,25 for calculating the biasing
force. There are two principal methods for computing At′,
which will serve as a basis of comparison in the present
contribution.

Original ABF. The idea of the standard ABF method,11

which involves one single walker, is to calculate averages
using the whole trajectory of the system. The mean force is
calculated by taking a trajectorial average of instantaneous
forces at fixed z using one long system trajectory (see ref 1
for further details)

The mean force estimate is only computed once a
trajectory reaches the value z in the RC; therefore, the
denominator in the above equation is always nonzero for
the RC values needed.

Multiple Walker (MW-)ABF. In a recent paper,25 a new
formulation of the ABF method has been proposed, consist-
ing of running R > 1 trajectories of the ABF dynamics in
parallel. The R walkers of the system follow a similar
dynamics driven by independent Brownian motions. These
multiple walkers then exchange information at fixed time
intervals. The immediate gain of this new formulation is that
one can take advantage of parallel computing to speed up
convergence of the ABF method. Furthermore, with the use
of a small number of walkers, we are able to overcome issues
related to poorly chosen or oversimplified reaction coordi-
nates, where other important slow degrees of freedom are
overlooked. In such cases, metastabilities can be found at
fixed �, as illustrated in Figure 1. With multiple walkers, it
is likely that each walker will explore a different path or
valley along �, whereas single-walker simulations could
potentially take exponentially long times to fully explore the
low energy states. This will be studied numerically in the
final sections of the paper.

In the following, (Xt
i)0eieR-1 is the set of trajectories for

the R walkers. Each trajectory Xt
i follows the dynamics (eq

8) with the Brownian motion Wt replaced with Wt
i. The

∆A ) A(zb) - A(za) ) ∫za

zb A'(z) dz (5)

A'(z) )
∫

Rd FV(q) exp(-�V(q)) δ(�(q) - z) dq

∫
Rd exp(-�V(q)) δ(�(q) - z) dq

) 〈FV(q)|�(q) ) z〉µ (6)

FV ) ∇V · ∇�
|∇�|2

- �-1∇ · ( ∇�
|∇�|2) (7)

{dXt ) -∇(V - AtO�)(Xt) dt + √2�-1dWt

At′(z) ) 〈FV(Xt)|�(Xt) ) z〉
(8)

A∞′ (z) ) 〈FV(q)|�(q) ) z〉exp(-�V∞)

) 〈FV(q)|�(q) ) z〉µ ) A'(z)

〈δ(�(q) - z)〉exp(-�V∞) )
〈δ(�(q) - z)〉µ

exp(-�A(z))

〈FV(Xt)|�(Xt) ) z〉 =
∫0

t
FV(Xs) δ(�(Xs) - z) ds

∫0

t
δ(�(Xs) - z) ds

(9)
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biasing force is then estimated using an average over all the
trajectories and over all walkers:

Implementation details for the approaches discussed above
will be discussed in the next section.

3.3. Enhancing Sampling through Selection. In addition
to the exchange of information between walkers to compute
the estimated mean force At′, the MW-ABF method allows
for resampling of the walkers according to their “impor-
tance”. The success of the ABF method is strongly deter-
mined by the marginal distribution of walkers in the RC,
given that the RC has been well chosen. One would,
therefore, want to encourage walkers that are exploring
undersampled regions of the RC and penalize those in
oversampled regions. A selection mechanism25-27 may be
used to achieve this objective. It is implemented by a system
of interacting walkers, where the walkers are cloned or killed
at a rate defined by S(t, z) over the values taken by the RC.
The function S(t, z) can be chosen as

where c is a positive constant and ψt
�, defined by

represents the marginal distribution of walkers in the RC at
time t. Here, ψt(q) denotes the distribution of Xt. With this

choice of the function S, it can be shown that the marginal
density ψ� satisfies the partial differential equation (in fact
for a slightly modified version of the original adaptive
dynamics (eq 8), see ref 25):

The selection process thus accelerates the diffusion of the
marginal distribution in the RC. The reason for this choice
of S can also be understood when written in a finite difference
form

where ∆z is some small displacement in the RC. The quantity
S(t, z) at a given value z of the RC is, therefore, positive if
the marginal density at this point is small compared to its
local average, and negative otherwise. To implement the
selection process, one can either continuously update birth
and death times, initially drawn from an exponential distribu-
tion, as in ref 25, or resample the walkers according to their
weights at fixed resampling times. The latter will be used
for the simulations reported herein. At a resampling time t,
each walker trajectory Xt

i is given a weight:28

where Kt ) Σi)0
R-1 exp[∫0

t S(s, �{Xs
i}) ds] is the normalization

constant. Replicas are initially assigned a uniform weight,
w0

i ) 1/R, which evolves in time. From eqs 13 and 14, it is
now clear that a walker i that is often found in undersampled
regionssin which case S(t, �(Xt

i)) is often positivesis given
a stronger weight than walkers in oversampled regionsswhere
S(t, �(Xt

i)) is often negative. The ith walker is then replicated
on average Rwt

i times. This procedure thus accelerates the
convergence to a uniform distribution of the walkers in the
RC, in accordance with eq 12.

Let us now give some details about the resampling procedure.
To calculate the number of times a walker is to be copied, a
systematic resampling method29-31 is used, described briefly
by the following algorithm. At a resampling time t:

where U(0, 1) denotes a uniform distribution between 0 and 1,
wt

i is the normalized weight assigned to walker i as defined in
eq 14, wj i is the cumulative sum of the weights,  ·  is the integer
part, and Ni is the number of copies of walker i to be generated.
It is important to note that this algorithm guarantees that
∑i)0

R-1Ni ) R. After every resampling stage, the weights of all
walkers are reset uniformly to the value 1/R. The choice of the
constant c in eq 11 is of paramount importance in the
performance of the selection mechanism. This parameter should

Figure 1. Example of a 2-dimensional free-energy surface
exhibiting metastabilities at fixed �. The variable � represents
another slow degree of freedom of the system, orthogonal to
the RC. The standard ABF method relies on efficient sampling
at fixed points in the RC, which is made difficult by the
presence of such large energy barriers in the orthogonal
directions. Using multiple walkers helps to overcome this issue
as each one is very likely to explore a different pathway.

〈FV(Xt)|�(Xt) ) z〉 =
∑
i)0

R-1 ∫0

t
FV(Xs

i) δ(�(Xs
i) - z) ds

∑
i)0

R-1 ∫0

t
δ(�(Xs

i) - z) ds

(10)

S(t, z) ) c
∂zzψt

�(z)

ψt
�(z)

(11)

ψt
�(z) ) ∫

Rd ψt(q) δ(�(q) - z) dq

∂tψt
� ) (�-1 + c)∂zzψt

� (12)

S(t, z) =

3c

∆z2ψt
�(z)

[ψt
�(z - ∆z) + ψt

�(z) + ψt
�(z + ∆z)

3
- ψt

�(z)]
(13)

wt
i ) Kt

-1 exp[∫0

t
S(s, �{Xs

i}) ds] (14)

Set u ∼ U(0, 1), wj 0 ) wt
0, N0 ) R × wj 0 + u,

for i ) 1, ..., R - 1
wj i ) wj i-1 + wt

i,
Ni ) R × wj i + u - R × wj i-1 + u
end

Potential of Mean Force Calculations J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1011



be sufficiently large to accelerate the exploration along the RC,
but not too large in case one walker is selected during the
resampling stage (due to degeneracy of weights), which implies
a very large variance of the estimator. This will be discussed
further at the end of the next section.

4. Implementation Details

In this section, the implementation details of the adaptive
biasing force methods are provided. The simulations reported
in the present contribution have been carried out using the
scalable molecular-dynamics code NAMD, but the algorith-
mic detail is by no means specific to this software package.
The ABF methods have been implemented as Tcl scripts,
for which the single-walker ABF method is already available.
How the method is discretized will be spelled out hereafter,
and the detail of the single-walker ABF method will be
outlined before proceeding with the implementation of the
MW-ABF method and selection.

We consider a reaction coordinate � taking values in the
interval [z0, zN], which is divided into N bins of size
∆z ) (zN - z0)/N. We denote by �̃:Rd f {0, ..., N - 1} a
mapping from a configuration onto its associated bin in the
RC

where  ·  again denotes the integer part. In the following,
functions and trajectories will be indexed by the number
of time steps k, so that Ak′ will be the mean force
approximation and Xk will be the configuration of the
system at time k∆t, for a time step ∆t. Furthermore, with
a slight abuse of notation, z will now denote the bin in
the reaction coordinate, z ) �̃(Xt).

Original ABF Method. The reader is reminded that, in
the standard ABF method, the biasing force is calculated
for each bin using a trajectorial average, as in eq 9. The
biasing force is in practice updated to include the current
force observation. For z ∈ {0, ..., N - 1}

where 1�̃(Xk))z denotes the indicator functionstaking value 1
if �̃(Xk) ) z and 0 otherwisesand

is the total number of times the system trajectory has visited
bin z. To justify eq 15, the expression in eq 9 is recast in its
discretized form

Developing further, one subsequently obtains

where the last line follows from eq 17 at time k - 1.
MW-ABF. The basis for the multiple-walker implemen-

tation of ABF in NAMD can be found in a set of Tcl
scripts written for parallel-tempering, replica-exchange
simulations.15,17 The scripts use Tcl server and socket
connections to launch NAMD processes for each indi-
vidual walker. Each walker is handled by a different
computing unit. The NAMD processes run for a fixed
number of time steps, then wait in order for the Tcl server
to exchange information between walkers. Figure 2 is a
synoptic diagram of the MW-ABF method. It is not
necessary (and not desirable from a computational point
of view) to exchange information at every time step.
Exchange of information between walkers only occurs at
every kex time steps (Figure 3). We therefore proceed as
follows: the mean force approximation, denoted by Ak,i′ ( · ),
is evaluated locally on the computing unit, where the
indices k and i represent respectively the number of time
steps since the beginning of the simulation and the

Figure 2. Schematic diagram of MW-ABF. The main script is executed on a host machine, which acts as the Tcl server. This
machine launches the R walkers onto different processors via socket connections and, after every kex time steps, carries out
exchange of information. This consists of reading in local variables from each processor; computing the total biasing force Ak′
by means of eqs 21 and 22, sharing A k′ with all processors, and setting local variables to zero. This is carried out T/kex times
until the program terminates.

�̃(·) ) �(·) - z0

∆z 

Ak′(z) )
ntot(k - 1, z)

ntot(k, z)
Ak-1′ (z) +

1�̃(Xk-1))z

ntot(k, z)
FV(Xk-1)

(15)

ntot(k, z) ) ∑
s)0

k-1

1�̃(Xs))z (16)

Ak′(z) )
∑
s)0

k-1

FV(Xs)1�̃(Xs))z

∑
s)0

k-1

1�̃(Xs))z

(17)

Ak
′(z) )

∑
s)0

k-2

FV(Xs)1�̃(Xs))z + FV(Xk-1)1�̃(Xk-1))z

ntot(k, z)

)
ntot(k - 1, z)Ak-1′ (Z) + FV(Xk-1)1�̃(Xk-1))z

ntot(k, z)
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computing unit running walker i. This quantity therefore
depends solely on the trajectory of the walker of interest.
Between exchange times, k ∈ [nkex, (n + 1)kex], the
mean force estimation evolves according to the update
formula

Note that this is the same as eq 15, where Ak′ is replaced
by Ak,i′ , Xk is replaced by Xk

i , and ntot(k, z) is replaced by
nloc

i (k, z), the number of times walker i has entered bin z
since the last exchange, defined in eq 19 below.

At every exchange time, the information gathered by
each walker is collected and local variables on each
processor are updated. This is formalized with the help
of some further notation. We denote by

the time of the last exchange. Next,

denotes the number of times walker i has entered bin z
since the last exchange, and

is the total number of times walker i has entered bin z
since the beginning of the simulation. Finally,

denote respectively the total number of visits to bin z since
the last exchange and the beginning of the simulation,
over all the walkers.

At every exchange time, a local average Aloc′ is calculated
of the mean force estimated from the run of each individual
walker:

The total biasing force, A k′(z), to be shared between the
walkers, is then also updated to include this new information

The latter quantity, A k′, is then communicated to each
one of the walkers, and the variables nloc

i and Ak,i′ are reset
to zero.

The total biasing force in eq 22 is utilized by each
walker in the steps following the exchange; however, new
local information is also incorporated in order to speed
up the diffusion in �. The biasing force applied to walker
i in the simulations, therefore, writes

where A klast
′ is again the total mean force calculated at

the preceding exchange interval, and Ak,i′ is the local mean
force information, as defined in eq 18. [In practice, this
force is actually only fully applied to the dynamics after
a certain number of visits have been made to the bin, that
is to say, after Ntot(k, z) > Nmin, where in our simulations
Nmin ) 500. If Ntot(k, z) < Nmin/2, then no biasing force is
added. Beyond that, the force is slowly introduced using
a ramp function with scaling factor min(2Ntot/Nmin - 1, 1).]

Selection. Resampling may be carried out at most every
kex time steps, when the walkers exchange information.
Selection is a technically costly process as NAMD must be
exited and reloaded with new configuration and velocity files.
For this reason, it is even advisible for it to be carried out
less frequently. The computational complexity of the process
is O(R) using a systematic resampling method (see the
previous section for the algorithm). For purposes of illustra-
tion, the resampling will be carried out as often as the
interprocessor communication, namely, every kex time steps.
The purpose of resampling is to improve the exploration in
the RC. The weights of the walkers are adjusted according
to the utility function S(k, z), depending in practice upon the
total distribution of the walkers:

The integral in eq 14 is calculated by summing the terms
S(k, �̃(Xk

i )) over k for each walker i during each individual
run. At the selection stage, when k ) kex, the weights of the
walkers are computed:

where Kk is again the normalization constant. The walkers
are then selected according to these weights using a

Figure 3. Selection mechanism for R ) 4 walkers. If walker
i has weight wk

i at the time of selection, on average, Rwk
i

copies are made of this walker at the next step. In practice,
this means that Rwk

i walkers will be launched using the
configuration and velocity files of walker i. Note that, in the
above, k ) nkex, the time at which selection is carried out.

Ak,i′ (z) )
nloc

i (k - 1, z)

nloc
i (k, z)

Ak-1,i′ (z) +
1�̃(Xk-1

i ))z

nloc
i (k, z)

FV(Xk-1
i )

(18)

klast ) k/kexkex

nloc
i (k, z) ) ∑

s)klast

k-1

1�̃(Xs
i))z (19)

ntot
i (k, z) ) ∑

s)0

k-1

1�̃(Xs
i))z (20)

Nloc(k, z) ) ∑
i)0

R-1

nloc
i (k, z) and Ntot(k, z) ) ∑

i)0

R-1

ntot
i (k, z)

Aloc′ (k, z) ) 1
Nloc(k, z) ∑

i)0

R-1

nloc
i (k, z) Ak,i′ (z) (21)

Ak
′(z) ) [1 -

Nloc(k, z)

Ntot(k, z) ]Ak-1
′ (z) +

Nloc(k, z)

Ntot(k, z)
Aloc′ (k, z)

(22)

Fbias,k
i (z) ) [1 -

nloc
i (k, z)

Ntot(k, z)]A klast
′ (z) +

nloc
i (k, z)

Ntot(k, z)
Ak,i′ (z)

S(k, z) )

c
Ntot(klast, z + 1) - 2Ntot(klast, z) + Ntot(klast, z - 1)

Ntot(klast, z)
(23)

wk
i ) Kk

-1exp[ ∑
s)klast

k-1

S(s, �̃{Xs
i})]
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systematic resampling method, as described above. In
practice, to generate Ni copies of walker i, the configuration
and velocity files for walker i are passed to NAMD as the
startup files for Ni walkers. Finally, after resampling, S is
set to zero, so that all walker trajectories have equal weight.

For resampling to be effective, there are two main issues
that need to be addressed. First, the constant c has to be
chosen carefully: it must be large enough for the selection
mechanism to be beneficial and small enough to avoid
degeneration of weights, where all walkers are given zero
weight except for one. Another issue to be addressed is when
to stop resampling. Due to the technical costs of the selection
mechanism, it is advised to impose a stopping criterion, so
that selection is not applied throughout the whole simulation.
The stopping criterion could depend on the sampling of the
RC, or on the distribution of the weights. For the simulations
herein, the latter criterion is used, for once the walkers begin
to be equally weighted, the selection has no effect and ought
to be stopped. In order to measure the distribution of the
weights, we consider the relative entropy of the weights
compared to a uniform distribution, defined by

This can be understood as the difference between the
entropy of weights and the entropy for the uniform weight
distribution: ∑i)0

R-1wi log(wi) - log(1/R). This quantity is
bounded above by log(R), in case of degeneracy, and is
bounded below by 0, in case of uniform distribution of
weights. A good stopping criterion for the selection algorithm
is to end the process when the relative entropy is sufficiently
small. In our simulations, the selection is stopped once

where 0 < ε < 1 is set closer to 0 for a stringent stopping
criterion or closer to 1 for a weaker threshold.

5. Numerical Results

In this section, we present comparisons of the single-walker
and multiple-walker ABF methods on the deca-alanine peptide
in the gas phase, for which comprehensive studies have already
been carried out.12,32,33 All the simulations reported herein were
performed with the molecular-dynamics code NAMD,15-17

using the CHARMM2734 force field. The 10-residue peptide
chain has a total of 104 atoms and the RC has been chosen as
the distance separating the center of mass of its first and last
C-H pairs. To sample the full range of conformations from
the R-helical conformation to the ensemble of extended
structures, the range of values accessible to � varies from 12 to
32 Å. Additional tests are also carried out to study more compact
conformations, where � varies between 4 and 16 Å. The system
is kept within the assigned ranges by enforcing reflective
boundary conditions.

The average forces were accumulated in bins of size
∆z ) 0.1 Å. The equations of motion were integrated
employing Langevin dynamics with a time step ∆t ) 0.5 fs.

Electrostatic and van der Waals interactions were truncated
smoothly beyond 11 Å.

We will first present the results for the conventional range
of 12 to 32 Å, which spans conformations comprised between
the R-helix to more extended structures. Next, results for
more compact conformationsswith � ranging from 4 to
16 Åsare presented, where stark differences can be observed
between the single- and multiple-walker ABF simulations.
Finally, we will study the impact of selection on walkers.

5.1. Reaction Coordinate Range: 12-32 Å. Starting
from the R-helical conformation, R walkers of the system
are launched with ABF dynamics, communicating at every
kex ) 50 000 time steps (25 ps). Reference curves are
obtained from a 200-ns simulation using the original ABF
algorithm, featuring a single walker.

Figure 4 compares the sampling distribution, mean force,
and free-energy profiles for single-walker and 16-walker
simulations after 0.25 ns.

It may be observed from Figure 4a that the single-walker
runs rarely manage to stretch beyond a distance of
� ) 22 Å, whereas the 16-walker simulations explore the
whole reaction-coordinate space. Furthermore, in Figure 4b,

Ew(t) ) ∑
i)0

R-1

wi log(Rwi) (24)

Ew(t) < ε log(R) (25)

Figure 4. Results for � ranging from 12 to 32 Å (after 0.25
ns). The curves are averages of 20 independent single-walker
(dashed lines) and 16-walker (dashed-dotted lines) simula-
tions with error bars representing the 95% confidence inter-
vals. Solid lines represent reference profiles, obtained from a
single-walker run of 200 ns. (a) Density of marginal distribution
in the RC. The multiple-walker simulation has explored the
whole �-space whereas the single-walker simulations very
rarely stretch beyond 22 Å. (b) Mean force and free-energy
profiles (inset). For the multiple-walker simulations, we see
the mean force profiles already nearly converged, whereas
little information is gathered beyond 22 Å for the standard ABF
simulation.

1014 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Minoukadeh et al.



it is apparent that the mean force and free-energy profiles
obtained by the 16-walker simulations are already qualita-
tively consistent with the reference curves.

5.2. Reaction Coordinate Range: 4-16 Å. As previously
mentioned, convergence of the standard ABF method can
be rather slow in the presence of metastabilities on the
submanifold of conformations at a fixed value of �. This is
generally the result of a poor choice of the RC, which does
not capture all metastabilities of the system. In such a
casesas depicted in Figure 1sseveral low energy conforma-
tions could be associated to a fixed value of � and separated
by high-energy barriers. As highlighted in ref 32, this
shortcoming arises when studying compact conformations
of the deca-alanine peptide. In this article, an extension of
the standard sampling window reveals a free-energy profile
that exhibits a wide global minimum ranging from 4 to
12 Å. It is known, however, that the global minimum of the
deca-alanine peptide is the R-helical conformation at about
� ) 14 Å (see refs 12 and 33). The present results can be
explained by the fact that, in compact states, a great number
of low-energy conformations are associated to a value of �
of the RC, which are not fully explored by a standard, single-
walker ABF simulation due to their separation by high free-
energy barriers. These high free-energy barriers are generally
insurmountable from the perspective of conventional MD
simulations and can be viewed as kinetic traps that preclude
the exploration of the full RC space over reasonable time
scales. A recent study has helped to capture the various slow

degrees of freedom for these compact structures by exploring
multidimensional free-energy landscapes.13

The shortcomings discussed above can be advantageously
circumvented using multiple walkers. The results obtained
from 100-ns single- and multiple-walker simulations of the
compact conformations are compared in Figures 5 and 6,
respectively. Figure 5b depicts mean force estimations for
four independent single-walker simulations. Even after a 100-
ns simulation, large discrepancies are observed between the
mean force profiles. As can be observed in the inset of Figure
5b, one free-energy profile has revealed a global minimum
around � ) 6 Å, which is, in most likelihood, artifactual.
Figure 6 summarizes the results obtained from four inde-
pendent 32-walker simulations. A marked improvement in
the convergence of the mean force profiles is immediately
apparent. This supports the speculation that there exist
parallel valleys along the RC, each of a different nature,
separated by high free-energy barriers. The present set of
results is far more promising with a multiple-walker scheme.

Due to eventual traps in the parallel valleys, it is in
fact likely that a T-nanosecond single-walker simulation
will be less efficient than an R-walker simulation run for
T/R nanoseconds. This argument is supported numerically
by Figure 7, showing results for a 32-walker simulation
after 100/32 ∼ 3 ns. The results are qualitatively consistent
with Figure 6 and offer a far more reliable set of results
than a 100 ns single-walker simulation. In this way, a

Figure 5. Results for � ranging from 4 to 16 Å using 1 walker
(after 100 ns). Results are from four independent simulations.
(a) Sampling along the RC. (b) Mean force approximations and
free-energy profiles (inset): large discrepancies are observed,
suggesting the presence of parallel valleys along �. Note that
one of the free-energy profiles suggests a global minimum at
� ) 6 Å.

Figure 6. Results for � ranging from 4 to 16 Å using 32 walkers
(results after 100 ns). Results are from four independent
simulations. (a) Sampling along the RC. (b) Mean force ap-
proximations and free-energy profiles (inset). Sampling and
mean force estimations are consistent with each other, and the
R-helical conformation is recovered as the global free-energy
minimum.
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multiple-walker implementation not only improves results
at a constant wall time but at a constant CPU time as
well.

5.3. Selection. In order to monitor the impact of the
selection mechanism, we have chosen to study again
the standard range of 12-32 Å. This choice is dictated by
the topology of the free-energy landscape. It ought to be
recalled here that the selection criterion is based solely on
the position of the walkers along the RC. In the case of
multiple, parallel valleys, this criterion can, therefore, impede
convergence of the mean force, should many copies of one
walker be generated in the same valley. It appears that
selection is most effective in the presence of metastabilities
in the RC only. Metastabilities in the orthogonal directions
are well explored by multiple-walker simulations, albeit not
always improved by selection.

Figures 8a and 8b compare the sampling and free-energy
profiles determined by a 16-walker simulation after 0.25
ns. We observe a more uniform sampling and a better
potential of mean force for the simulation with a selection
mechanism. For these simulations, we used the selection
constant c ) 0.0001 in eq 23 and a stopping criterion as
in eq 25 with ε ) 0.05.

Figure 9 depicts Ew(t), the relative entropy of the walker
weights, during the first 2.5 ns of the simulation. It may be
observed that Ew(t) decreases during the ABF simulation,

as the biasing force converges. This result suggests that the
walkers are then more free to move along the RC, and thus,
each walker is of equal “importance”. Once the walkers are
more or less of equal weight, the selection becomes
redundant and is, therefore, switched off, avoiding unneces-
sary computational effort.

Figure 7. Results after 3 ns using 32 walkers. To compare
results at constant total CPU time, we observe the results of
a 32-walker simulation after 100/32 ∼ 3 ns. Results are from
four independent simulations. (a) Sampling along the RC. (b)
Mean force estimates and free-energy profiles (inset) are
qualitatively very close to Figure 6b. The results show that a
multiple-walker simulation can outperform a single-walker
simulation at constant CPU time.

Figure 8. Results for � ranging from 12 to 32 Å using 16
walkers (results after 0.25 ns). Comparing results between a
16-walker run with (dotted lines) and without selection (dashed-
dotted lines). The curves represent averages of 20 indepen-
dent ABF simulations, and the error bars are 95% confidence
intervals. Reference curves are shown as solid lines. (a) The
sampling along � shows that simulations with selection provide
a much more uniform distribution along the RC. (b) Mean force
approximations and free energy difference profiles (inset): the
free-energy profile for the simulation with selection is already
very close to the reference curve.

Figure 9. Relative entropy of weights. It can be seen that the
R ) 16 walkers are approximately of equal weight after about
1.5 ns of an ABF simulation. The selection is switched off after
Ew(t) < ε log(16), where ε ) 0.05. For these simulations, the
selection constant in eq 23 is chosen as c ) 0.0001.

1016 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Minoukadeh et al.



6. Discussion

In the present contribution, we have demonstrated the ap-
plicability of the MW-ABF method to a prototypical biomo-
lecular system. Importance sampling techniques are often held
back by the difficulty of choosing good reaction coordinates.
If the RC is chosen poorly, one is likely to encounter parallel
valleys separated by large free-energy barriers, thereby making
sampling at a fixed point along the RC very difficult. In such
an event, a standard single-walker ABF simulation would lead
to slow convergence, as was shown here. The system is biased
only in the direction of the RC and, therefore, would be likely
to linger in one valley for a long time before reaching another.
We have shown that such shortcomings can be elegantly
overcome using multiple walkers, through the proposed MW-
ABF method. We emphasize that the use of multiple walkers
is particularly beneficial when the choice of the model RC is
suboptimal, where improvement has been demonstrated herein
at constant CPU time. For a well chosen RC, the MW-ABF is
not guaranteed to outperform single-walker ABF simulations
at a fixed total CPU cost but still has the advantage of being
easily parallelized. The selection process introduced herein can
be employed profitably when encountering pronounced free-
energy barriers along the RC. In the presence of parallel valleys,
attention must be paid to avoid degeneration of weights, as this
could lead to many walkers being kinetically trapped in the same
valley, losing the main interest of the use of multiple walkers.
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Abstract: Although calculations of free energy using molecular dynamics simulations have
gained significant importance in the chemical and biochemical fields, they still remain quite
computationally intensive. Furthermore, when using thermodynamic integration, numerical
evaluation of the integral of the Hamiltonian with respect to the coupling parameter may introduce
unwanted errors in the free energy. In this paper, we compare the performance of two numerical
integration techniquessthe trapezoidal and Simpson’s rulessand propose a new method, based
on the analytic integration of physically based fitting functions that are able to accurately describe
the behavior of the data. We develop and test our methodology by performing detailed studies
on two prototype systems, hydrated methane and hydrated methanol, and treat Lennard-Jones
and electrostatic contributions separately. We conclude that the widely used trapezoidal rule
may introduce systematic errors in the calculation, but these errors are reduced if Simpson’s
rule is employed, at least for the electrostatic component. Furthermore, by fitting thermodynamic
integration data, we are able to obtain precise free energy estimates using significantly fewer
data points (5 intermediate states for the electrostatic component and 11 for the Lennard-Jones
term), thus significantly decreasing the associated computational cost. Our method and improved
protocol were successfully validated by computing the free energy of more complex
systemsshydration of 2-methylbutanol and of 4-nitrophenolsthus paving the way for widespread
use in solvation free energy calculations of drug molecules.

1. Introduction
Calculation of free energies is extremely important for a wide
spectrum of technological areas, perhaps most notably in the
pharmaceutical industry, where solvation free energy esti-

mates are essential to predict, for example, drug solubility
and protein-ligand binding energies.1,2 Thus, computational
methods that are able to predict accurate solvation free energy
values can bring tremendous advances in drug design
methodologies. With recent improvements in computer
power and algorithms, molecular simulation-based free
energy calculations are being performed in a more routine
way (as an example, Mobley et al. recently calculated the
hydration free energy of 504 compounds using molecular
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simulation3). Nevertheless, we have not yet reached a stage
where these methods are predictive enough for practical use.4

A major stumbling block is the fact that the parametrization
of most molecular force fields does not take free energy data
into account (a notable exception being the recent param-
etrizations of the GROMOS force field5), which is under-
standable given that such calculations are still much more
computationally demanding than calculations of bulk fluid
properties and phase equilibria. There is thus a pressing need
to make free energy calculation methods as fast as possible.
Furthermore, such calculations must be very precisesif the
error intrinsic to the calculation method is small (high
precision), any differences between simulation and experi-
ment can be confidently attributed to inaccuracies in the
molecular model, which can then be appropriately refined.
The problem is that precision and speed do not normally
come hand-in-hand, and in practice one must find an
appropriate balance between the two. In this work, we
explore different integration methods in an attempt to
improve both the precision and the speed of free energy
calculations using Thermodynamic Integration (TI) of mo-
lecular simulation data.

TI, originally proposed by Kirkwood,6 is the most widely
used, and perhaps most robust, method for computing
solvation free energies of complex solutes (for a review of
other methods and a more detailed description of TI, the
reader is referred, for example, to the recent book by Chipot
and Pohorille7). The TI method considers a transition
between two generic well-defined states, an initial reference
state (state 0) and a final target state (state 1), described by
the Hamiltonians H0 and H1, respectively. A coupling
parameter, λ, is added to the Hamiltonian, H(p,q;λ), where
p is the linear momentum and q the atomic position, and
used to describe the transition between the end-points:
H(p,q;0)fH(p,q;1). Considering several discrete and inde-
pendent λ values between 0 and 1, equilibrium averages can
be used to evaluate derivatives of the free energy with respect
to λ. One then integrates the derivatives of the free energy
along a continuous path connecting the initial and final states
in order to obtain the energy difference between them:

where the angular brackets indicate an ensemble average at
a particular value of λ. Equation 1 is exact but suffers from
two possible sources of error: (i) the statistical error in the
ensemble average of the Hamiltonian derivative at each value
of λ and (ii) the error associated with the integration of the
curve. The first error can be reduced, in principle, by
increasing the length of each individual simulation. The
second type of error is normally addressed by increasing the
number of intermediate points. Indeed, it has been concluded
that the precision of the TI methodology depends mostly on
the smoothness of the ∂H/∂λ vs λ plot.8 As a rule of thumb,
it was suggested that the free energy difference between two
consecutive points (λ and λ + ∆λ) should be less than 2
kcal/mol.9 If we deal with a system containing high energy
barriers, the number of intermediate steps may become
considerably large and the associated computational cost too

high. Here, we analyze in detail the impact of the choice of
integration method and the number of intermediate points
on the precision of the free energy estimate.

The trapezoidal rule is by far the most widely used method
to numerically evaluate the integral in eq 1 when estimating
∆G via TI. A notable exception is the use of Gauss-Legendre
integration in the work of Smith et al.10 The trapezoidal rule
performs a linear interpolation between successive points and
can thus suffer from systematic errors if the underlying
function is very far from linearity (which is indeed the case
for most practical calculations). An alternative to reduce such
deviations is to use a more elaborate integration method, such
as the Simpson rule. However, to our knowledge, this has
not been previously explored in free energy calculations.
Another option would be to fit the entire data set to an
appropriate functional form and then perform the integration
of this function analytically. This idea has been applied
before by Swope and Andersen11 where average solute-water
interactions in the hydration of inert gases were fitted as a
function of the coupling parameter and by Hummer and co-
workers in the context of charging free energies.12 Recently,
while this manuscript was being prepared, Shyu and
Ytreberg13 demonstrated that the use of polynomial functions
to fit simulation data can significantly increase the precision
of the free energy estimates over the trapezoidal rule, without
requiring additional simulations. However, they have exam-
ined only very simple prototype systems, with an analytical
solution to the free energy and smooth monotonous curves.
As we will show below, simple polynomial functions are
not the best choice to describe the curves that arise in
hydration free energy calculations, even for small solutes.

In the present work, we compare the performance of two
numerical integration techniquessthe trapezoidal rule and
Simpson’s rulesin the calculation of free energies from TI.
Furthermore, we develop a physically based fitting function
that is able to accurately describe the variation of the
Hamiltonian derivative with respect to the coupling param-
eter. By fitting this function to the simulation data, we are
able to obtain precise free energies using significantly fewer
intermediate points, thus decreasing the associated compu-
tational cost. We carry out our detailed study for two
prototype systems, methane and methanol in water, which
represent realistic solutes (both polar and apolar) and a
realistic solvent, but are simple enough to allow for long
simulations to be performed at a very large number of
intermediate values of λ, an essential requisite to assessing
the validity of our procedure. We then apply our methodol-
ogy to the solvation of two larger and more complex
molecules, namely, 2-methylbutanol and 4-nitrophenol, in
order to demonstrate its applicability in realistic free energy
calculations. In the following section, we present a detailed
description of the simulation methods, while the integration
methods and the development of the fitting function are
explained in section 3. Section 4 presents the results of our
study followed by the main conclusions in section 5.

2. Computational Details

Molecular dynamics (MD) simulations were performed using
the GROMACS simulation suite.14 Hydrated systems con-

∆G ) ∫0

1 〈∂H(p, q, λ)
∂λ 〉λ

dλ (1)
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sisted of one solute molecule (methane, methanol, 2-meth-
ylbutanol, or 4-nitrophenol) represented by the OPLS-AA15

force field and 500 water molecules represented by the SPC/
E16 model (parameters for the models are provided in Tables
S1-S4 of the Supporting Information). Covalent bonds
involving hydrogen atoms were constrained with the
LINCS17 algorithm, while the water geometry was fixed with
the SETTLE18 algorithm. For efficiency reasons,19 we have
used the reaction-field method, originally proposed by Lee
et al.,20 with a cutoff distance of 1 nm and a dielectric
permittivity of 80, to account for long-range electrostatic
interactions. The remaining cutoff radii used were 1 nm for
the short-range neighbor list and a 0.8-0.9 nm switched cutoff
for the Lennard-Jones (LJ) interactions. We have applied long-
range corrections for energy and pressure as suggested in the
work of Shirts et al.8 Simulations were performed using periodic
boundary conditions in all directions. Newton’s equations of
motion for all species were integrated using the leapfrog
dynamic algorithm21 with a time step of 2 fs. Langevin
stochastic dynamics22 was used to control the temperature, with
a frictional constant of 1 ps-1, while for constant pressure runs,
the Berendsen barostat,23 with a time constant of 0.5 ps and an
isothermal compressibility of 4.5 × 10-5 bar-1, was used to
enforce pressure coupling.

The TI method makes use of a thermodynamic cycle to
compute the free energy required to transfer a given solute
from the gas phase to the solvent. The three stages of the
cycle are (i) transforming the solute into a dummy molecule
(i.e, turning off all nonbonded interactions) in a vacuum,
(ii) solvating the dummy molecule, and (iii) transforming
the dummy molecule into the solute in water. Because
dummy molecules have no interactions with their environ-
ment, the free energy associated with stage ii is zero by
definition. Stage i is normally required to compensate for
intramolecular interactions that are coupled to the nonbonded
parameters. However, methane is small enough that this
contribution is zero (there are no atoms separated by more
than two bonds). In the other three solutes, vacuum calcula-
tions need to be performed because 1-4 interactions are
present, but for the LJ component of methanol, these turn
out to be zero as well (the LJ parameters for the hydroxyl
hydrogen atom are zero in the OPLS-AA model15). For
stages i and iii, the total solvation free energy can be
calculated by transforming the fully interacting solute (λ )
1) into a dummy solute (λ ) 0) in a vacuum and in water,
respectively. In the case of methanol, 2-methylbutanol and
4-nitrophenol (polar solutes), this operation was performed
in two stepssfirst the charges were gradually turned off and
then the LJ parameters were decoupledsthus avoiding charge
fusion effects.8 A linear dependence of the electrostatic
interactions with the coupling parameter was imposed. For
all four solutes, the soft-core function of Beuler et al.24 was
used for the dependence of the LJ term with λ:

In this equation, V(r) is the normal “hard-core” pair
potential, R is the soft-core parameter, and σ is the LJ site
diameter. This soft-core dependence eliminates singularities

in the calculation as the LJ interactions are turned off and is
the only scaling protocol that yields completely stable dynamics
near the end points, as reported in a comparison of different
nonbonded scaling approaches for free energy calculations.25

We have used a value of p ) 1 for the power of the λ
dependence, since this produces a much smoother ∂H/∂λ for
LJ interactions.8 The value of R was 0.5, which is the optimized
value for p ) 1, as reported by Mobley et al.26

Initial configurations for each point were generated by
immersing the solute molecules in a previously equilibrated
water box at 298 K and 1 bar, after which short equilibration
runs were performed. For each simulation, we then ran an
energy minimization (using the limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm27 over 5000 steps
followed by a steepest descent minimization of 1000 steps)
followed by a constant volume equilibration (100 ps), a
constant pressure equilibration (500 ps) long enough to obtain
complete equilibration of the box volume, and finally a 5 ns
NpT production stage. This procedure was repeated for each
λ value, allowing for a separate minimization. Sampling
errors for each individual simulation were estimated using
the block averaging procedure of Flyvbjerg and Petersen.28

For the purpose of our study, it is important to have a very
precise estimate of ∆G to serve as a reference value. To
achieve this, we have used a total of 129 equidistant
intermediate points for each of the small solutes (for both
LJ and electrostatic components in the case of methanol).
Equidistant points are preferable when there is no a priori
knowledge of the final shape of the ∂H/∂λ plot. Reduced
data sets were built by manipulating the original set of 129
points, as described in section 4. For 2-methylbutanol and
4-nitrophenol, we used 31 points for the LJ component and
17 points for the electrostatic component, as explained in
detail below.

3. Integration Methods

The simplest method to integrate a curve composed of
discrete points is the trapezoidal rule. This is a first order
method, which simply interpolates linearly between consecu-
tive values of x, resulting in the following generic formula:

where N is the total number of points in the required interval
and f(x) is the function one wishes to integrate. The trapezoidal
rule can be applied with any number of points separated by
any distance. In the special case of evenly distributed points in
the integration interval, eq 3 simplifies to

where h is the interval between two consecutive points. Due to
its simplicity and versatility, the trapezoidal rule is widely
employed and has been the method of choice in the large
majority of free energy calculations by thermodynamic
integration.

VSC ) λV[(Rσ6(1 - λ)p + r6)1/6] (2)

∫x1

xN f(x) dx ) ∑
i)1

N-1

(xi+1 - xi)
f(xi+1) + f(xi)

2
(3)

∫x1

xN f(x) dx ) h[f(x1)

2
+ ∑

i)2

N-1

f(xi) +
f(xN)

2 ] (4)
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A more accurate integration method is Simpson’s rule. It
is a second order method (i.e., interpolates between 3
successive points using a quadratic polynomial) but turns
out to be exact up to degree 3 due to a cancellation of
coefficients.29 The generic formula is

Notice that Simpson’s rule requires that N be odd (i.e., an
even number of intervals) and that any three successive points
be separated by equal intervals. In practice, however, it is
almost always applied to situations in which the points are
all evenly distributed in the integration interval. In this case,
eq 5 reduces to

An alternative to the above numerical integration schemes
is to use a fitting function. In this case, a specific functional
form, with a certain number of fitting parameters (as few as
possible), is fitted through all the data points in the integration
interval, and the desired integral is then evaluated directly
from the fitting function. The simplest fitting functions that
can be applied are polynomials of the form

where nP is the degree of the fitting polynomial and ai are
the unknown coefficients (i.e., the fitting parameters). Notice
that the term for i ) 0 is taken to be zero, so that the function
passes through the origin. Normally, increasing nP leads to
a better fit of the data set that one wishes to integrate. In
practice, however, a point is usually reached when the error
of the polynomial expansion is on the same order as the
uncertainty in the data, and a further increase of nP leads to
no improvement of the fit. Notice also that, in order for the
fitting to be meaningful, one must always have N g nP. A
further problem with polynomial fits is that they tend to
produce unphysical oscillations for data sets that show a
complicated dependence on x.29

As we will see below, polynomial functions provide an
excellent description of the electrostatic contribution to the
free energy but are inappropriate for fitting the Lennard-
Jones component, due to the more complicated dependence
on λ. In the latter case, we have searched for a more
physically based fitting function. The reader is warned that
the following is not meant to be a rigorous model for
describing the LJ contribution to the hydration free energy
but is simply a method of obtaining a fitting function that is
based on the physics of that contribution. Indeed, it involves
some very crude assumptions regarding the nature of the
interactions in the system but is nevertheless able to yield a
good fit of the LJ data, as we will see below.

The total LJ contribution to the free energy may be
considered to arise from a competition between two different

components, one due to (unfavorable) cavity formation in
the solvent and the other due to (favorable) van der Waals
interactions between the solute and solvent.30 The first
component is mainly entropic in nature and is predominant
at small values of λ, while the second component is mainly
enthalpic and dominates for large values of λ. The cavity
formation free energy may be expressed as the sum of a
volume term (the work acting against an external pressure)
and a surface term (work acting against the surface tension),
as follows:30,31

where p is the pressure, r is the solute radius, γ is the surface
tension, and δ is a curvature correction to the surface tension.
A similar expression can be derived from scaled-particle
theory:30,32

Taking any of these forms, it is easy to see that the cavity
contribution to the Hamiltonian derivative can be ap-
proximated by a quadratic expression:

where we take A0, A1, and K as adjustable (free) parameters.
As for the attractive term, it is reasonable to assume that,

once the cavity is formed, there will be no significant solvent
restructuringcausedbyturningontheattractiveinteractions.30,33

This mean-field approximation implies that the entropic
contribution is negligible, and thus the free energy is given
simply by the solute-solvent van der Waals interaction
energy. Furthermore, we introduce the simplification that this
attractive energy is the sum of an explicit and an implicit
term, as follows:

The explicit term contains the contributions from the first
solvation shell of water molecules around the solute, while
the implicit term contains the contributions of all other water
molecules in the system. We approximate the implicit term
by a continuum, obtained by integrating the attractive part
of the LJ potential between a distance RC and infinity:

Substituting the attractive part of the LJ potential in the above
equation and integrating, we obtain

where σ and ε are the LJ solute-solvent diameter and well
depth, respectively. The derivative of eq 13 with respect to
λ yields a constant term, as expected.

Regarding the explicit term, we make the rather crude
assumption that all the nW water molecules in the first

∫x1

xN
f(x) dx ) ∑

i)1

(N-1)/2

(x2i+1 - x2i-1)
f(x2i-1) + 4f(x2i) + f(x2i+1)

3
(5)

∫x1

xN
f(x) dx ) 2h

3
[f(x1) + 4f(x2) + ∑

i)3

N-1

[3 + (-1)i]f(xi) + f(xN)]

(6)

∫x1

xn f(x) dx ) ∑
i)1

nP

aix
i (7)

∆GCav ∼ 4π
3

pr3λ3 + 4πγr2λ2(1 - 4δ
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solvation shell are at the same distance R from the solute.
With this assumption, the potential energy is given simply
by the attractive term multiplied by nW. Here, we must take
the soft-core expression, eq 2, for the attractive term:

Taking the derivative with respect to λ yields

By taking p ) 1 for the soft-core power (see section 2) and
expanding, we obtain an expression of the form:

where once more we take A2, A3, A4, and B as adjustable
parameters. Now all we need to do is combine eqs 10 and
16 to obtain a fitting function for the Hamiltonian derivative.
Before we do that, however, we introduce an additional
requirement:

This means that all the constant terms will cancel out and
the curve will go through zero at λ ) 0. The final expression,
with 5 adjustable parameters, is

Equation 18 has an analytic integral that depends on the
nature of the roots of the quadratic expression in the
denominator of the third term. In fact, if any of the roots
falls between 0 and 1, the function will have a discontinuity
in our region of interest. To avoid this, we can require that
the discriminant of the polynomial always be negative, so
that both roots are complex. This means adding the following
constraint to the fitting procedure:

In practice, we found out that a strict use of this (unneces-
sarily strong) constraint was not needed, provided that the
initial estimate of parameters A3 and A4 obeyed the above
inequality. When eq 19 is obeyed, the integral of eq 18
between 0 and 1 is given by

All fits were performed using a nonlinear weighted least-
squares routine, as implemented in the xmGrace software.34

4. Results and Discussion

4.1. Electrostatic Component. We begin by analyzing the
electrostatic contribution to the hydration energy of methanol
(for the nonpolar methane molecule, this contribution is zero).
The data for the total contribution (i.e., vacuum - water) are
presented in Figure 1 for the 129 λ values considered. The
full data set together with the corresponding standard
deviations for each simulation are given in the Supporting
Information, Table S5. As we can see, the curve is smooth
and monotonic, and the sampling error is rather small for
all data points. Linear response theory predicts a quadratic
dependence of the free energy with respect to the solute
charge,12 which results in a linear dependence for the
derivative of the free energy with respect to λ. However,
the data of Figure 1 exhibit significant deviations from
linearity and thus suggest a breakdown in linear response
theory. This may be attributed to the fact that the solvent is
not a uniform dielectric, and thus specific interactions
between the solute and the solvent invalidate the linear
coupling assumption. This was also verified in other works,
e.g., for the charging/uncharging of simple molecules, such
as monatomic ions,9 or for more complex molecules.8 Indeed,
our data could not be accurately fitted using either a linear
or a quadratic expression, even for a solute as simple as
methanol, and the departure from linear behavior is expected
to increase as the solute becomes more complex.

We have fitted the data of Figure 1 to polynomials of
increasing degree, following eq 7, and the results are shown
in Table 1 (the respective fits are depicted in the Supporting
Information, Figure S1). It is clear that the root-mean-square
(rms) error of the fit decreases significantly from a quadratic
to a quartic polynomial but then shows no significant change

EExpl ) -
4εσ6nWλ

Rσ6(1 - λ)p + R6
(14)
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∂λ
) -4εnW
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Figure 1. Electrostatic contribution (vacuum - water) to the
derivative of the Hamiltonian with respect to λ for methanol
(open circles with error bars). The lines are fits to the full and
reduced data sets using a quartic polynomial function.

Table 1. Results Obtained by Fitting the Electrostatic
Contribution Data for Methanol to Polynomial Functions of
Increasing Degree (nP)

nP rms error �2/(N - nP) ∆GElec (kJ/mol) εR (%)

2 0.1892 104.6 -26.225 0.690
3 0.1132 16.59 -26.351 0.216
4 0.0899 0.997 -26.407 0.002
5 0.0895 0.872 -26.406 0.007
6 0.0894 0.516 -26.401 0.026
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as nP is further increased. A statistical estimate of the quality
of the fit is given by the �2 value, which should be on the
same order as the number of degrees of freedom of the fit29

(in this case, N-nP). The improvement is remarkable upon
increasing nP from 2 to 4, but there is only a small change
by further increasing the polynomial degree. Finally, the error
in the value of the integral computed analytically from the
fitting function relative to the value calculated by numerical
integration of the data using Simpson’s rule, denoted as εR,
actually shows a minimum at nP ) 4. This analysis leads us
to conclude that the electrostatic contribution curve is ideally
fitted by a polynomial of degree 4.

Now that we have established the optimal fitting function,
it is time to compare the precision of the numerical methods
with the analytic integration as the number of data points
(N) is reduced. For this purpose, we have generated reduced
data sets with fewer λ values by removing points from the
full data set, such that the points in the reduced data sets
were spaced as evenly as possible. Most of these reduced
sets (i.e., with N ) 65, 33, 17, 9, 5, and 3) were generated
by dividing the original number of intervals (128) by
successive powers of 2, and so the points were all evenly
distributed. For the other reduced sets (i.e., N ) 24, 13, 11,
and 7), only one or two points at the extremities of the
integration range were not evenly distributed. For each of
the reduced data sets, the free energy was computed both
numerically, using either the trapezoidal rule, eq 4, or
Simpson’s rule, eq 6, and analytically, after fitting the data
set to a quartic polynomial. The fits using some of the
reduced data sets, as well as for the full set, are shown as
lines in Figure 1. In Figure 2, we plot the absolute error in
the free energy, relative to the reference case (numerical
integration with Simpson’s rule using the complete 129-point
data set), as a function of the number of points in the data
set, for the three integration methods considered. The full
results of our analysis of the electrostatic component,
including values of the fitting parameters, �2 values for the
fits, and total free energies, are given in Supporting Informa-
tion, Table S8.

Analyzing Figure 1, we can see that with as few as 5
evenly spaced data points, the behavior of the entire curve
is well captured by the fitting function. When N is reduced
even further, one runs into overfitting problems, i.e., the
polynomial degree is higher than the number of data points
available for the regression. In this situation, the number of
degrees of freedom of the fit exceeds the information content
of the data, and there is arbitrariness in the final fitting model.
Indeed, for the data set with 3 points, we have used a
quadratic function, rather than a quarticsas can be seen from
Figure 1, the results are not very satisfactory.

From Figure 2, we can see that using up to 17 points all
three methods yield free energies that are within 0.05 kJ/
mol from the reference value. However, if the number of
points is reduced further, the error of the trapezoidal rule
increases significantly. Remarkably, both the Simpson rule
and the analytic integral based on the fitting function perform
extremely well down to 5 data points. This is understandable
if we consider the shape of the curve (Figure 1)sthe convex
shape and monotonic behavior means that the linear inter-
polation between successive points that is at the core of the
trapezoidal rule will produce a systematic underestimation
of the free energy. Naturally, this systematic error can be
reduced by increasing the number of points. On the contrary,
both the piecewise quadratic interpolation of Simpson’s rule
and the quartic polynomial fit are able to correctly capture
the curvature of the data and require only a very small
number of intermediate points to yield a precise free energy
value. This finding is quite important if we take into account
that the large majority of calculations of the electrostatic
contribution to the free energy are carried out with fewer
than 17 points and using the trapezoidal rule to compute the
integral. Thus, it is likely that most results in the literature
present a systematic bias that may be quite significant.

4.2. Lennard-Jones Component. We turn now to an
analysis of the integration of the LJ contribution to the free
energy. The full data sets, including the corresponding
standard deviations, are provided in Table S5 (Supporting
Information) and plotted in Figure 3 for both methane and
methanol. The curve for the LJ contribution is dominated
by a prominent peak located between 0.2 and 0.3 for both
solutes; it first increases smoothly at low values of λ and
decreases again smoothly after the peak. This shape is much
more complex than for the electrostatic contribution (Figure
1). It is also important to notice that the sampling errors are
also much larger than for the electrostatic contribution,
particularly in the vicinity of the peak. This is shown more
clearly in Figure S2 of the Supporting Information. The
behavior of the LJ curve reflects two competing factors:
unfavorable excluded volume effects due to cavity creation
in the solvent and favorable solute-solvent interactions.35

This interpretation has formed the basis for our development
of the fitting function, eq 18. In fact, it is important to notice
that the data to the left of the peak are very well fitted by
our partial expression for the cavity formation term, eq 10,
while the data to the right of the peak are well described by
the expression derived for the attractive term, eq 16. These
partial fits to the data, depicted in Figure 4 for the case of

Figure 2. Absolute error in the electrostatic contribution to
the free energy, relative to the result for the full data set, as
a function of the number of points used in the integration.
Open circles are for the trapezoidal rule, open diamonds for
Simpson’s rule, and full triangles for the analytical integration
of the fitting function.

Effect of Integration Method J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1023



methane, validate our approach in developing the fitting
function for the LJ contribution to the free energy.

The full data sets were fitted to eq 18, and the results are
shown as thick lines in Figure 3. As we can see, the function
is able to correctly describe the data in the entire region of
interest, despite the large amount of statistical noise in the
vicinity of the peak. Using the same procedure as in the case
of the electrostatic component, we have generated reduced
data sets and carried out the integration using the two
numerical methods and the fitting function. The fitted curves
are shown as lines in Figure 3, while the full results of the
analysis, including values of the fitting parameters, �2 values
for the fits, and total free energies, are provided in the
Supporting Information, Tables S9 and S10. In Figure 5, we
show the absolute error in the free energy, relative to the

reference case, as a function of the number of points in the
data set, for the three integration methods considered.

It is clear from Figure 3 that the fitting function is able to
correctly describe the trend of the Hamiltonian derivative
even using only a small number of points in the fit (a good
description is obtained with as few as 11 points). With 9
points, the fitted curve starts to deviate significantly from
the full data set, particularly in the case of methane (see thick
dashed line in Figure 3a), and with 7 points the performance
is quite poor. The performance of the different integration
methods can be assessed quantitatively by analyzing Figure
5. First of all, it is worth noticing that in general the errors
are larger and show more scatter than for the electrostatic
component, which is caused by the higher degree of statistical
noise in the simulated data. Furthermore, Simpson’s rule now
does not significantly outperform the trapezoidal rulessince
the function has a maximum, the systematic error of the
trapezoidal rule tends to cancel out after the full integration.
As expected, the error tends to increase as the number of
points is reduced, but this increase is not very pronounced
down to N ) 17. In this region, all three integration methods
show a similar performance. As the number of points is
reduced further, the error of both numerical integration
schemes increases significantly. Using the fitting function,
however, one is able to maintain a good precision down to
about 11 points, and the difference relative to the numerical
methods is even more marked for 9 points. Probably the most
important conclusion of our analysis is that when considering
a small number of intermediate stages (we recommend using
11 for the LJ contribution) the fitting function always

Figure 3. Lennard-Jones contribution to the Hamiltonian
derivative with respect to λ for (a) methane and (b) methanol
(open circles with error bars). The lines are fits to the full and
reduced data sets, as indicated, using eq 18.

Figure 4. Partial fits to the LJ contribution for methane. The
data at low λ were fitted to eq 10, while the data for high λ
were fitted to eq 16.

Figure 5. Absolute error in the LJ contribution to the free
energy, relative to the result for the full data set, as a function
of the number of points used in the integration, for (a) methane
and (b) methanol. Open circles are for the trapezoidal rule,
open diamonds for Simpson’s rule, and full triangles for the
analytical integration of the fitting function.
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produces more precise results than the two numerical
integration techniques.

At this point, it is worth commenting on the possibility of
using different fitting functions for the LJ component. Shyu
and Ytreberg13 have performed a systematic analysis of
polynomial fits to free energy data but have only applied
their procedure to simple test cases with monotonous curves
and analytical solutions. In more realistic situations, such as
those presented here, polynomial functions are unable to
correctly capture the behavior of the Hamiltonian derivative.
In fact, even a fit to a polynomial of degree 10 using the
full data set shows unphysical oscillations near the integration
limits (see Figure S3, Supporting Information). We have also
tested some alternative functional forms (e.g., rational
functions), but although reasonable, their overall performance
was not as good as that of eq 18. These studies are presented
in detail in section S.2 of the Supporting Information.

4.3. Applicability Test. Our study of different integration
methods, performed above, focused on two small solutes,
so as to enable simulations at a large number of intermediate
values of λ. In this section, we assess whether the conclusions
drawn from the analysis of the prototype systems are
applicable in realistic free energy calculations involving more
complex molecules. For that purpose, we attempt to compute
the hydration energy of 2-methylbutanol and the hydration
energy of a multifunctional compound (4-nitrophenol) using
the methodology proposed above.

Previously, we have seen that the deviation in the
electrostatic contribution to the free energy was very small
and practically independent of the integration method down
to N ) 17 (Figure 2). The same can be said of the LJ
component down to N ) 33 (Figure 5). For that reason, we
have carried out simulations for 2-methylbutanol and 4-ni-
trophenol using 17 points for the electrostatic component
and 31 points for the LJ component, to serve as reference
values. Our previous analysis showed that sufficiently precise
free energies could be obtained with N ) 5 for the
electrostatic component (using the fitting function or Sim-
pson’s rule) and N ) 11 for the LJ component (using the
fitting function). Thus, we have generated reduced data sets
with these values of N for each respective component. The
full results of the fitting procedure are given in Supporting
Information, Tables S11 to S14 (including additional reduced
data sets that were tested).

In Figure 6, we show the fits to the full and reduced data
sets of 2-methylbutanol using eqs 7 and 18 for the electro-
static and LJ contributions, respectively. In both cases, the
fits using the reduced data sets are able to provide a good
description of the behavior of the Hamiltonian derivative.
In Tables 2 and 3, we present the reference values for each
contribution (full data set integrated using the Simpson rule)
as well as the deviations from this value using the reduced
sets and different integration methods. The analysis of both
solutes confirms our previous conclusions based on methane
and methanolsgood results for the electrostatic component
(error below 0.15 kJ/mol) are obtained using either the
Simpson rule or the fitting function, while for the LJ
component, only the fitting function is able to provide
sufficiently precise free energies (error of 0.15 kJ/mol) based

on the reduced data sets. The results are even more striking
for 4-nitrophenol, with errors below 0.05 kJ/mol obtained
using our suggested protocol, particularly considering the
complexity of this multifunctional molecule. This confirms
our claim that a correct choice of integration method can
substantially improve the precision of solvation free energy
calculations, even for complex solutes. Another way of
thinking about this is to say that using our proposed
integration methods one can make free energy calculations
faster by a factor between 3 and 4, by reducing the necessary
number of intermediate points, without a significant loss in
precision.

Table 4 summarizes our results for the total hydration
energy of the four solutes considered. The reference values

Figure 6. Fits to the data for methylbutanol using the full and
reduced data sets for the (a) electrostatic contribution using
eq 7 and (b) Lennard-Jones contribution using eq 18.

Table 2. Results (in kJ/mol) for the Two Contributions to
the Hydration Energy of 2-Methylbutanol and Deviations
from the Reference Value Using Different Integration
Methods

electrostatic Lennard-Jones

∆GReference -26.86 9.62
|∆GTrapezoidal - ∆GReference| 0.568 0.623
|∆GSimpson - ∆GReference| 0.103 0.901
|∆GAnalytic - ∆GReference| 0.140 0.152

Table 3. Results (in kJ/mol) for the Two Contributions to
the Hydration Energy of 4-Nitrophenol and Deviations from
the Reference Value Using Different Integration Methods

electrostatic Lennard-Jones

∆GReference -33.39 1.75
|∆GTrapezoidal - ∆GReference| 0.521 0.365
|∆GSimpson - ∆GReference| 0.042 0.509
|∆GAnalytic - ∆GReference| 0.010 0.044
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(from the full data sets) are compared to results obtained
using reduced data sets of the recommended size (11 for LJ
and 5 for electrostatic) integrated using the fitting functions.
Although it is not our aim here to discuss the accuracy of
the molecular model employed, it is nevertheless instructive
to compare our results with experimental data. Encourag-
ingly, our results are close to experimental values for the
two simple solutes and agree very well with experimental
results for 2-methylbutanol. For the case of 4-nitrophenol,
the agreement is worse, which illustrates the weakness of
current force-fields in predicting hydration free energies of
multifunctional compounds, as discussed elsewhere.36

5. Conclusions

In this work, we have carried out a detailed analysis of the
effect of the integration method on the calculation of
solvation free energies using thermodynamic integration of
molecular simulation data. By performing a very large
number of simulations (129 for each component) at inter-
mediate values of the coupling parameter, we have shown
that the Hamiltonian derivative with respect to λ for the
electrostatic component displayed a smooth and monotonous
behavior, while that for the Lennard-Jones component had
a more complex shape with a prominent peak at low λ values.
For the electrostatic component, the commonly used trap-
ezoidal rule introduces systematic errors in the free energy
as the number of intermediate points decreases. However,
using either Simpson’s rule or a fitting polynomial of degree
4, these errors are significantly reduced, and one is able to
obtain precise free energies with as few as 5 intermediate
points. For the LJ component, however, both numerical
integration methods show approximately similar perfor-
mances, with the errors increasing substantially as the number
of points decreases below about 17. We have derived a
physically based fitting function that is able to provide a good
description of the LJ Hamiltonian derivative throughout the
entire integration interval. Analytical integration of this fitting
function produces accurate free energies with as few as 11
intermediate points. It is important to notice, however, that
convergence of the individual simulations is a requirement
for obtaining precise free energies. Indeed, if the data set is
not sufficiently converged, no integration method (including
regression) will produce precise estimates. Our data were
obtained using sampling times of 5 ns for each intermediate
point, and convergence was checked thoroughly.

On the basis of our study of the hydration of simple
solutes, we are able to recommend the following protocol
for free energy calculations using thermodynamic integration:
(i) for the electrostatic component, one should run simula-
tions at 5 evenly spaced values of λ and integrate the data
using either Simpson’s rule or by fitting to a quartic

polynomial; (ii) for the LJ component, one should run 11
simulations at evenly spaced points, fit the data to eq 18,
and calculate the free energy from the analytic integral of
the fitting function, eq 20.

We have subsequently tested this protocol for more
demanding casesshydration of 2-methylbutanol and 4-ni-
trophenol. The results obtained confirm our previous
conclusions, thus showing that the above protocol is robust
and can be applied for the solvation of more complex
solutes.

In summary, the use of an appropriate integration method
can significantly improve the precision of free energy
calculations using thermodynamic integration, for a given
computational cost, or, alternatively, can make the calcula-
tions much faster for a given precision level. The integration
error implicit in the TI method is commonly seen as a
disadvantage of this approach relative to other methods, like
thermodynamic perturbation theory. Our contribution sig-
nificantly reduces this disadvantage, making TI even more
competitive. We believe such improvements are required so
that solvation free energy data can begin to be routinely
employed in force-field parametrization and can play a more
active part in drug design efforts. Although our proposed
protocol and choice of fitting functions is specific to solvation
free energy calculations, the principles of the method may
be extended to other types of free energy calculation (e.g.,
potentials of mean force), with appropriate adaptations in
the functional forms and in the required number of inter-
mediate points.
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Abstract: We present a Lagrangian approach for the calculation of molecular (quadratic) response
properties that can be expressed as geometric gradients of a generic linear response function, its
poles, and its residues. The approach is implemented within an atomic-orbital-based formalism
suitable for linear scaling at the level of self-consistent time-dependent Hartree-Fock and density
functional theory. Among the properties that can be obtained using this formalism are the gradient
of the frequency-dependent polarizability (e.g., Raman intensities) and that of the one-photon transition
dipole moment (entering the Herzberg-Teller factors), in addition to the excited-state molecular
forces required for excited-state geometry optimizations. Geometric derivatives of ground-state first-
order properties (e.g., IR intensities) and excited-state first-order property expressions are also
reported as byproducts of our implementation. The one-photon transition moment gradient is the
first analytic implementation of the one-photon transition moment derivative at the DFT level of theory.
Besides offering a simple solution to overcome phase (hence, sign) uncertainties connected to the
determination of the Herzberg-Teller corrections by numerical derivatives techniques based on
independent calculations, our approach also opens the possibility to determine, for example by a
mixed analytic-numerical approach, the one-photon transition dipole Hessian, and thus to investigate
vibronic effects beyond the linear Herzberg-Teller approximation. As an illustrative application, we
report a DFT study of the vibronic fine structure of the one-photon X̃(1A1g) - Ã(1B2u) transition in the
absorption spectrum of benzene, which is Franck-Condon-forbidden in the electric dipole ap-
proximation and hence determined by the Herzberg-Teller integrals and electronic transition dipole-
moment derivatives.

1. Introduction

Derivatives (of electronic properties) with respect to dis-
placements of the nuclei, for brevity denoted as geometric

(property) derivatives herein, are one of the key ingredients
in describing the effect of molecular vibrations on properties
computed within the Born-Oppenheimer approximation, as
well as selection rules for a variety of spectroscopic effects,
such as Raman or infrared spectroscopy.1-10 The geometric* Corresponding author e-mail: coriani@units.it.

J. Chem. Theory Comput. 2010, 6, 1028–10471028

10.1021/ct900506c  2010 American Chemical Society
Published on Web 03/02/2010



derivatives of the dynamic electric dipole polarizability
determine, for instance, the intensity of the Raman spectrum3,9

and play a fundamental role in the theoretical description of
other Raman processes, like coherent anti-Stokes Raman
Spectroscopy (CARS)11 and vibrational Raman optical
activity.8,10,12 Similarly, the first geometric derivative of the
transition dipole strength yields information on how the
motion of the nuclei will affect the UV spectrum (or one-
photon absorption, OPA) of a molecule through the so-called
Herzberg-Teller (HT) contribution (vibronic coupling be-
tween different electronic states).13-15 Finally, the first
geometric derivative of the excited-state energy is the
excited-state gradient, which can be used to determine and
characterize the equilibrium geometry of a system in an
excited electronic state.

Geometric derivatives can be obtained either numerically
or analytically. Analytical approaches are more time-
consuming to implement in computer codes than numerical
methods, but they have the clear advantage of being
numerically stable and yielding more accurate results than
numerical differentiation, as well as being generally available,
once implemented, for any type of system (see, e.g., the
discussion in ref 16). Analytic and numerical derivative
schemes can also be combined: for instance, the excited-
state Hessian can be obtained from the numerical derivative
of the analytic excited-state gradient, with higher numerical
accuracy than would be obtained in a fully numerical second-
order derivative procedure applied to the excited-state energy.

An efficient way to obtain derivatives of a property (usually
the energy) is by the Lagrange multipliers technique of
multivariable calculus, typically used in constrained optimization
problems. The Lagrangian technique has been used in various
contexts within the quantum chemistry community, and in
electronic structure theory in particular.9,17-23 A well-known
example is the energy/wave-function optimization for both
variational and nonvariational wave function approximations,
see for instance refs 24 and 25. When implementing analytic
geometry derivatives, the Lagrangian technique is used in a
nontraditional way, in which the Lagrangian multipliers are
treated as wave-function parameters on equal footing with the
conventional wave-function parameters. The variational nature
of the Lagrangian is then used to reduce the number of response
equations that need to be solved. The use of the Lagrangian
approach for calculating geometric derivatives was introduced
by Helgaker and Jørgensen at the end of the 1980s,16,18,20 and
it has been used, for instance, to obtain the geometric derivatives
of ab initio electronic energy surfaces, as well as magnetic
derivatives of the energy using perturbation-dependent basis
sets.9,23,26-28 With the introduction of the quasi-energy approach
to frequency-dependent response properties,21,22 the Lagrangian
method has been shown to afford efficient computational
expressions for the implementation of both dynamic response
functions and multiphoton transition moments at various levels
of theory, in particular, the coupled-cluster22,29,30 and, recently,
time-dependent density functional31,32 theories.

In this paper, we use a Lagrangian technique to determine
the working equations for third-order molecular properties
that are related to the geometric derivatives of second-order
response propertiessthat is, frequency-dependent linear

response functions, their poles, and their residues. In the
specific case of the electric dipole polarizability and that of
the electric-dipole transition strength, these derivatives will
correspond to the electric dipole polarizability gradient, which
determines the intensity of the Raman spectrum, and to the
Herzberg-Teller contribution to the OPA spectrum, respec-
tively. Moreover, as the pole of the linear response function
occurs at an electronic excitation from the ground state to
an excited state, its geometric first derivative automatically
yields the excited-state gradient, and this in turns opens the
possibility of obtaining the optimized equilibrium structure
of an excited state directly from a ground-state wave
function/density.

Since the starting expressions for the second-order quanti-
ties to be differentiated are taken according to the atomic
orbital formulation of response theory presented in refs 33
and 34swhich is based on an exponential parametrization
of the atomic-orbital density matrix25,35sthe resulting prop-
erties can be calculated at linear computational cost for
sufficiently sparse matrices and can be easily parallelized,
since all references to individual two-electron (derivative)
integral distributions are avoided and only elementary matrix
operations have to be done. The atomic orbital basis we adopt
represents a convenient framework for deriving properties
whose dependence on the perturbation is already contained
in the orbitals. As byproducts of our derivation, we also give
the expressions for both the ground- and excited-state first-
order properties (e.g., the dipole moments) and the geometric
gradient of the ground-state first-order properties (required,
for instance, to obtain IR intensities).

Even though we here only consider geometric derivatives,
the approach is quite general and has been applied, with a
few modifications, to derive and implement working expres-
sions for the magnetic derivatives of second-order properties,
using London atomic orbitals to ensure gauge-origin inde-
pendence.28 Starting, for instance, from the (imaginary)
electric-dipole polarizability and transition strengths, these
yield the hyperpolarizability that enters the Verdet constant,
and the transition strength that gives the Faraday B term of
magneto-optical activity (i.e., the Faraday effect in the
transparent and absorptive regions of the sample).28,36,37

Geometric and magnetic perturbations are treated on an equal
footing when using so-called perturbation-dependent basis
sets since the atomic orbitals in both of these cases depend
explicitly on the differentiating variable. Note, moreover, that
the expressions we obtain contain, as a subset, the standard
expression for the quadratic response function 〈〈A; B, C〉〉ω,0

and its residues when the geometric perturbation is replaced
by a generic one-electron (static) operator C.

The procedure we adopt is equivalent to the one used by
Furche and co-workers9,23 to obtain the excited-state gradient
and vibrational Raman intensities in time-dependent density
functional theory, differing only in that the derivation of
Furche and co-workers is expressed in a conventional
molecular-orbital basis. Thorvaldsen et al.32 have also very
recently presented a general method for the calculation of
molecular properties to arbitrary order, in which the quasien-
ergy and Lagrangian formalisms are combined to derive
response functions by differentiation of the quasienergy
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derivative Lagrangian using the elements of the density
matrix in the atomic orbital representation as variational
parameters. The method has been applied to compute, at the
Hartree-Fock level, the CARS spectra11 of a series of
polycyclic aromatic hydrocarbons and the vibrational (hyper)-
polarizabilities (which require the geometric gradients of the
electric dipole moment, electric polarizability, and electric
first hyperpolarizability) of water, of three all-trans polyenes,
and of three 4-dimethylaminophenylpolyene aldehydes.38

Excited-state and (hyper)polarizability gradient implementa-
tions have thus been reported previously, while this work
presents the first implementation of the analytic computation
of the transition moment derivatives. We also note that the
analytic evaluation of transition moment derivatives offers
a simple solution to overcome phase (hence, sign) uncertain-
ties connected to the their determination by numerical
derivatives techniques based on totally independent calcula-
tions. In principle, it can also be combined with a numerical
differentiation scheme, as commonly done to determine the
excited-state Hessian, to yield the transition-moment second-
order derivates, allowing the investigation of vibronic effects
beyond the linear Herzberg-Teller approximation (note
however that, in such mixed numerical-analytical schemes
for transition moments, the phase uncertainties may re-
emerge).

This paper is organized as follows. In the Theory section,
we first define the key quantities which represent the formal
background for our derivation. We then outline the Lagrange
method both in general terms and in a more specific way
for the properties of interest. The implemented expressions
for the second-order property derivatives (third-order proper-
ties) will be given at the end of the section.

As an illustrative application, we report in the Illustrative
Results section an exhaustive DFT study of the vibronic fine
structure of the one-photon X̃(1A1g) - Ã(1B2u) transition in the
absorption spectrum of benzene. This transition is Franck-
Condon-forbidden in the electric dipole approximation and
hence dominated by the (first-order) Herzberg-Teller integrals
and electronic transition dipole-moment derivatives.13,39

2. Theory

2.1. Ansatz: Exponential Parametrization of the
Density. We start by assuming that the wave function (or
density) of the ground state is optimized for a point on the
potential surface (R0) such that the variational condition at
that point is fulfilled:40

where E[1] is the matrix representation of the electronic
gradient in the nonorthogonal atomic orbital (AO) basis, S
is the AO overlap matrix, D is the AO density, and F is the
Fock/Kohn-Sham matrix:

In the equation above, h is the AO integral matrix for the
one-electron part (kinetic plus nuclear attraction) of the
Hamilton operator and G(D) denotes the Coulomb and exact-
exchange contributions:

The scaling factor wx is equal to 1 for Hartree-Fock. In
the case of Kohn-Sham theory, the scaling factor wx is zero
unless a hybrid functional is used, and an additional
contribution from the exchange-correlation potential must
be included in the Kohn-Sham matrix,41

The last term in eq 4 is the derivative of the exchange-
correlation functional Exc[F]:

Expressing the density F in the AO basis as

where Ωµν(r) ) �µ*(r) �ν(r) is the overlap distribution, and
introducing the exchange-correlation potential

we see that

The ground-state energy at R0 is obtained as

where hnuc is the nuclear repulsion term.
The variational condition in the form given in eq 1sas

well as the response expressions in the next sectionsswas
derived on the basis of an exponential parametrization of
the AO density matrix:25,33,35,40

where X is an anti-Hermitian matrix that contains the
variational parameters, with the redundant parameters pro-
jected out:

Po and Pv are projectors onto the occupied and virtual
orbital spaces, respectively:

fulfilling the idempotency (Po
2 ) Po and Pv

2 ) Pv) and
orthogonality relations (PoPv ) PvPo ) 0 and Po

TSPv )
Pv

TSPo ) 0). The so-called S commutator appearing in eq
10 is defined as

E[1] ) FDS - SDF ) 0 (1)

F ) h + GHF(D) (2)

Gµν
HF(D) ) ∑

Fσ
DσF[gµνFσ - wxgµσFν] (3)

F ) h + GHF(D) + Fxc (4)

Fµν
xc )

∂Exc[F]

∂Dνµ
(5)

F(r) ) ∑
µν

�µ
/(r) �ν(r) Dνµ ) ∑

µν
Ωµν(r) Dνµ (6)

Vxc(r) )
δExc[F]

δF(r)
(7)

Fµν
xc ) ∫ δExc[F]

δF(r)
∂F(r)
∂Dνµ

dr ) ∫ υxc(r) Ωµν(r) dr (8)

E0 ) Tr hD + 1
2

Tr DGHF(D) + Exc[F] + hnuc (9)

D(X) ) exp(-XS)D exp(SX) ) D + [D, X]S +
1
2

[[D, X]S, X]S + ... (10)

X ) P (X) ≡ PoXPv
T + PvXPo

T (11)

Po ) DS (12)

Pv ) I - DS (13)
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More generally, we introduce the M commutator as

2.2. A Few Words on Notation. Before proceeding, it is
convenient to introduce here a more compact notation, which
is repeatedly used throughout the paper. According to it, we
write an element of the gradient matrix in eq 1 as33

As a rule of thumb, we can go from the (element-wise)
notation to the true matrix representation in the AO basis
using

where the index j indicates a Mµν element of the matrix M
in the AO basis. The operator Oj

† and its adjoint Oj are
defined in ref 33. We also introduce here the expansions

2.3. Ansatz: AO-Based Linear Response Theory. We
consider now the expansion of the time-dependent expecta-
tion value of a time-independent operator A with respect to
a (periodic) perturbation Vt ) ∫-∞

+∞ Vω exp(-iωt) dω:

where 〈〈A; Vω〉〉ω is the linear response function. Assuming
implicit summation over repeated indices, and introducing
the symbol B in place of Vω, the linear response function
(LRF) is given by33

where the elements bm
ω of the response “vector” bω (matrix

bω) are obtained from the solution of the linear response
equation

or, in supermatrix notation,28

and where

is the property gradient relative to the A operator (whose
expectation value is perturbed). The right-hand side of the
linear response equation is the property gradient relative to
the external perturbation described by the Vω (≡ B) operator,

E[2] and S[2] are the generalized electronic Hessian and
metric matrices in the AO basis:33

where we define

and introduce the matrix41

Note that the elements of the (super)matrix E[2] are here
defined so that E[2] is positive definite.

The linear response function has poles whenever the
frequency ω is equal to an excitation energy ωf. The
excitation energies ωf and excitation vectors bf (matrices bf)
are obtained from the solution of the generalized eigenvalue
equation

The corresponding residue of the linear response function
can be shown to be34

Note that the excited-state vector is normalized on the
generalized metric matrix S[2], that is

and that S[2] is not positive definite.
2.4. Construction of the Lagrangian and Variational

Condition. One obvious way to obtain our third-order
properties would be a straightforward differentiation of the
second-order property expressions previously given. How-
ever, such an approach would automatically imply that
derivatives of (either or both) the linear response vectors (bω)
and the eigenvectors (bf) would be required. Hence, ad-
ditional equations depending (often in a rather complicated
fashion) on the number of external perturbations (up to 3N
for each component) should be solved. Such an approach
has an evident drawback when dealing with properties of
large systems, as the number of equations to be solved would
quickly become too large to be handled.

Alternatively, computationally efficient expressions for the
third-order molecular properties can be obtained using a
Lagrangian technique.16,17,19 For each second-order property
(component) C we want to differentiateseither a linear
response function, a transition moment, or an excitation

[D, X]S ) DSX - XSD (14)

[L, N]M ) LMN - NML (15)

Em
[1] ) Tr F[D, Om

† ]S ) Tr Om
† (FDS - SDF) ≡ Tr Om

† E[1]

(16)

Mj ) Tr Oj
†M (17)

bω ) ∑
m

bm
ωOm; bω† ) ∑

m

bm
ω/Om

† (18)

〈A(t)〉 ) A0 + ∫ 〈〈A;Vω〉〉ω exp(-iωt) dω + ...

(19)

〈〈A;B〉〉ω ) -Am
[1]bm

ω ) -A[1]†bω ≡ -Tr(A[1]†bω) )

+ TrA[bω, D]S (20)

(Emn
[2] - ωSmn

[2])bn
ω ) Bm

[1] (21)

(E[2] - ωS[2])bω ) B[1] (22)

Am
[1] ) -Tr A[Om, D]S (23)

A[1] ) SDA† - A†DS (24)

Bm
[1] ) Tr B[D, Om

† ]S ) Tr Om
† (BDS - SDB) (25)

B[1] ) BDS - SDB (26)

Emn
[2] ) Tr F[[On, D]S, Om

† ]S + Tr G([On, D]S)[D, Om
† ]S

(27)

Smn
[2] ) Tr Om

† S[D, On]SS ≡ -Tr Om
† S[On, D]SS (28)

G(M) ) GHF(M) + Gxc(M) (29)

Gµν
xc(M) ) ∑

Fσ
MσF∫ δ2Exc

δF(s) δF(r)
Ωµν(r) ΩFσ(s) dr ds

(30)

(E[2] - ωf S[2])bf ) 0 (31)

lim
ωfωf

(ω - ωf)〈〈A;B〉〉ω ) (A[1]†bf)(bf†B[1])

) Tr(A[1]†bf) Tr(bf†B[1]) (32)

bf†S[2]bf ) 1 (33)
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energyswe construct a Lagrangian function (component) L,
adding to the second-order property in question the appropri-
ate constraint equations that must be satisfied, each multiplied
by a set of Lagrange multipliers:

where λ ) λ(R) collectively represent the “property
parameters” (for instance, the response and excitation
vectors), X ) X(R) are the “orbital parameters” [see eq
11], λj(R) are the Lagrange multipliers connected to the
property parameters (or property constraints p ) 0), and
Xj (R) are the Lagrange multipliers related to the orbital
parameters (or orbital constraints O ) 0). The variable R
collectively indicates the spatial coordinates of the nuclei.
Note the dependence of the property constraint equations
on both the spatial coordinates of the nuclei R, the
property parameters λ, and the orbital parameters X.

Next, we make the Lagrangian fully variational, imposing
its stationarity with respect to any variation in both property/
orbital parameters and Lagrange multipliers (∀i, R)

Equations 35a and 35c simply correspond to the constraint
equations that determine the property parameters (λ) and
orbital parameters (X), respectively. Equation 35b can be
used to determine the property Lagrange multipliers (λj),
whereas eq 35d affords the orbital Lagrange multipliers (Xj ).

Finally, we obtain the properties of interest from the
derivative of the Lagrangian with respect to the displacements
of the nuclei. For the values of the parameters that satisfy
eqs 35a to 35d, it yields

(with R� ∈ R indicating one specific spatial coordinate of
the nuclei). Third-order molecular properties are thus con-
veniently formulated as derivatives of the variational linear-
response property Lagrangian. Using the Lagrangian tech-
nique, we thus replace the calculation of the parameters’
response with respect to each perturbation R� with the
calculation of the Lagrangian multipliers, that is, one
additional set of equations (eq 35b) for each λi independent
of the number of perturbations (and similarly for the orbital
parameters Xi).

In practice, the solution of eqs 35a-35d, and consequent
calculation of the properties according to eq 36 and its higher-
order analogs, is carried out within a variational perturbation
theory approach16 by expanding the parameters in order of
the (external) perturbation. When the expansions are inserted
in the expressions for the property or property Lagrangian,
variational conditions for each order of the perturbation are
obtained in place of one condition for each value of the
field.16 In this way, molecular properties are obtained in
accordance with Wigner’s 2n + 1 rule for the parameters
(the parameter response to order n determines the property
derivatives to order 2n + 1), as well as the stronger 2n + 2
rule for the multipliers.16 Due to the (2n + 1) rule, and since
the properties considered here are first-order properties with
respect to the displacement of the nuclei, we only need to
solve the above equations through zeroth order in the
displacements.

We now go into detail and report explicit expressions for
the various quantities entering eq 36 for the properties of
interest to us.

2.4.1. The Linear Response Function Lagrangian. For the
linear response function, the property Lagrangian is

where the second equality is again given in a supermatrix
notation. It is apparent that the parameter constraint equation
corresponds to the linear response equation determining bω.
The orbital constraint equation in eq 34 corresponds to the
optimization condition that determines the orbital parameters
X, already given in eqs 16 and 1.

2.4.2. The Residue Lagrangian. For the residue (i.e., the
one-photon transition moment),

Note that in this case we have two “parameter” constraint
equations, namely, the generalized eigenvalue equation for
the excited-state vector bf, eq 31, and the orthonormality
condition on the same excited-state vector, eq 33. The orbital
constraint equation is obviously the same as for the linear
response function Lagrangian.

2.4.3. The Excited State Energy Lagrangian. Last, for the
excited-state energy, Ef ) E0 + ωf, we have

L (R, λ, λ̄, X, X̄) ) C (R, λ, X) + ∑
m

λ̄m pm(R, λ, X) +

∑
n

XjmOn(R, X) (34)

∂L (R, λ, λ̄, X, X̄)

∂λ̄i

) 0 S pi(R, λ, X) ) 0 (35a)

∂L (R, λ, λ̄, X, X̄)
∂λi

) 0 S
∂C(R, λ, X)

∂λi
+

∑
j

λ̄j

∂pj(R, λ, X)

∂λi
) 0 (35b)

∂L (R, λ, λ̄, X, X̄)

∂Xj i

) 0 S Oi(R, X) ) 0 (35c)

∂L (R, λ, λ̄, X, X̄)
∂Xi

) 0 S
∂C(R, λ, X)

∂Xi
+

∑
j

λ̄j

∂pj(R, λ, X)

∂Xi
+ ∑

j

Xj j

∂Oj(R, X)

∂Xi
) 0 (35d)

dL (R, λ, λ̄, X, X̄)
dR�

|
R0

) ∂L (R, λ, λ̄, X, X̄)
∂R�

|
R0

)

∂C(R, λ, X)
∂R�

|
R0

+ ∑
i

λ̄i

∂pi(R, λ, X)

∂R�
|
R0

+

∑
i

Xj i

∂Oi(R, X)

∂R�
|
R0

≡ dC(R, λ, X)
dR�

|
R0

(36)

L R ) -Am
[1]bm

ω + λ̄m
/ (Emj

[2]bj
ω - ωSmj

[2]bj
ω - Bm

[1]) - Xjm
/Em

[1]

≡ -A[1]†bω + λ̄†(E[2]bω - ωS[2]bω - B[1]) - X̄†E[1]

(37)

L S ) Am
[1]bm

f - λ̄m
/ (Emj

[2]bj
f - ωf Smj

[2]bj
f) - ω̄(bm

f/Smj
[2]bj

f - 1) -

Xjm
/Em

[1] ≡ A[1]†bf - λ̄†(E[2]bf - ωf S[2]bf) -

ω̄(bf†S[2]bf - 1) - X̄†E[1] (38)
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where the excitation frequency ωf was rewritten as

and the orthonormalization condition on the excited-state
vectors in eq 33 was used as a unique constraint equation.

2.4.4. The Variational Conditions for the LRF Lagrangian.
It is instructive to analyze the specific outcome of the
application of the variational conditions with respect to the
parameters and multipliers on the three Lagrangian functions
above. Thus, for the linear response function

It can be easily recognized that eq 41c corresponds to a
transposed linear response equation, as used for instance to
determine the aω (or NA(ω)) vector of the quadratic response
function,41-43 that is, λj† ) aω†. Since our response solver34

performs the linear transformation from the right, the λ†

multipliers are instead obtained by solving

and then taking the adjoint of the resulting vector (matrix)
λj.

The equation that determines the orbital Lagrangian
multipliers, eq 41d, will be discussed in section 2.5 together
with the corresponding ones from the transition-moment and
excitation-energy Lagrangians.

2.4.5. The Variational Conditions for the Residue Lag-
rangian. For the transition-moment Lagrangian, we have

Equations 43c and 43e are clearly the eigenvalue equation
and orbital parameter equation, respectively.

Equation 43d requires special attention. Similar to what
was done for the linear response function, we solve the
adjoint equation:

This is a linear-response equation, though for a frequency
ω equal to an excitation frequency ωf. Since the excitation
energy is a pole of the resolvent matrix (E[2] - ωfS[2]), eq
43d is divergent with the solution vector λj having an
undefined component along the excitation vector bf. By
multiplying from the left with bf†, we decouple ωj from λj
and determine the value of the multiplier ωj

since bf† (E[2] - ωfS[2]) ) 0. Multiplying with the orthogonal
complement of bf†, which is represented by the (projection)
matrix

gives

If we now partition the solution vector λj as

with

and introduce it in the response equation eq 44, we are left
with the well-defined, nondivergent response equation

since the contribution along bf automatically vanishes because
of eq 31.

L Ef ) E0 + bm
f/Emj

[2]bj
f - ω̄(bm

f/Smj
[2]bj

f - 1) - XjmEm
[1]

≡ E0 + bf†E[2]bf - ω̄(bf†S[2]bf - 1) - X̄†E[1]

(39)

ωf ) bm
f/Emj

[2]bj
f ≡ bf†E[2]bf (40)

∂L

∂Xj j
/
) 0 S Ej

[1] ) 0 (41a)

∂L

∂λ̄j
/
) 0 S Ejl

[2]bl
ω - ωSjl

[2]bl
ω ) Bj

[1] (41b)

∂L

∂bj
ω
) 0 S Aj

[1] ) λ̄m
/ (Emj

[2] - ωSmj
[2]) (41c)

∂L
∂Xj

) 0 S -
∂Am

[1]

∂Xj
bm

ω + λ̄m
/
∂Eml

[2]

∂Xj
bl

ω - ωλ̄m
/
∂Sml

[2]

∂Xj
bl

ω -

λ̄m
/
∂Bm

[1]

∂Xj
) Xjm

/
∂Em

[1]

∂Xj
(41d)

(E[2] - ωS[2])λ̄ ) A[1] (42)

∂L

∂Xj j
/
) 0 S Ej

[1] ) 0 (43a)

∂L
∂ω̄

) 0 S bm
f/Smj

[2]bj
f ) 1 (43b)

∂L

∂λ̄j
/
) 0 S Eji

[2]bi
f - ωf Sji

[2]bi
f ) 0 (43c)

∂L

∂bj
f
) 0 S Aj

[1] ) λ̄m
/ (Emj

[2] - ωf Smj
[2]) + 2ω̄bm

f/Smj
[2]

(43d)

∂L
∂Xj

) 0 S
∂Am

[1]

∂Xj
bm

f - λ̄m
/
∂Eml

[2]

∂Xj
bl

f + ωf λ̄m
/
∂Sml

[2]

∂Xj
bl

f -

ω̄bm
f/
∂Sml

[2]

∂Xj
bl

f ) Xjm
/
∂Em

[1]

∂Xj
(43e)

(E[2] - ωf S
[2])λ̄ + 2ω̄S[2]bf ) A[1] (44)

ω̄ ) 1
2

bf†A[1] (45)

Pf
† ) I - S[2]bfbf† (46)

Pf
†[(E[2] - ωf S

[2])λ̄] ) Pf
†A[1] (47)

λ̄ ) Pf λ̄ + γbf (48)

Pf ) I - bfbf†S[2] (49)

Pf
†{(E[2] - ωf S[2])Pf (λ̄)} ) Pf

†(A[1]) (50)
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In practice, eq 50 is solved by means of an iterative
procedure based on trial vectors, and we need to ensure that
the solution vector is kept orthogonal to the excitation vector
at each step in the iterative procedure.

Since our solver34 exploits a paired structure, where the
trial vectors are normalized and orthogonalized against each
other in a standard Euclidian way, the basis of trial vectors
is chosen as a 2 + 2n basis, where the first two vectors are
always chosen as the excitation vector bf, and its paired
counterpart b-f. The remaining 2n vectors are generated as
in the standard procedure,34 but with the additional require-
ment that they are always kept orthogonal, in terms of an
S[2] norm, to both bf and b-f

We refer to ref 28 for a detailed discussion of the
algorithm.

2.4.6. The Variational Conditions for the Excited-State
Energy Lagrangian. Finally, for the excited-state energy
Lagrangian,

which allows us to identify ωj ) ωf.
2.5. The Response Equations for “Orbital” Lagrange

Multipliers Xj . For the determination of the orbital Lagrange
multipliers in the three cases, we need to solve eqs 41d, 43e,
and 52d, respectively. They involve the derivatives with
respect to each orbital parameter Xi of the elements of the
generalized Hessian (E[2]) and metric (S[2]) matrices, as well
as of the property gradients (A[1]† and/or B[1]) and of the
electronic gradient (E[1]). These can be shown to correspond
to

where we have taken advantage of the rule

which stems from the exponential parametrization of the
density, and introduced the matrix Txc41

Using the differentiated matrices introduced above allows
us to rewrite eqs 41d, 43e, and 52d, in the form

where the explicit values of the elements of the right-hand-
side vector (matrix) η† vary according to the property we
are differentiating. For the linear-response-function deriva-
tive, we get

whereas for the residue (transition moment) derivative

with ωj as in eq 45. Finally, for the excitation energy
derivative

where ∂E0/∂Xj ) 0 because it corresponds to the optimization
condition, eq 16. As previously done for the λj, we recast
the equation in the adjoint form

and solve it by reusing the iterative, linear-scaling, response
solver (with transformation on the right index) of ref 34 with
a modified right-hand-side matrix.

bi ) (I - bfbf†S[2] - b-fb-f†S[2])bi; ∀i ) 3, ..., 2n + 2
(51)

∂L

∂Xj j
/
) 0 S Ej

[1] ) 0 (52a)

∂L
∂ω̄

) 0 S bj
f/Sji

[2]bi
f - 1 ) 0 (52b)

∂L

∂bi
f
) 0 S 2(Eji

[2]bi
f - ω̄Sji

[2]bi
f) ) 0 (52c)

∂L
∂Xj

) 0 S
∂E0

∂Xj
+ bm

f
∂Eml

[2]

∂Xj
bl

f - ω̄bm
f/
∂Sml

[2]

∂Xj
bl

f ) Xjm
/
∂Em

[1]

∂Xj

(52d)

∂Em
[1]

∂Xj
⇒ Emj

[2] (53)

∂Bm
[1]

∂Xj
⇒ Bmj

[2] ) -Tr B[[Oj, D]S, Om
† ]S (54)

∂Am
[1]

∂Xj
⇒ Amj

[2] ) Tr A[Om, [Oj, D]S]S (55)

∂Emn
[2]

∂Xj
⇒ Emnj

[3] ) -Tr F[[On, [Oj, D]S], Om
† ]S -

Tr G([Oj, D]S)[[On, D]S, Om
† ]S -

Tr G([On, D]S)[[Oj, D]S, Om
† ]S -

Tr G([On, [Oj, D]S]S)[D, Om
† ]S -

Tr Txc([On, D]S, [Oj, D]S)[D, Om
† ]S (56)

∂Smn
[2]

∂Xj
⇒ Smnj

[3] ) -Tr Om
† S[On, [D, Oj]S]SS (57)

∂D
∂Xj

) -[Oj, D]S (58)

Tµν
xc(N, M) )

∑
Fσηε

MσFNεη∫Ωηε(t) ΩFσ(s) Ωµν(r)
δ2Vxc(r)

δF(s) δF(t)
dr ds dt (59)

Xjm
/Emj

[2] ) ηj
/; X̄†E[2] ) η† (60)

ηj
/ ) -bm

ωAmj
[2] + am

ω/Emnj
[3] bn

ω - ωam
ω/Smnj

[3] bn
ω - am

ω/Bmj
[2]

(61)

ηj
/ ) bm

f Amj
[2] - am

ωf*Emnj
[3] bn

f + ωf(am
ωf*Smnj

[3] bn
f*) - ω̄(bm

f*Smnj
[3] bn

f )
(62)

ηj
/ ) bm

f*Emnj
[3] bn

f - ωf(bm
f*Smnj

[3] bn
f ) (63)

E[2]X̄ ) η (64)
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2.6. The Generalized Property Gradient with
Respect to Displacements of the Nuclei. Once all of the
parameters and Lagrange multipliers have been determined,
we can turn our attention to the third-order properties, which
are obtained as derivatives of the Lagrangians with respect
to displacements of the nuclei, as indicated in eq 36. The
final geometric derivative of the linear response function
reads

The transition moment gradient is

where

Note, however, the term including ∂ωf/∂R� in the residue
gradient vanishes since am

ωf /Smn
[2]bn

f ) 0. This is due to the
fact that aωf fulfills the projection relation aωf ) Pf (aωf), which
removes all bf components from the linear response vector.

Finally, for the excited-state gradient

2.7. Implementation. At variance with respect to what
is required in standard linear and quadratic response
calculations,34,41,42 we need to implement the right-hand-
side matrices η for the (adjoint) Lagrangian multiplier
equations, as well as the final gradient expressions.

Comparing the expressions in eqs 61, 62, and 63, we
writesin a somewhat self-explanatory notations

where it is understood that the contribution ηB2 ) 0 in the
transition moment case, and ηA2 ) ηB2 ) 0 for the excited
state.

The explicit expressions for the four contributions are
found as

with

Above, a and b indicate, respectively, the linear response
matrices for the A and B operators in the case of the linear
response function; the projected linear response matrix at ω
) ωf, aωf, and the eigenvector matrix bf for the transition
moment; and the excitation vector and its adjoint for the
excited state gradient. Note that all S[3] contributions actually
vanish, as shown in Appendix A. This also applies for the
additional contribution to the right-hand side originating from
the last term in eq 62 in the case of the transition moment
derivative

For the final computational expressions of the property
gradients, we need, in addition to the undifferentiated density,
Fock and overlap matrices at the expansion point R0 and
the integral matrices A and B, the differentiated one- and
two-electron integral matrices hR� and GR�, the differentiated
overlap matrices SR�, and the differentiated integral matrices
AR� and BR�, since we are considering a perturbation-
dependent basis set where each atomic orbital is centered
on a specific atom and thus depends on the spatial coordinates
of the nuclei. Explicit expressions for the matrix elements
of AR�, when A is the dipole moment operator, can be found
in ref 44.

In ref 40, the derivatives of the individual matrices in the
AO formulation were considered. It was there shown that
the first derivative of the density, DR�(X), is given by the
first derivative of the reference density matrix, DR�, which,
from the idempotency condition for D, is found to be

Comparing the three Lagrangian expressions in eqs 37,
38, and 39, we can thus write (once again in a self-
explanatory notation)

dC
dR�

) -
∂Am

[1]

∂R�
bm

ω + am
ω/∂Emn

[2]

∂R�
bn

ω - ωam
ω/∂Smn

[2]

∂R�
bn

ω -

am
ω/∂Bm

[1]

∂R�
- Xjm

/
∂Em

[1]

∂R�
(65)

dC
dR�

)
∂Am

[1]

∂R�
bm

f - 1
2

(Al
[1]bl

f)bm
f/
∂Smn

[2]

∂R�
bn

f -

am
ωf/(∂Emn

[2]

∂R�
- ωf

∂Smn
[2]

∂R�
-

∂ωf

∂R�
Smn

[2])bn
f - Xjm

/
∂Em

[1]

∂R�
(66)

∂ωf

∂R�
) bm

f/
∂Emn

[2]

∂R�
bn

f - ωfbm
f/
∂Smn

[2]

∂R�
bn

f (67)

dC
dR�

)
∂E0

∂R�
+ bm

f/
∂Emn

[2]

∂R�
bn

f - ωfbm
f/
∂Smn

[2]

∂R�
bn

f - Xjm
/
∂Em

[1]

∂R�
(68)

η ) ηE3 + ηS3 + ηA2 + ηB2 (69)

ηB2 ) [[S, B†]a, S]D (70)

ηA2 ) -[[S, A]b, S]D (71)

ηS3 ) S[D, [a, b†]S]SS ) 0 (72)

ηE3 ) CDS - SDC (73)

C ) [S, [F, S]a]b† + [S, G([a, D]S)]b† +

[S, G([b†, D]S)]a + G([[b†, D]S, a]S) +

Txc([b†, D]S, [a, D]S) (74)

ω̄S[D, [bf, bf†]S]SS ) 0 (75)

DR� ) -DSR�D (76)

L A1 ) Am
[1]bm ) -Tr A[b, D]S (77)
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When the perturbed densities

are introduced, the geometric derivatives of the above
individual contributions can be written

where we take advantage of the fact that Tr{G(M)N} )
Tr{G(N)M} (and similarly for the differentiated Tr{GR� (M)N})
to avoid computing two-electron Fock matrices for R-
perturbed matrices, since it would require 3N Fock matrices
computations.

Introducing the derivatives 84-88 into the generalized
property expressions, eqs 65, 66, and 68, the explicit
computational expressions for the property gradients are
obtained, with the appropriate linear response matrices and
eigenvector matrices taking the place of the generic a† and
b matrices. For instance, the final computational expression
for the linear-response function gradient reads

with a† ) aω† and b ) bω.
The expression for the transition moment gradient is

straightforwardly obtained from eq 89 by removing all terms
involving the property integral matrix B and its geometric
derivative BR, adding the (∂L S2)/(∂R�) term multiplied by
ωj , with

and using ωf instead of ω as factor in the third-last term. In
this case, a† ) aωf,† and b ) bf.

In the excited state gradient, the terms involving the
integral matrix A and its geometric derivative AR� also
disappear and are replaced by the computational expression
of the ground-state energy gradient40

again with ωf as the factor on the analog of the third-last
term of eq 89, and with a† ) bf,† and b ) bf.

Note also that in Kohn-Sham theory the exchange-
correlation contribution to the matrix GR�(Db) has a rather
complicated expression, which is explicitly given in Ap-
pendix B.5.

If we replace the differentiated Hamilton operator (ma-
trices) with a generic one-electron operator, C, in the above-
given gradients, it is easy to prove that the computational
expressions for the standard quadratic response function
〈〈A; B, C〉〉ω,0 and its single and double residues are obtained.
The proof is given in detail in section 2.4.2 of ref 28, starting
from the expressions for the linear response function and
transition moment magnetic gradients on LAOs, which, as
mentioned in the Introduction, bear strong similarities with
the gradients here considered.

As an addition to the discussion in ref 28, we report here
the computational expression of a generic excited-state first-
order property (component)slike for instance the excited
state molecular electric dipole momentsas straightforwardly
obtained from the excited-state gradient computational
expression:

L B1 ) am
/Bm

[1] ) Tr B[D, a†]S (78)

L E1 ) Xjm
/Em

[1] ) Tr F[D, X̄†]S (79)

L E2 ) am
/Emn

[2]bn ) Tr F[[b, D]S, a†]S +

Tr G([b, D]S)[D, a†]S (80)

L S2 ) am
/Smn

[2]bn ) Tr a†S[D, b]SS ≡ -Tr a†S[b, D]SS
(81)

Db ) [b, D]S (82)

Db,R� ) [b, DR�]S + [b, D]SR� (83)

∂L A1

∂R�
) Tr{b([AR�, S]D + [A, SR�]D + [A, S]DR�)}

(84)

∂L B1

∂R�
) Tr{a†([BR�, S]D + [B, SR�]D + [B, S]DR�)}

(85)

∂L S2

∂R�
) -Tr{a†(SR�DbS + SDb,R�S + SDbSR�)}

(86)

∂L E1

∂R�

) Tr{X̄†([FR�, S]D + [F, SR�]D +

[F, S]DR�)} + Tr{G(DR�)[D, X̄†]S} )
Tr{X̄†([FR�, S]D + [F, SR�]D +

[F, S]DR�)} + Tr{G([D, X̄†]S)DR�}

(87)

∂L E2

∂R�
) Tr{FR�[Db, a†]S + F[Db,R�, a†]S + F[Db, a†]SR� +

G(DR�)[Db, a†]S} + Tr{GR�(Db)[D, a†]S +

G(Db,R�)[D, a†]S + G(Db)[DR�, a†]S + G(Db)[D, a†]SR�} )

Tr{FR�[Db, a†]S + F[Db,R�, a†]S + F[Db, a†]SR� +

G([Db, a†]S)DR�} + Tr{GR�(Db)[D, a†]S +

G([D, a†]S)Db,R� + G(Db)[DR�, a†]S + G(Db)[D, a†]SR�}

(88)

dC
dR�

) -Tr{b([AR�, S]D + [A, SR�]D + [A, S]DR�)} -

Tr{a†([BR�, S]D + [B, SR�]D + [B, S]DR�)} +

Tr{FR�[Db, a†]S + F[Db,R�, a†]S + F[Db, a†]SR� +

G([Db, a†]S)DR�} + Tr{GR�(Db)[D, a†]S +

G([D, a†]S)Db,R� + G(Db)([DR�, a†]S + [D,a†]SR�)} +

ω Tr{a†(SR�DbS + SDb,R�S + SDbSR�)} -
Tr{X̄†{[FR�, S]D + [F, SR�]D + [F, S]DR�}} -

Tr{G([D,X̄†]S)DR�} (89)

ωj ) 1
2

Tr{A[D, bf]S} (90)

∂E0

∂R�
) Tr DhR� + 1

2
Tr DGR�(D) + Tr DR�F + hnuc

R�

(91)

CR
f ) 〈f|CR|f〉 ) Tr DCR + CR,nuc - Tr{[[bf, D]S, bf†]S -

[D, X̄†]S}CR (92)
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The first two terms in eq 92 correspond to the ground-
state first-order property. It is well-known that excited-state
first-order properties can also be computed as double residues
of the quadratic response function.42

Also, the geometric gradient of any ground-state first-order
property can be immediately obtained from the ground-state
energy gradient in eq 91,

3. Illustrative Results

The calculation of the geometric gradients of the linear
response function, of its poles, and of its residues has been
implemented within the linear-scaling development version
of the Dalton code34,45,46 at the Hartree-Fock and DFT
levels of theory. The approach is general and encompasses
the geometric gradient of any molecular property that can
be related to the linear response function and its residues,
like, for instance, the electric-dipole polarizability
RR�(-ω; ω), whose geometric gradient is a key ingredient
in the computational simulation of spectroscopic effects like
Raman scattering10 and coherent anti-Stokes Raman scat-
tering.11

Various implementations of the polarizability as well as
of the excited-state gradient have appeared in recent years,
see for example refs 9, 11, and 23, whereas no analytic
implementation of the electronic transition dipole moment
derivative in a DFT framework has been presented. Note,
however, an earlier CASSCF-based implementation of
analytic derivatives of µkl reported in ref 39. For this reason,
as a specific illustrative application of the implementation,
we will present and discuss here the results of a hybrid-
functional DFT study of the vibronic fine structure of the
X̃(1A1g) - Ã(1B2u) transition in the absorption spectrum of
benzene. In the electric dipole approximation, this transition
is Franck-Condon-forbidden and hence basically determined
by the (first-order) Herzberg-Teller integrals and electronic
transition dipole-moment derivatives. For such a study, the
gradients of both the poles and residues have been used.

3.1. Herzberg-Teller Contribution to One-Photon
(UV) Spectra. Quantum mechanical rovibronic transition
moments, to which approximations are numerically calcu-
lated herein, are directly related to the experimentally
determined integrated line strength of a rovibronic transition.
Following ref 47, the integrated net absorption cross-section
Gnet reads

and thus depends on the wavenumber ν̃-dependent absorption
cross-section σnet(ν̃), which is logarithmically integrated (see,
e.g., ref 48 for a discussion) over a suitably chosen
wavenumber interval that includes the entire absorption
band.47 The net absorption cross-section σnet(ν̃) of a one-
photon transition is connected via the Lambert-Beer law to
the ratio between transmitted and incident spectral intensity
Itr,ν̃(ν̃) and I0,ν̃(ν̃), respectively, (see ref 47 for a rigorous
definition of these terms)

where NA is the Avogadro number, c the amount of substance
concentration of the absorbing species, l the path length
through the absorbing material, Ae the (Naperian) absorbance,
and ε(ν̃) the molar (decadic) absorption coefficient. When
stimulated emission can be neglected, the net integrated
absorption cross-section between two energy levels is
composed of the line strengths of the underlying individual
transition processes between states i and j, which are summed
over and weighted according to the (fractional) population
pi of the corresponding initial state:47

The individual integrated absorption cross-section is, via
Gij ) hBν̃,ij, related to the Einstein coefficient Bν̃,ij for
absorption and thus directly connected to the quantum
mechanical transition moment. For the electric dipole transi-
tions considered herein, the relation between electric transi-
tion dipole moment Mij and integrated band strength Gij is47

with |Mij|2 ) ∑R|〈i|µ̂R|j〉|2 and R ) x, y, z. In contrast to the
oscillator strength f, which is frequently used in UV/vis
absorption spectroscopy, the integrated absorption band
strength does not explicitly depend on the transition wave-
number. When fij is defined as47

one obtains the following approximate relationship between
oscillator strength and integrated band strength, which has
been employed herein to convert previously reported values
for fij (or f) to integrated band strengths Gij (or Gnet):

with ν̃0 denoting the transition wavenumber of the corre-
sponding band center.

The electric transition dipole moment Mκλ between two
rovibronic states characterized by the rovibronic wave
functions Ψκ(r, R) and Ψλ(r, R), which depend on the
collective electronic spatial coordinates r and the collective
spatial coordinates R of the nuclei, is, in the adiabatic
approximation, given by

with the adiabatic electronic wave functions ψk(r; R) and
ψl(r; R) depending explicitly on the spatial coordinates of
the electrons and parametrically on the spatial coordinates
of the nuclei. The wave functions �κ,k(R) and �λ,l(R) for the

∂CR

∂R�
) Tr DCR

R� + Tr DR�CR + CR,nuc
R� (93)

Gnet ) ∫ν̃1

ν̃2 σnet(ν̃)ν̃-1 dν̃ ) ∫ν̃1

ν̃2 σnet(ν̃) d ln ν̃ (94)

σnet(ν̃) ) 1
NAcl

ln[Itr,ν̃(ν̃)

I0,ν̃(ν̃)] )
Ae(ν̃)

NAcl
) ε(ν̃) ln(10)

NA

(95)

Gnet ) ∑
i,j

piGij (96)

Gij )
8π3

(4πε0)3hc0
|Mij|

2 (97)

fij ≈
mec08π2ν̃ij

e23h
|Mij|

2 )
(4πε0)mec0

2ν̃ij

πe2
Gij (98)

fij ≈ 1.1295835 × 10-8(ν̃ij/cm-1)(Gij/pm2);

f ≈ 1.1295835 × 10-8(ν̃0/cm-1)(Gnet/pm2) (99)

Mκλ ) 〈κ|µ|λ〉 ≈ 〈κk|〈k|µ|l〉|λl〉 ) 〈κk|µkl|λl〉 ) Mκkλl

(100)
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motion of the nuclei depend, like the electronic transition
dipole moment µkl(R), only on the coordinates of the various
nuclei.

If a Taylor series expansion is applied to µkl(R), for
instance around the equilibrium molecular structure R0 of
the initial electronic state, the expansion yields

By inserting this expansion into eq 100, the electric
transition dipole moment is expressed as a sum of Franck-
Condon and Herzberg-Teller contributions corresponding
to the terms involving the electronic transition dipole moment
and the first derivative of the electronic transition dipole
moment with respect to displacements of the nuclei computed
at the molecular equilibrium structure, respectively, in
addition to higher-order terms. If the latter are neglected,
one obtains

Within the Born-Oppenheimer adiabatic approximation,
which is employed in this work, the transition dipole moment
and its first derivatives with respect to nuclear displacements
can be computed analytically using the DFT-based frame-
work developed in this paper. We note in passing that, in
addition to the Herzberg-Teller terms, terms arising through
diabatic (frequently called nonadiabatic) coupling also
contribute to the transition dipole moment49 to this order,
which are, however, neglected in the present study.

Franck-Condon integrals 〈κk|λl〉 and Herzberg-Teller
integrals 〈κk|(R̂� - R̂0,�)|λl〉 involve the wave functions of
the motions of the nuclei. If the vibrational motion is assumed
to be harmonic and separable from the rotational and
translational motion, the states |κk〉 and |λl〉 are expressed as
direct products of multidimensional harmonic oscillator states
|W〉 and |W′〉 (with quantum numbers Vi and Vi′ for the various
harmonic oscillators in the initial and final states, respec-
tively) and corresponding rotational-translational states.
The latter are not explicitly considered herein. To this end,
the spatial coordinates of the nuclei R are replaced by the
vibrational mass-weighted normal coordinates, denoted as
Q and Q′, in which the harmonic vibrational force fields of
the two electronic states involved are diagonal, as well as
by the Euler angles for rotation and by the spatial coordinates
of the center of mass. Recently, a coherent state-based
generating function approach for efficiently computing
vibronic transition profiles within the Franck-Condon and
Herzberg-Teller approximation (and beyond) has been
outlined for Duschinsky rotated multidimensional harmonic
oscillators at finite temperatures and at 0 K.50 We employ
this coherent state-based generating function approach
implemented in the vibronic structure program hotFCHT,13,51,52

which offers both a time-independent and time-dependent
route to electric transition properties. The vibronic profile
generating function GFCHT(Z; Λ), not to be confused with

the integrated band strengths Gij, Gnet, and Gtotal, consists of
three parts: one containing the Franck-Condon factor, the
second one the Franck-Condon/Herzberg-Teller integrals,
and the last one the (first-order) Herzberg-Teller term,

where Z contains the generating function parameters, Λ is
related to a thermal integration kernel K, 1̂ is the identity
operator, and Q̂� is the position operator corresponding to
the �th normal coordinate Q�. Details of the approach and
the definition of the various terms in eq 103 can be located
in ref 50.

3.2. Computational Details. As a test case, we present
the results of calculations of the vibrational fine structure in
the X̃(1A1g) - Ã(1B2u) one-photon UV absorption spectrum
of benzene at 0 K. This transition is Franck-Condon-
forbidden in the electric transition dipole approximation, that
is, µkl(Q0) ) 0 at the D6h symmetric equilibrium structure
of the initial and final electronic states, and becomes allowed
due to Herzberg-Teller vibronic coupling. The time-de-
pendent Hartree-Fock and the time-dependent density
functional theory methods, the latter using the B3LYP
functional53,54 as well as its Coulomb attenuated variant
camB3LYP,55 were exploited for the electronic structure
calculation within the linear-scaling development version of
the Dalton program. As a basis set, the triple-� valence basis
set with polarization functions (TZVP) of ref 56 was used.
The grid employed is based on the original Becke partitioning
and the radial grid of ref 57 multiplied by an angular Lebedev
grid.58-60 The grid is pruned for small R in order to avoid
too many grid points with small weights, and the radial
integration threshold was chosen to be 10-13. The angular
expansion order was chosen to be 42.

Equilibrium structures in the electronic ground state were
obtained using analytic derivatives of the total electronic
energy with respect to nuclear displacements using a
convergence threshold of 10-5 Eh a0

-1 for the norm of the
gradient and 10-4 Eh a0

-1 for its largest component. The total
energy of each cycle was optimized to 10-6 Eh. Harmonic
force fields of the electronic ground state were calculated
using analytic second derivatives with thresholds of 10-7

when solving the linear response equations. The equilibrium
structures in the electronically excited state were computed
using analytical derivatives of the excited-state energy with
respect to displacements of the nuclei (see eq 68). The
excitation energies were converged until changes remained
below 10-6 Eh, and the norm of the final excited state gradient
was below 10-5 Eh a0

-1. The harmonic force constant matrix
of the electronically excited states was computed using
central numerical derivatives of analytic gradients of the
electronic energy with respect to displacements of the nuclei.
The finite size of the corresponding displacements was
chosen as 0.01 a0. The masses employed were those of the

µkl(R) ) µkl(R0) + ∑
�

∂µkl(R)

∂R�
|
R)R0

(R� - R0,�) + ...

(101)

Mκkλl ) µkl(R0)〈κk|λl〉 + ∑
�

∂µkl(R)

∂R�
|
R)R0

〈κk|(R̂� - R̂0,�)|λl〉

(102)

GFCHT(Z;Λ) ) |µkl(Q0)|
2GFC

K (Z;Λ)(1̂,1̂) +

2 ∑
�

µkl(Q0) · (∂µkl

∂Q�
)

Q)Q0

GFC/HT
K (Z;Λ)(Q̂�,1̂) +

∑
�,γ

(∂µkl

∂Q�
)

Q)Q0

· (∂µkl

∂Qγ
)

Q)Q0

GHT
K (Z;Λ)(Q̂�,Q̂γ) (103)
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most abundant isotopes (12C,1H). Electronic transition dipole
moments (which vanish in the present case) and their analytic
derivatives with respect to displacements of the nuclei were
computed according to eq 66 at the computed equilibrium
structures of the initial state. Symmetry has not been used
when computing the electronic transition dipole moment
derivatives, as well as the energy gradient and the harmonic
force field in the electronically excited state. The other
calculations were performed by taking advantage of the
Abelian D2h point group symmetry.

The plotted spectral profiles of the one-photon absorption
spectra were determined within the more efficient time-
dependent approach. In the evaluation of the Fourier
transformation of the Lorentzian weighted time-correlation
function (TCF), corresponding to the Lorentzian weighted
eq 103 in the time domain, the FFTW61 library (version
3.1.2) was used for the fast Fourier transformation with a
grid size of 215, a time increment of t ∼ 1.0 fs, and a time
interval of (-16.384 ps, 16.384 ps). The real part of the
Fourier transformed TCF was taken, and its norm was plotted
after weighting with the transition wavenumber as the
wavenumber-dependent absorption cross-section σ(ν̃). Inte-
grated absorption cross-sections of the individual vibronic
transitions reported in the tables were directly computed
within the time-independent framework.

3.3. Discussion of the Results. The computed harmonic
vibrational wavenumbers of the modes which transform
according to the irreducible representation e2g (corresponding
to ν6, ν7, ν8, and ν9 in the nomenclature of Wilson62 and
ν18, ν15, ν16, and ν17 in the nomenclature of Herzberg,
respectively) are reported in Table 1 for the electronic states
X̃(1A1g) and Ã(1B2u). Only these doubly degenerate modes
of benzene are capable of inducing intensity for this electric
dipole transition via first-order Herzberg-Teller vibronic
coupling, whereas in the second order, other modes such as
e1g, e1u, and e2u can act as inducing modes (see, e.g., ref 63).
For comparison, we also report the experimental fundamental
wavenumbers and the harmonic wavenumbers computed in
ref 13 in the complete active space-self-consistent field
(CASSCF) framework for the four e2g modes.

The Herzberg-Teller absorption profiles computed for a
temperature of 0 K on the basis of the results from the various
electronic structure approaches are plotted in Figure 1. The

0-0 transition in the X̃(1A1g) - Ã(1B2u) absorption spectrum
of benzene is Franck-Condon-forbidden in the electric
dipole approximation. The first vibronic band around
ν̃0-0 + 550 cm-1 serves as a so-called false origin brought
about by the 60

1 transition (using Wilson’s mode enumera-
tion), on which the most prominent progression 60

110
n′ builds,

extending (visibly) up to about 5500 cm-1 above the 0-0
transition wavenumber. This progression is shortest (in terms
of relative cross sections) at the Hartree-Fock level (ab-
breviated as HF below and in the tables) and longest for the
B3LYP functional, which differs only slightly from the
camB3LYP result. This finding is in line with the predicted
change in the C-C bond length, for which HF gives only
∆rC-C ) 2.82 pm, whereas B3LYP gives ∆rC-C ) 3.08 pm
and camB3LYP ∆rC-C ) 2.99 pm. These C-C bond length
elongations upon electronic excitation are significantly
smaller than those predicted in ref 13 at the CASSCF level
(3.8 pm), in ref.64 at the CCSD level (3.3 pm) and in ref 39

Table 1. Harmonic Vibrational Wavenumbers (in cm-1) for
e2g Modes of the 1A1g and 1B2u States of Benzenea

state mode
B3LYP/
TZVP

camB3LYP/
TZVP

HF/
TZVP

CASSCF/
DZPb exptlc

1A1g ν6 625 631/632 666 646 608
ν9 1202 1212 1284 1263 1178
ν8 1634 1673/1674 1771 1730 1600
ν7 3169 3196 3328 3369 3057

1B2u ν6′ 533/539 538/539 563 575 521
ν9′ 1181/1186 1192/1193 1265 1237 1148
ν8′ 1565/1566 1606 1712 1665 1516
ν7′ 3192/3194 3220 3356 3389 3077

a A pair of numbers separated by a slash is given when the
vibrational wavenumbers for a pair of normal modes that are
supposed to be degenerate are different due to numerical reasons
(in the current work, we do not fully exploit point group symmetry).
b Ref 13. c Taken from the compilation of data reported in ref 69.

Figure 1. Calculated absorption cross-sections σ(ν̃) (in pm2)
as a function of the wavenumber (in cm-1) in excess of the
0-0 transition wavenumber ν̃0-0 as obtained from TDDFT
(using the B3LYP and the camB3LYP functional) and from
TDHF. Cross-sections were computed using the coherent
state generating function approach in the time-dependent
picture by exploiting the time-correlation function. For the
graphical representation, the cross-sections computed with
the B3LYP and camB3LYP hybrid density functionals were
shifted by an increment of 1000 pm2 and 500 pm2, respec-
tively. A Lorentzian line shape function with full-width at half-
maximum of 50 cm-1 was employed, and the experimental
value from ref 63 of ν̃0-0 ) 38 086 cm-1 was used in
converting the HT profile to wavenumber-dependent absorp-
tion cross-sections, which corresponds for an isolated band
after logarithmic integration over a suitable wavenumber
interval to the integrated absorption cross-section G of the
vibronic band. The values of G reported in the tables were
computed, however, directly in the time-independent picture
via eqs 102 and 97.
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at the CASPT2 level (3.6 pm). This strongly impacts the
overall shape of the progression in the breathing mode ν1,
which is predicted to be too short as compared to the
multireference and coupled cluster methods, as well as the
experiment. Less prominent progressions in this mode are
built on the other false origins 70

1, 80
1, and 90

1 as well as on
combination bands such as 60

1160
2 and 60

1170
2. For selected

vibronic bands, we report in Table 2 the computed integrated
absorption band strengths as well as their relative values and
compare these to earlier computational results and experi-
mental measurements. To facilitate this comparison, we have
converted previously reported oscillator strengths to inte-
grated (net) absorption band strengths using eq 99. When
comparing experimental and theoretical band strengths, we
do, however, not correct or account for temperature-
dependent populations of the initial state, limited experi-
mental resolutions, and other factors.

According to the Herzberg-Teller sum rule (see, e.g., ref
15), the total integrated absorption band strength Gtotal for
the X̃(1A1g) - Ã(1B2u) transition of benzene at 0 K becomes
in the harmonic approximation

where ω� is the harmonic frequency corresponding to the
normal mode coordinate Q� of the initial electronic state,
and where the sum runs over all components of degenerate
normal modes, including, for example, ν6a and ν6b. Alter-
natively, one weights the various terms with the degeneracies
of the normal modes and sums over the contributions from
the modes to obtain Gtotal. The total integrated cross-section
can in this approximation be partitioned into contributions
from each normal mode. Accordingly, the magnitude of the
contribution of the various vibrational modes is determined
by the harmonic frequency and the norm square of the first
derivative of the electronic transition dipole moment. In
Table 3, the contributions of the various e2g vibrational modes
to the integrated band strength from eq 104 as well as their
sum are presented.

From Tables 2 and 3 it is evident that the ν6 mode accounts
for the major part of the first-order HT-induced absorption
cross-section. One of the main differences between the

Table 2. Computed and Experimental Integrated Absorption Band Strengths (in pm2) for Selected Vibronic Transitions
between the Electronic Singlet Ground State (1A1g) and the Lowest Excited Singlet State (1B2u) of Benzenea

trans.
B3LYP/
TZVP

camB3LYP/
TZVP

HF/
TZVP

CASSCF/
DZPb

CASPT2/
ANOc exp.d exp.e exp.f exp.g exp.h

60
1 0.784(1.00) 0.863(1.00) 1.232(1.00) 0.110(1.00) 0.205(1.00) 0.314(1.00) 0.20(1.00) 0.17(1.00) (1.00) (1.000)

60
110

1 0.861(1.10) 0.910(1.05) 1.199(0.97) 0.189(1.72) 0.309(1.50) 0.419(1.33) 0.338(1.68) 0.20(1.12) (0.99) (0.903)
60

110
2 0.448(0.57) 0.455(0.53) 0.554(0.45) 0.156(1.41) 0.220(1.07) 0.293(0.93) 0.287(1.42) 0.14(0.75) (0.94) (0.889)

60
110

3 0.147(0.19) 0.143(0.17) 0.162(0.13) 0.082(0.74) 0.099(0.48) 0.182(0.58) 0.15(0.72) 0.07(0.37) (0.49) (0.010)
60

110
4 0.034(0.04) 0.032(0.04) 0.033(0.03) 0.031(0.28) 0.031(0.15) 0.119(0.38) 0.07(0.36) 0.02(0.11) (0.13)

70
1 0.052(0.067) 0.058(0.067) 0.055(0.044) 0.006(0.054) 0.011(0.05) 0.01(0.07) (0.06) (0.034)

80
1 0.012(0.015) 0.008(0.008) 0.006(0.005) 0.004(0.033) 0.001(0.005) (0.006)

90
1 0.005(0.007) 0.003(0.004) 0.0001(0.0001) 0.003(0.028) 0.008(0.04) (0.02) (0.018)

a Relative values for the integrated absorption cross-sections are reported in parentheses. b Values obtained using the same input data
set as in ref 13. c Ref 39, oscillator strengths reported in ref 39 (for the CASPT2 equilibrium structures combined with CASSCF harmonic
force fields and electronic transition dipole moments) were converted according to eq 99 using the reported computed transition
wavenumbers. d Ref 67, oscillator strengths reported in ref 67 were converted according to eq 99 using the experimental transition
wavelengths given in Table 1 of this reference. e Ref 68, oscillator strengths reported in ref 68 were converted according to eq 99 using the
experimental transition wavelengths reported in Table 1 of ref 67. f Ref 66, relative intensities (oscillator strengths) reported in ref 66 were
converted according to eq 99 using the experimental transition wavenumbers reported in Figure 1 of ref 66 for all transitions except for 70

1,
where the transition wavenumber of ref 65 was employed; integrated cross-sections were estimated from the data reported in ref 66
assuming an amount of substance concentration of 1.47 × 10-3 mol l-1 of benzene at the given temperature. g Following ref 63, the relative
intensities reported in ref 70 were converted according to eq 99 using the experimentally derived transition wavenumbers (νorigin) reported in
Table 6 of ref 63. h Ref 65, the reported relative peak heights from fluorescence excitation spectra (according to those authors, only rough
estimates of the intensities) were corrected for the wavenumber dependence using the transition wavenumbers reported in Table 2 of ref
65.

Table 3. Contributions (in pm2) of the Various e2g Vibrational Normal Modes to the Total Integrated Absorption
Cross-Section Gtotal (calculated according to eq 104) for the (1A1g f

1B2u) Transition of Benzene at 0 Ka

mode B3LYP/TZVP camB3LYP/TZVP HF/TZVP CASSCF/DZPb CASPT2/ANOc exp.d exp.e exp.f

ν6 2.893[2.27] 3.076[2.40] 3.988[3.18] 0.708[0.57] [0.86] [1.33] [1.05] [0.60]
ν7 0.202 0.216 0.185 0.039 [0.04]
ν8 0.052 0.033 0.018 0.026
ν9 0.014 0.008 0.000 0.016
sum 3.160 3.334 4.191 0.789 3

a Values in brackets correspond to the contribution from a limited number of members of an a0
110

n′ progression (a ) 6, 7, 8, 9). b Values
obtained using the same input data set as in ref 13. c Ref 39, the sum of integrated absorption cross-sections as given in the present Table
2 for the 60

110
n′ progression with n′ ) 0-4. d Ref 67, the sum of integrated absorption cross-sections as given in the present Table 2 for the

60
110

n′ progression with n′ ) 0- 4; if n′ ) 5 of Table 1 in ref 67 is included (G ≈ 0.1 pm2), one obtains a values of (1.43 pm2). e Ref 68, the
sum of integrated absorption cross-sections as given in the present Table 2 for the 60

110
n′ progression with n′ ) 0-4; the value for Gtotal was

obtained by converting the oscillator strength reported in ref 68 according to eq 99 by employing the transition energy for εmax given in Table
2 of that work. f Ref 66, the sum of integrated absorption cross-sections given in the present Table 2 for the 60

110
n′ progression with n′ )

0-4; the partial contribution from the 70
110

n′ progression with n′ ) 0-2 was obtained from the data of ref 66 as described in Table 2 above
using the 70

1 transition wavenumber of ref 65 and the wavenumber increments give in Table 2 of ref 66.

Gtotal )
8π3

(4πε0)3hc0
∑

�

p
2ω� |(∂µkl

∂Q�
)

Q)Q0

|2 (104)
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CASSCF results reported in ref 13 and experimental results65

is the 80
1 band, whose relative integrated band strength

contribution was predicted to be too large when compared
to the experimental intensity estimates obtained from peak
height measurements in fluorescence excitation spectra of
jet-cooled benzene.65 The agreement seems to improve in
the present work, at the price, however, of the 90

1 bands now
being significantly less intense (on relative terms) than the
experimental estimate, and even the tendency (70

1 > 80
1 > 90

1)
differs from that of the experiment (70

1 > 90
1 > 80

1). When the
relative integrated absorption cross-sections of 70

1 computed
with the hybrid functionals are compared to experimental
values66 obtained from integration of the band profiles, the
agreement seems almost perfect. The computed absolute
values of the integrated cross-sections are, however, too large
by more than a factor of 2 for the 60

1 transition, when judged
by the experimental data of refs 67 and 68. The progression
in the C-C stretching mode ν1 built on the 60

1 transition
appears to be too short when compared to the experiment.
While the integrated band strengths of the 60

110
1 are found to

be the largest of the 60
110

n′ progression at the hybrid functional
level, in agreement with the experiment reported in refs
66-68, the integrated absorption cross-section ratio for 60

110
2/

60 is found to be 1/2 only, whereas experimentally the ratio
is 3/4 or even larger. This too-short progression is rooted in
an underestimated C-C bond length elongation upon
electronic excitation.

The intensity induced by mode ν6 via first-order Herzberg-
Teller vibronic coupling appears overestimated (by about a
factor of 2) according to the sum rule of eq 104. As the
harmonic vibrational wavenumber of ν6 in the electronic
ground state is in reasonable agreement with experimental
results (too large by about 3% on the B3LYP level), the first
derivative of the electronic transition dipole moments appears
not to be well-estimated or just the shape of the normal
modes may not be adequately described. Interestingly, the
total integrated absorption cross-section of the X̃ (1A1g) -
Ã(1B2u) transition is obtained at the hybrid functional level
in reasonable agreement with the value deduced from the
oscillator strength reported in ref 68. If one assumes this
agreement to be fortuitous, it could indicate that the inducing
strength of the other modes is strongly underestimated at
the DFT level (which appears, however, not to be the case)
or it could point to a significant higher-order Herzberg-Teller
vibronic coupling contribution and possibly also a diabatic
coupling contribution that gives rise to additional intensity
stealing, or it could hint to some pronounced intensity
redistribution due to various resonances from progressions
involving ν6 to other bands. Also, finite temperature effects,
which have been neglected in the current study, and effects
due to finite resolution, could play a role.

4. Conclusion

We have presented a derivation and implementation of third-
order response properties that are connected to geometric
derivatives of second-order response properties. The imple-
mentation is based on the exponential parametrization of the
density matrix in the atomic orbital basis within time-
dependent Hartree-Fock and density functional response

theory. The formulation is linearly scaling for sufficiently
sparse matrices.

We have demonstrated the applicability of the approach
by considering the UV/vis absorption spectrum for the
electronic ground state to the energetically lowest excited
singlet state of benzene, a transition which is entirely
dominated by vibronic coupling, here described by the first-
order Herzberg-Teller corrections. The determination of the
HT corrections requires the computation of the electronic
excited state geometry and Hessian, as well as the geometric
derivative of the electronic transition dipole moment. This
is the first implementation of the analytic computation of
first-order Herzberg-Teller corrections at the DFT level of
theory, offering a straightforward way of overcoming the
phase (and hence sign) uncertainties that can appear when
determining the HT corrections by numerical derivative
techniques, as well as avoiding the high computational cost,
especially for systems with many degrees of freedom, of the
numerical approach. Another advantage of our analytical
(linear-scaling) implementation of the transition moment
gradient is the possibility to combine it with a numerical
derivative scheme, as already done for instance for the
excited-state Hessian, to compute the second-order contribu-
tions (with respect to the nuclear coordinates) to the transition
dipole. This would allow the investigation of vibronic effects
beyond the linear Herzberg-Teller approximation, effects
that are expected to be specifically relevant for highly
symmetric systems, such as the one here investigated.

The results obtained for the Franck-Condon-forbidden
electric dipole transition from the electronic ground state to
the lowest excited singlet state of benzene are in qualitative
agreement with experiment. Quantitatively, however, for the
selected combinations of functionals (B3LYP, camB3LYP,
HF) and basis set (TZVP), the total integrated absorption
cross-section is found to be too large by about a factor of 2,
and the predicted relative HT induction strength of the
various e2g modes is also not fully satisfactory. As the
variability-limited accuracy of time-dependent density func-
tional theory in the prediction of UV/vis transition wave-
numbers of conjugated π systems is known, a thorough
benchmark study on the performance of the various func-
tionals in predicting quantitatively the first-order Herzberg-
Teller contribution is required, for which the approaches and
implementation presented in this work provide a valuable
starting point.
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Appendix A. The Second-Order
Renormalization Contribution

All S[3] contributions to the right-hand sides in eqs 61, 62,
and 63 vanish due to the fact that all of the involved vectors
contain no redundant parameters, as they fulfill the projection
relation 11,

The ηS3 contribution was given in eq 72

Using the idempotency (Po
2 ) Po and Pv

2 ) Pv) and
orthogonality relations (PoPv ) PvPo ) 0 and Po

TSPv ) Pv
TSPo

) 0), the contribution ηS3 may be rewritten as

Appendix B. The Exchange-Correlation
Contributions to the Property Gradients

According to the equations given in section 2.6, the
analytic computation of the geometric derivative properties
here discussed requires the geometric derivative of the
exchange-correlation energy functional, ∂Exc[F]/∂R�, of the
exchange-correlation contribution to the Kohn-Sham matrix,
∂Fxc/∂R�, as well as the derivative of the exchange-correlation
contribution to the (generalized) Kohn-Sham Hessian ∂Gxc/
∂R�. In this appendix, we derive explicit expressions for all
of these exchange-correlation derivative contributions.

B.1. The Geometric Derivative of the Exchange-
Correlation Energy Functional, DExc[G]/DR�. The
exchange-correlation energy Exc is obtained from
integration over space of some functional f ) f [F,∇F] of
the electron density F ) F(r) and (possibly) of the
gradient of the density ∇F ) ∇F(r):

Differentiation with respect to a nuclear displacement R
yields

The derivative of the exchange-correlation energy with
respect to the density can be written:71,72

We insert eq 111 into eq 110,

and integrate the second term by parts according to
∫-∞
+∞ udV ) [uV]-∞

+∞ - ∫ Vdu, with V ) ∂f/∂∇F, dV ) ∇u,
and u ) ∂F(r)/∂R�, assuming that the constant term
vanishes due to the locality of f. We thus obtain

It is convenient to make a change of fundamental variable
from ∇F to its norm � ) |∇F| and consequently apply
the chain rule (∂f(g(x)))/(∂x) ) [(∂f)/(∂g)][(∂g)/(∂x)] in the
second term of eq 113 to obtain

From the definition of �, it follows that

which may be inserted into eq 114, yielding the
geometric derivative (i.e., the gradient) of the
exchange-correlation contribution to the ground-state
energy

B.2. The Exchange-Correlation Contribution to the
Generalized Kohn-Sham Hessian Matrix, Gxc(M).
Before deriving the analytic expression of the geometric
derivative of the exchange-correlation contribution to the
Kohn-Sham matrix, it is convenient to derive the expres-
sion of the exchange-correlation contribution to the
generalized Kohn-Sham Hessian matrix:

where M is a general “perturbed” density matrix, as for
instance Db in eq 82. Using eq 111, we obtain

a ) P (a) ≡ PoaPv
T + PvaPo

T (105)

bT ≡ Pvb
TPo

T + Pob
TPv

T (106)

ηS3 ) S[D, [a, bT]S]SS ) S(Po[a, bT]S - [a, bT]SPo
T)S
(107)

ηS3 ) S{(PoaPv
TSPvb

TPo
T - Pob

TPv
TSPvaPo

T) -

(PoaPv
TSPvb

TPo
T - Pob

TPv
TSPvaPo

T)}S ) 0 (108)

Exc ) ∫ f [F, ∇F] dr (109)

∂Exc[F]

∂R�
) ∫ δExc[F]

δF(r)
∂F(r)
∂R�

dr (110)

δExc

δF
) ∂f [F, ∇F]

∂F
- ∇∂f [F, ∇F]

∂∇F
≡ ∂f

∂F
- ∇ ∂f

∂∇F
(111)

∂Exc[F]

∂R�
) ∫ ∂f

∂F
∂F(r)
∂R�

dr - ∫ ∂F(r)
∂R�

(∇ ∂f
∂∇F) dr

(112)

∂Exc[F]

∂R�
) ∫ ∂f

∂F
∂F(r)
∂R�

dr + ∫ ∂f
∂∇F

∂∇F(r)
∂R�

dr

(113)

∂Exc[F]

∂R�
) ∫ ∂f

∂F
∂F(r)
∂R�

dr + ∫ ∂f
∂�

∂�
∂∇F

∂∇F(r)
∂R�

dr

(114)

∂�
∂∇F(r)

) ∇F(r)
�

(115)

∂Exc[F]

∂R�
) ∫ ∂f

∂F
∂F(r)
∂R�

dr + ∫ ∂f
∂�

∇F(r)
�

∂∇F(r)
∂R�

dr

(116)

Gµν
xc(M) ) ∑

Fσ
MσF∫ δ2Exc

δF(s) δF(r)
Ωµν(r) ΩFσ(s) dr ds

(117)

Gµν
xc(M) ) ∑

Fσ
MσF∫ δ

δF(s)
∂f [r]
∂F(r)

Ωµν(r) ΩFσ(s) dr ds -

∑
Fσ

MσF∫ δ
δF(s)

∇r( ∂f [r]
∂∇F(r))Ωµν(r) ΩFσ(s) dr ds (118)
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where the subscript r in ∇r denotes the (electronic)
variable with respect to which we differentiate. Using
partial integration on the second term and assuming that
the constant term vanishes because f is local gives

Using the chain rule for functional derivatives

yields

Using the relation between functional and standard
derivatives for composite functions

and integrating first over s and then over t, the first two
terms of eq 121 become

Using the relation

we obtain for the last two terms

Integrating by partssagain assuming that the constant
term vanishes due to the fact that f is a local
functionsyields

Integration over t gives

and yet another partial integration and an integration over
s using eq 127 yield

The total Gµν
xc(M) may thus be obtained from eqs 128 and

133, giving

A transformation of variables from ∇F to � ) ||∇F||
yields

We can now use the general chain rule for second-order
derivatives

Gµν
xc(M) )

∑
Fσ

MσF∫ δ
δF(s)

∂f [F(r), ∇F(r)]
∂F(r)

Ωµν(r) ΩFσ(s) dr ds +

∑
Fσ

MσF∫ δ
δF(s)

∂f [r]
∂∇F(r)

∇r[Ωµν(r)]ΩFσ(s) dr ds (119)

δF
δg(y)

) ∫ δF
δf(x)

δf(x)
δg(y)

dx (120)

Gµν
xc(M) ) P1 + P2 + P3 + P4 (121)

P1 ) ∑
Fσ

MσF∫ δ∂f [r]
δF(t)∂F(r)

δF(t)
δF(s)

Ωµν(r) ΩFσ(s) dr ds dt

(122)

P2 )

∑
Fσ

MσF∫ δ∂f [r]
δF(t) ∂∇F(r)

δF(t)
δF(s)

∇r[Ωµν(r)] ΩFσ(s) dr ds dt

(123)

P3 ) ∑
Fσ

MσF∫ δ∂f [r]
δ∇F(t) ∂F(r)

δ∇F(t)
δF(s)

Ωµν(r) ΩFσ(s) dr ds dt

(124)

P4 )

∑
Fσ

MσF∫ δ∂f [r]
δ∇F(t) ∂∇F(r)

δ∇F(t)
δF(s)

∇r[Ωµν(r)] ΩFσ(s) dr ds dt

(125)

δF(t)
δF(s)

) δ(t - s) (126)

δf[F(r)]
δF(t)

) ∂f[F(r)]
∂F(r)

δ(r - t) (127)

P1 + P2 ) ∑
Fσ

MσF∫ ∂
2f

∂F2
ΩµνΩFσ dr +

∑
Fσ

MσF∫ ∂
2f

∂F∂∇F
∇(Ωµν) ΩFσ dr (128)

δ∇F(t)
δF(s)

) ∇t
δF(t)
δF(s)

) ∇tδ(t - s) (129)

P3 + P4)
∑
Fσ

MσF∫ δ∂f [r]
δ∇F(t) ∂F(r)

×

∇tδ(t - s) Ωµν(r) ΩFσ(s) dr ds +

∑
Fσ

MσF∫ δ∂f [r]
δ∇F(t) ∂∇F(r)

×

∇tδ(t - s)∇r[Ωµν(r)] ΩFσ(s) dr ds
(130)

P3 + P4 ) -∑
Fσ

MσF∫∇t( δ∂f [r]
δ∇F(t) ∂F(r)) ×

δ(t - s) Ωµν(r) ΩFσ(s) dr ds dt -

∑
Fσ

MσF × ∫∇t( δ∂f [r]
δ∇F(t) ∂∇F(r)) ×

δ(t - s)∇r[Ωµν(r)] ΩFσ(s) dr ds dt (131)

P3 + P4 ) -∑
Fσ

MσF∫∇s( δ∂f [r]
δ∇F(s) ∂F(r)) ×

Ωµν(r) ΩFσ(s) dr ds - ∑
Fσ

MσF∫∇s( δ∂f [r]
δ∇F(s) ∂∇F(r)) ×

∇r[Ωµν(r)] ΩFσ(s) dr ds (132)

P3 + P4 ) ∑
Fσ

MσF∫ ∂
2f

∂F∂∇F
Ωµν∇ΩFσ dr +

∑
Fσ

MσF∫ ∂
2f

∂(∇F)2
∇Ωµν∇ΩFσ dr (133)

Gµν
xc(M) ) ∑

Fσ
MσF∫ { ∂

2f

∂F2
ΩµνΩFσ +

∂
2f

∂F∂∇F
(Ωµν∇ΩFσ + ΩFσ∇Ωµν)} dr +

∑
Fσ

MσF∫ ∂
2f

∂(∇F)2
∇Ωµν ∇ΩFσ dr (134)

Gµν
xc(M) ) ∑

Fσ

MσF∫{ ∂
2f

∂F2
ΩµνΩFσ +

∂
2f

∂F∂�(Ωµν

∇F∇ΩFσ

�
+

ΩFσ

∇Ωµν∇F
� )} dr + ∑

Fσ

MσF∫ ∂
2f

∂�2

∇Ωµν∇F

�
∇ΩFσ∇F

�
dr

(135)
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to get

since

and do a variable transform from � ) ||∇F|| to z ) ||∇F||2

and use again the general chan rule for second-order
derivatives to write

and thus obtain

Note the differences compared to the expression given in
eq 124 of ref 28.

B.3. The Exchange-Correlation Contribution to the
Differentiated Kohn-Sham Matrix, DFxc/DR�. The
exchange-correlation contribution to the Kohn-Sham
matrix is given by (see also eq 8)

The derivative of the exchange-correlation contribution to
the Kohn-Sham matrix is given by

which can be rewritten as

Comparing the second term Q2 with the exchange-
correlation contribution to the generalized Hessian in eq
117, we can immediately write

The last term Q3 of eq 144 is structurally similar to eq
110 and may be written as

The first term Q1 is similar to eq 117, except that ΩFσ(s)
should be replaced by ∂ΩFσ(s)/∂R� and can thus be
computed in analogy with terms 134 and 141:

B.4. The Additional Exchange-Correlation Contribu-
tion to the Quadratic Response Tµν

xc (N, M). As a last
preliminary step to be able to compute the derivative of the
exchange-correlation contribution to the generalized
Kohn-Sham matrix Hessian, we derive here the explicit
expression for the additional exchange-correlation contribu-
tion required in computing quadratic response properties:41

where M and N are general “perturbed” density matrices,
like Db in eq 82. Defining

∂
2f

∂x2
) ∂

2f

∂g2(∂g
∂x )2

+ ∂f
∂g

∂
2g

∂x2
(136)

∂
2f

∂(∇F)2
) ∂

2f

∂�2( ∂�
∂∇F)2

+ ∂f
∂�

∂
2�

∂(∇F)2
) ∂

2f

∂�2(∇F(r)
� )2

(137)

∂�
∂∇F(r)

) ∇F(r)
�

;
∂

2�
∂[∇F(r)]2

) 0 (138)

∂
2f

∂�2
) ∂

2f

∂z2(∂z
∂�)2

+ ∂f
∂z

∂
2z

∂�2
(139)

∂z
∂�

) 2�;
∂

2z

∂�2
) 2 (140)

Gµν
xc(M) ) ∑

Fσ
MσF∫ { ∂

2f

∂F2
ΩµνΩFσ +

∂
2f

∂F∂z
2[Ωµν(∇F∇ΩFσ) + ΩFσ(∇Ωµν∇F)]}dr +

∑
Fσ

MσF∫ ∂
2f

∂z2
4(∇Ωµν∇F) (∇ΩFσ∇F) dr +

∑
Fσ

MσF∫ ∂f
∂z

2
∇Ωµν∇F

�
∇ΩFσ∇F

�
dr (141)

Fµν
xc ) ∫ δExc[F]

δF(r)
Ωµν(r) dr (142)

∂Fµν
xc

∂R�
) ∫ δ2Exc[F]

δF(r) δF(s)
∂F(s)
∂R�

Ωµν(r) dr ds +

∫ δExc[F]
δF(r)

∂Ωµν(r)

∂R�
dr (143)

∂Fµν
xc

∂R�
) ∑

σF
∫DσF

δ2Exc[F]
δF(r) δF(s)

∂ΩFσ(s)

∂R�
Ωµν(r) dr ds +

∑
σF

∫ ∂DσF

∂R�

δ2Exc[F]
δF(r)δF(s)

ΩFσ(s) Ωµν(r) dr ds +

∫ δExc[F]
δF(r)

∂Ωµν(r)

∂R�
dr ≡ Q1 + Q2 + Q3 (144)

Q2 ) Gµν
xc( ∂D

∂R�
) (145)

Q3 ) ∫ ∂f
∂F

∂Ωµν

∂R�
dr + ∫ ∂f

∂�
∇F
�

∂∇Ωµν

∂R�
dr (146)

Q1 ) ∑
Fσ

DσF∫ { ∂
2f

∂F2
Ωµν

∂ΩFσ

∂R�
+ ∂

2f
∂F∂z

2 ×

[Ωµν(∇F
∂∇ΩFσ

∂R�
) +

∂ΩFσ

∂R�
(∇Ωµν∇F)]}dr +

∑
Fσ

DσF∫ ∂
2f

∂z2
4(∇Ωµν∇F)(∂ΩFσ

∂R�
∇F) dr +

∑
Fσ

DσF∫ ∂f

∂z2
2

∇Ωµν∇F
�

∇
∂ΩFσ

∂R�
∇F

�
dr (147)

Tµν
xc(N, M) ) ∑

Fσηε
MσFNεη ∫Ωηε(t) ΩFσ(s) Ωµν(r) ×

δ2Vxc(r)

δF(s) δF(t)
dr ds dt (148)

κ(r) ) ∑
σF

MσF ΩFσ(r) (149)
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we can write, in a shorthand notation,

The first functional derivative yields

Doing the same for the second functional derivative, we
obtain

A variable transformation from ∇F to � ) ||∇F|| gives

From (∂f)/(∂∇F) ) [(∂f)/(∂�)][(∂�)/(∂∇F)] ) (∇F)/(�) and the
general chain rule for second-order derivatives in eq 136,
we can write

since

Another variable transformation from � ) |∇F| to z ) |∇F|2

and application of the chain rule for higher-order derivatives
gives

and we obtain

∇κ(r) ) ∑
σF

MσF∇ΩFσ(r) (150)

τ(r) ) ∑
σF

NσF ΩFσ(r) (151)

∇τ(r) ) ∑
σF

NσF∇ΩFσ(r) (152)

Tµν
xc ) ∫ τ(t) κ(s) Ωµν(r)

δ2υxc(r)

δF(s) δF(t)
dr ds dt

(153)

Tµν
xc ) ∫ [τ(t)

δ
δF(t)

∂
2f

∂F2
Ωµνκ +

τ(t)
δ

δF(t)
∂

2f
∂F∂∇F

(Ωµν∇κ + κ∇Ωµν)]dr dt +

∫ τ(t)
δ

δF(t)
∂

2f

∂(∇F)2
∇Ωµν∇κ dr dt (154)

Tµν
xc ) ∫ ( ∂

3f

∂F3
κτ + ∂

3f

∂F2
∂∇F

κ∇τ+ ∂
3f

∂F2
∂∇F

τ∇κ +

∂
3f

∂F∂(∇F)2
∇κ∇τ)Ωµν dr +∫ ∂

3f

∂F2
∂∇F

τκ∇Ωµν dr +

∫ ∂
3f

∂F∂(∇F)2
∇τκ∇Ωµν dr +∫ ∂

3f

∂F∂(∇F)2
∇Ωµν∇κτ dr +

∫ ∂
3f

∂(∇F)3
∇Ωµν∇κ∇τ dr (155)

Tµν
xc ) ∫ ( ∂

3f

∂F3
κτ + ∂

3f

∂F2
∂�

∇F
�

κ∇τ + ∂
3f

∂F2
∂�

τ∇κ
∇F
�

+

∂
3f

∂F∂�2(∇F
� )2

∇κ∇τ)Ωµν dr +∫ ∂
3f

∂F2
∂�

∇F
�

τκ∇Ωµν dr +

∫ ∂
3f

∂F∂�2(∇F
� )2

∇τκ∇Ωµν dr +∫ ∂
3f

∂F2
∂�(∇F

� )2
∇Ωµν∇κτ dr +

∫ ∂
3f

∂�3(∇F
� )3

∇Ωµν∇κ∇τ dr (156)

∂
3f

∂(∇F)3
) ∂

3f

∂�3( ∂�
∂∇F)3

+ 3
∂

2f

∂�2

∂
2�

∂(∇F)2

∂�
∂∇F

+ ∂f
∂�

∂
3�

∂(∇F)3
)

∂
3f

∂�3(∇F
� )3

(157)

∂�
∂∇F

) ∇F(r)
�

(158)

∂
2�

∂(∇F)2
) 0 (159)

∂
3�

∂(∇F)3
) 0 (160)

∂f
∂�

) ∂f
∂z

∂z
∂�

) ∂f
∂z

2� (161)

∂
2f

∂�2
) ∂

2f

∂z2(∂z
∂�)2

+ ∂f
∂z

∂
2z

∂�2
) ∂

2f

∂z2
4�2 + ∂f

∂z
2

(162)

∂
3f

∂�3
) ∂

3f

∂z3(∂z
∂�)3

+ 3
∂

2f

∂z2

∂
2z

∂�2

∂z
∂x

+ ∂f
∂z

∂
3z

∂�3
) ∂

3f

∂z3
8�3 +

3
∂

2f

∂z2
4� (163)

∂z
∂�

) 2� (164)

∂
2z

∂�2
) 2 (165)

Tµν
xc ) ∫ ( ∂

3f

∂F3
κτ + ∂

3f

∂F2
∂z

2∇Fκ∇τ + ∂
3f

∂F2
∂z

τ∇κ2∇F +

∂
3f

∂F∂z2
4(∇F)2∇κ∇τ + ∂

2f
∂F∂z

2(∇F
� )2

∇κ∇τ)Ωµν dr +

∫ ∂
3f

∂F2
∂z

2∇Fτκ∇Ωµν dr +

∫ ∂
3f

∂F∂z2
4(∇F)2∇τκ∇Ωµν dr +

∫ ∂
2f

∂F∂z
2(∇F

� )2
∇τκ∇Ωµν dr +

∫ ∂
3f

∂F∂z2
4(∇F)2∇Ωµν∇κτ dr +

∫ ∂
2f

∂F∂z
2(∇F

� )2
∇Ωµν∇κτ dr +

∫ ∂
3f

∂z3
8(∇F)3∇Ωµν∇κ∇τ dr +

∫ ∂
2f

∂z2
3 · 4�(∇F

� )3
∇Ωµν∇κ∇τ dr (166)
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B.5. The Derivative of the Kohn-Sham Contribu-
tion to the Generalized Hessian DGµν

xc (M)/DR�.

∂Gµν
xc(M)

∂R�
)

∑
Fσ

∂MσF

∂R�
∫ δ2Exc

δF(s) δF(r)
×

Ωµν(r) ΩFσ(s) dr ds

+ ∑
Fσηε

MσF∫ δ3Exc

δF(t) δF(s) δF(r)

∂Dεη

∂R�
×

Ωηε(t) Ωµν(r) ΩFσ(s) dr ds dt

+ ∑
Fσεη

DεηMσF∫ δ3Exc

δF(t) δF(s) δF(r)

∂Ωηε(t)

∂R�
×

Ωµν(r) ΩFσ(s) dr ds dt

+∑
Fσ

MσF∫ δ2Exc

δF(s) δF(r)

∂Ωµν(r)

∂R�
×

ΩFσ(s) dr ds

+∑
Fσ

MσF∫ δ2Exc

δF(s) δF(r)
Ωµν(r)

∂ΩFσ(s)

∂R�
dr ds

) Z1 + Z2 + Z3 + Z4 + Z5

(167)

From consideration of the structure of the five terms above,
it may be seen that

The term Z3 is similar to eq 59 (i.e., eq 148) except that Ωηε(t)
should be replaced with [∂Ωηε(t)]/(∂R�). The terms Z4 and Z5

are similar to eq 117 except that Ωµν(r) and ΩFσ(s) should be
replaced with [∂Ωµν(r)]/(∂R�) and [∂ΩFσ(s)]/(∂R�), respectively.
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(56) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994,
100, 5829–5835.

(57) Lindh, R.; Malmqvist, P.-Å.; Gagliardi, L. Theor. Chem. Acc.
2001, 106, 178–187.

(58) Lebedev, V. I. Zh. Vychisl. Mat. Mat. Fiz. 1975, 15, 48.

(59) Lebedev, V. I. Zh. Vychisl. Mat. Mat. Fiz. 1976, 16, 293.

(60) Lebedev, V. I. Sibirsk. Mat. Zh. 1977, 18, 132.

(61) Frigo, M.; Johnson, S. G. Proc. IEEE 2005, 93 (2), 216–
231, Special issue on “Program Generation, Optimization, and
Platform Adaptation.” .

(62) Wilson, E. B. Phys. ReV. 1934, 45, 707–711.

(63) Callomon, J.; Dunn, T.; Mills, I. Trans. R. Soc., London 1966,
259, 499–532.

(64) Christiansen, O.; Stanton, J.; Gauss, J. J. Chem. Phys. 1998,
108, 3987.

(65) Stephenson, T.; Radloff, P.; Rice, S. J. Chem. Phys. 1984,
81, 1060–1072.

(66) Fischer, G.; Jakobson, S. Mol. Phys. 1979, 38, 299–308.

(67) Hiraya, A.; Shobatake, K. J. Chem. Phys. 1991, 94, 7700.

(68) Pantos, E.; Philis, J.; Bolovinos, A. J. Mol. Spectrosc. 1978,
72, 36.

(69) Page, R.; Shen, Y.; Lee, Y. J. Chem. Phys. 1988, 88, 5362–
5376.

(70) Radle, W.; Beck, C. J. Chem. Phys. 1940, 7, 507–513.

(71) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms
and Molecules; Oxford Science Publications: Oxford, U. K.,
1989.

(72) Sałek, P.; Hesselmann, A. J. Comput. Chem. 2007, 28,
2569–2575.

CT900506C

Calculating Geometric Gradients J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1047



Understanding Selectivity of Hard and Soft Metal Cations
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Abstract: Following a previous study by de Courcy et al. (Interdiscip. Sci. Comput. Life Sci. 2009,
1, 55-60), we demonstrate in this contribution, using quantum chemistry, that metal cations exhibit
a specific topological signature in the electron localization of their density interacting with ligands
according to their “soft” or “hard” character. Introducing the concept of metal cation subvalence, we
show that a metal cation can split its outer-shell density (the so-called subvalent domains or basins)
according to it capability to form a partly covalent bond involving charge transfer. Such behavior is
investigated by means of several quantum chemical interpretative methods encompasing the
topological analysis of the Electron Localization Function (ELF) and Bader’s Quantum Theory of
Atoms in Molecules (QTAIM) and two energy decomposition analyses (EDA), namely, the Reduced
Variational Space (RVS) and Constrained Space Orbital Variations (CSOV) approaches. Further
rationalization is performed by computing ELF and QTAIM local properties such as electrostatic
distributed moments and local chemical descriptors such as condensed Fukui functions and dual
descriptors. These reactivity indexes are computed within the ELF topological analysis in addition
to QTAIM offering access to a nonatomic reactivity local index, for example, on lone pairs. We apply
this “subvalence” concept to study the cation selectivity in enzymes involved in blood coagulation
(GLA domains of three coagulation factors). We show that the calcium ions are clearly able to form
partially covalent charge transfer networks between the subdomain of the metal ion and the
carboxylate oxygen lone pairs, whereas magnesium does not have such ability. Our analysis also
explains the different role of two groups (high affinity and low affinity cation binding sites) present in
GLA domains. If the presence of Ca(II) is mandatory in the central “high affinity” region to conserve
a proper folding and a charge transfer network, external sites are better stabilized by Mg(II), rather
than Ca(II), in agreement with the experiment. The central role of discrete water molecules is also
discussed in order to understand the stabilities of the observed X-ray structures of the GLA domain.
Indeed, the presence of explicit water molecules generating indirect cation-protein interactions
through water networks is shown to be able to reverse the observed electronic selectivity occurring
when cations directly interact with the Gla domain without the need of water.
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Introduction

Metal cations play a critical role in many biological systems.
In most cases, they are specific in their ability to bind to
proteins and thereby confer appropriate biological function
or activity. For example, the presence of calcium cations is
important in blood clotting, signal transduction, and cell
division. Specifically, in the case of blood clotting, it has
been experimentally observed that the presence of calcium
is required for clot formation.1 Indeed, calcium cations
directly participate in the binding and folding of the
γ-carboxyglutamic acid (Gla)-rich domain that is common
to the vitamin-K-dependent serine proteases present in the
blood coagulation cascade.1 Blood plasma does not coagulate
in the sole presence of magnesium ions,2,3 an effect attributed
to the concomitant lack of binding of the Gla residues to
negatively charged phospholipids when only magnesium ions
are present. More precisely, recent X-ray crystal structures
with a mixture of both Ca(II) and Mg(II) show that the
N-terminus ω-loop segment that is thought to be the key
determinant for the binding of the GLA domain to mem-
branes has a disordered structure when only magnesium ions
are present.4 In the presence of calcium ions, GLA domains
have been crystallized and a strong Gla-calcium network has
been observed with varying degrees of calcium ion coordina-
tion. However, despite the mandatory presence of calcium
ions needed to structure the GLA domain and allowing it to
point the three hydrophobic (or anionic) residues forming
“the keel” in the direction of negatively charged phospho-
lipids found in cellular membranes, it has also been
experimentally demonstrated that the presence of magnesium
ions in addition to calcium enhances the affinity of the
enzyme for both the membrane and cofactors.5

The ability of the calcium ion to coordinate water
molecules with flexible coordination is thought to be
important for this function. At the theoretical level, recent
first-principle Car-Parrinello6 and force-field simulation7

studies have reported an in-depth description of the hydration
shells and of the preferred coordination numbers for the
calcium and magnesium cations. Although we know that the
residence time for water on a magnesium ion is substantially
longer than that for a calcium ion,8 we as yet do not know
the physical origins of the differences between the binding
of calcium and magnesium ions in biological systems, as no
clear electron structure-biological actiVity relation has been
uncoVered in realistic model systems. In this context, we
proposed to apply modern quantum chemistry to study the
nature of the binding of calcium and magnesium ions in
model systems of factors VII, IX, and X, the structures of

which are based on protein structures extracted from the
Protein Data Bank.

Outline

In this work, we will first focus on the fundamental
interactions occurring in such systems between the metal
cations and their environment. Indeed, thanks to X-ray
studies, we know that interactions occur between the calcium
or magnesium cations and carboxylate moieties. We will then
present an extensive ab initio study of the binding of several
hard and soft metal cations to carboxylates in different
position. Then, applying quantum topological approaches
such as Atoms in Molecules (QTAIM)9 theory and the
topological analysis of the Electron Localization Function
(ELF),10 we shed light on the origin of the different behavior
of the electronic structure of metal cation and ligands so as
to unravel the specific cation topological signature. The
observed topological descriptions will be complemented by
intermolecular interaction energy decomposition using the
Reduced Variational Space approach (RVS)11a and the
Constrained-Space Orbital variation (CSOV),11b which pro-
vide insights about the nature, covalent or electrostatic, of
the bonding between the cations and carboxylate. To connect
this work to conceptual Density Functional Theory (DFT),
we will also provide a detailed analysis by means of local
chemical descriptors such as the condensed Fukui functions.
In a second part, we will present a study of models of the
GLA domain from factors IX, VII, and X of the blood
coagulation process using ELF computations complemented
by multimolecular RVS energy decomposition analyses.

Method

A. Topological Analysis of ELF. The topological analy-
sis relies on a partition of the molecular space achieved in
the framework of the theory of gradient dynamics applied
to a scalar potential function, say V(r), called “potential
function”, which contains the physical or chemical informa-
tion. This partitioning gives rise to a set of nonoverlapping
molecular volumes called basins localized around the maxima
of the ELF (the attractors of the vector field). The boundaries
between these basins, the separatrices, are zero-flux surfaces
satisfying the following condition that every point r is a unit
vector normal to the surface. In the QTAIM theory of Bader,9

the scalar function is the electron density distribution whose
basins have their attractors located on the nuclei and which
are therefore associated with the atoms that constitute the
molecule. In order to recover a chemist’s representation of
a molecule consistent with Lewis’s valence picture, one must
use another “local” function that is able to describe the
electron pair regions. For almost two decades, the topological
analysis of the ELF has been extensively developed and used
to analyze chemical bonding and to investigate chemical
reactivity (for reviews, see refs 12 and 13). The ELF can be
interpreted as a signature of the electron pair distribution.
The relationship of the kernel of ELF to pair functions has
been established,13 but in contrast to these latter, the ELF
values are confined in the [0,1] range by a Lorentzian
transformation which facilitates the interpretation. The basins
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of the ELF are either core basins, labeled C(A) corresponding
to the inner shells of atom A and encompassing its nucleus
(if Z > 2), or valence basins denoted by V(A,B,C...), where
A, B, and C are the element symbols. A valence basin can
belong to a single atomic valence shellsin this case, V(A)
corresponds to a lone pairsor be shared by several atoms
and associated to a bond V(A,B).

The ELF basins closely match the electronic domains of the
VSEPR12 model, and it has been shown that the interbasin
repulsion provides a map onto the Gillespie-Nyholm rules
which describe molecular geometry.14,15 It has been recently
shown that non-VSEPR structures which occur around neutral
atoms belonging to the fourth and higher periods can be
explained by considering the structure of the external core shell
basins16 and are hereafter referred to as subvalence basins.
Details about the ELF analysis can also be found in a recent
review paper dealing with the application of ELF to systems
of biological interest.17

B. Integration of Local Properties within the ELF
or QTAIM Partition. 1. Local Electrostatic Moments. From
a quantitative point of view, a population analysis can be
carried out by integrating the electron density distribution
over the basin volumes. Recently, the distributed moments
analysis based on the QTAIM partition9 and on the ELF
basins (DEMEP)18a has been introduced, which enables an
extended discussion on the nature of bonding in molecules.
In this paper, we use more specifically the first moment
(denoted as M1), which represents the local dipolar polariza-
tion of the density.

That way, the Distributed Electrostatic Moments based on
the ELF Partition (DEMEP) allows the calculation of local
moments located at nonatomic centers such as lone pairs, σ
bonds, and π systems. Local dipole contributions have been
shown to be useful in rationalizing inductive polarization
effects and typical hydrogen bond interactions. Moreover,
bond quadrupole polarization moments being related to a π
character enable a discussion of bond multiplicities and
sorting of the families of molecules according to their bond
order.

To summarize, the M0(Ω) monopole term corresponds to
the negative of the population (denoted N):

The first moments or dipolar polarization components of
the charge distribution are defined by three-dimensional
integrals for a given basin Ω according to

where Xc, Yc, and Zc are the Cartesian coordinates of the
basin centers.

The five second-moment spherical tensor components can
also be calculated and are defined as the quadrupolar
polarization terms. They can be seen as the ELF basin

equivalents to the atomic quadrupole moments introduced
by Popelier9c in the case of an QTAIM analysis:

The first- or second-moment basin magnitude is then
defined as the square root of the sum of squared components:

Thanks to the invariance of the magnitude of any multipole
rank (|M1| or |M2|) with respect to the axis for a given bond
or lone pair, the approach allows us to compare the dipolar
or quadrupolar polarization of a given basin in different
chemical environments.

2. Fukui Functions as Local Chemical Descriptors. Be-
yond the computations of local distributed electrostatic
moments, it is also possible to access the topological partition
of local chemical descriptors. Among the numerous chemical
indicators, the Fukui functions,18b,c based on the relative
properties of the Highest Occupied Molecular Orbital
(HOMO) and the Lowest Unoccupied Molecular Orbital
(LUMO), are interesting as they are particularly useful for
the interpretation of chemical reactivity, particularly toward
nucleophiles or electrophiles.18d Indeed, following Parr and
Yang, conceptual DFT provides such functions defined in
terms of the variation of the chemical potential with respect
to changes in the external potential V(r) or equivalently as
the derivative of the electron density with respect to changes
in the number of electrons N.

Three Fukui functions are usually evaluated: f+(r), f-(r), and
f 0(r)

They are sometime also associated with the computation of
another value called the dual descriptor (denoted ∆f(r)18e,f)
and calculated upon the f +(r) and the f -(r) functions:

The f +(r) function usually characterizes the reactivity of
a given species toward nucleophilic attack (in that case, ∆f(r)
> 0), whereas the f -(r) function usually characterizes the

M0(Ω) ) -∫Ω
F(r) dτ ) -N(Ω) (1)

M1,x(Ω) ) -∫Ω
(x - Xc)F(r) dτ

M1,y(Ω) ) -∫Ω
(y - Yc)F(r) dτ

M1,z(Ω) ) -∫Ω
(z - Zc)F(r) dτ

(2)

M2,zz(Ω) ) -1
2 ∫Ω
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√3
2 ∫Ω
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reactivity of a given species toward electrophilic attack (in
that case, ∆f(r) < 0). When ∆f(r) ) 0, the site’s reactivity
should be equilibrated. As an analytic expression of such
function is not available, it remains possible to compute them
numerically using finite differences (see for example ref 18g
and references therein).

In that case, f -(r), f +(r), and f 0(r) can be computed as
follows:

qx(N) represents the atomic charges associated with atom
x within the N-electron species. Recently, it has been
shown18h,i that it is possible to use a QTAIM condensation
scheme for Frontier Molecular Orbitals Fukui functions using
finite differences within a topological partition. Such an
approach has been shown to be particularly stable, having
some advantage on other atomic evaluations of the Fukui
functions scheme:

where h denotes HOMO, and l, LUMO, and the subscript x
under the integration sign indicates that the integration has
to be performed only within the particular atomic domain
of atom x.

As previouslsy demonstrated for the computations of
electrostatic moments, any QTAIM local property computa-
tions can be performed using a topological ELF analysis. In
this contribution, following the studies by Fuenteabla et al.,18j

we present a Fukui analysis performed at both QTAIM and
ELF levels.

C. Computational Procedures. The geometries of all
formate-cation complexes were optimized using the hybrid
functional B3LYP19a,b with the Jaguar 5.5 software.20 The
choice of the B3LYP functional was motivated by its
observed good performance in the modeling of biomolecules
containing Ca(II) and Mg(II) cations compared to MP2.19b,c

We report in Supporting Information S1 some comparisons
between different functionals, MP2 and CCSD(T), on optimal
Ca(II) (or Mg(II))-formate geometries, confirming these
findings. The LACV3P**21 basis set combining a pseudo-
potential for the cation, and the all-electron 6-311G** basis
set for the other atoms was employed. All geometries
obtained with this less accurate energy function were then
optimized further using the hybrid functional B3LYP but
applying the all-electron 6-311++G** basis set22 to all
atoms, as provided by the Gaussian 03 software.23 For the
coagulation factors studied in the second part of this paper,
single point calculations were employed for the two opti-
mized malonate-cation complexes at the B3LYP/6-
311++G** level of theory. All topological analyses were
carried out using ELF grids of size 180 × 180 × 180 for
moment analysis (300 × 300 × 300 for pictures) with the

last version of the TopMoD9024 package coupled to the
TopChem17 program providing DEMEP analysis. To com-
pute the total molecular dipole, we have assumed as “global
(or molecular) frame” the standard orientation provided by
Gaussian 03, which computes molecular dipoles at the center
of nuclear charges. B3LYP/CSOV computations were per-
formed with the same basis set using an in-house version of
HONDO 95.3,25 whereas the GAMESS26 software provided
the RVS results computed at the Hartree-Fock level.

Results

A. Theoretical Description of Hard and Soft Metal-
Cation Interactions with Carboxylate Moieties. For blood
coagulation proteins, X-ray studies clearly show that the main
interactions involved in the biological activity of such
enzymes involve networks built on the interaction of calcium
or magnesium cations with carboxylate groups.27 More
precisely, X-rays unravel direct malonate-Ca(II)/or Mg(II)
interactions.

To start our quantum chemical description of such proteins,
we present here results on the interactions of differents metal
cations with formate which are simple malonate models. As
both monodentate and bidendate formate-cation coordina-
tions are found in the structures, we have investigated the
two cases. In a second part, we will focus on the specific
interaction of calcium and magnesium cations with more
realistic models directly extracted from the PDB structures
of the different available factors.

1. Topological Study of Hard and Soft Metal Cations:
The SubValence Concept. In order to study the differences
between metal cations, we have performed an ELF analysis
upon DFT computations on several metal-cation-formate
complexes encompassing monovalent cations such as Li(I),
Na(I), K(I), and Cu(I) and divalent cations, namely, Mg(II),
Ca(II), and Zn(II). They are displayed in Figure 1a and b.
Indeed, in a recent study,28 we showed that the density of
Zn(II) exhibits a striking plasticity. However, Zn(II) binding
ligands were shown to be able to adapt/redistribute their
density according to their nature: sulfur atoms were shown
to be the softest, being able to spatially delocalize their lone
pairs, as oxygen and nitrogen mainly contract their lone pair
volumes. The present study intends to generalize such
observations. Indeed, striking differences can be observed
by visually analyzing the obtained ELF topological pictures
that can be associated with the well-known Parr and Pearson
hardness concept linked to the resistance of an atom to
change or deformity. One can see (Figure 1a and b) that the
expected “hard cations” (high value of the ηA hardness
parameter, see Table 3 of ref 29) such as Li(I), Na(I), or
Mg(II) have a spatial localization of their electron density
condensed around the nucleus position. “Soft” cations,
usually associated with lower ηA values, exhibit specific splits
within their outer-shell densities.

It is then possible to use the concept of a “subValence”
associated with outer-shell core basins which can be seen
as the topological signature for a given hard or soft behavior
of the metal. A quick look at the observed topological
structures shows that the observed subvalent ELF basins are

f -(r) ) [qx(N) - qx(N - 1)]

f +(r) ) [qx(N + 1) - qx(N)]

f 0(r) ) 1
2

[f +(r) + f -(r)]

∆f(r) ) (f +(r) - f -(r))

(8)

∑
x

fx
R ) ∑

x
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f R dr ) 1
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more numerous for soft cations, reflecting a more covalent
character of their bonding to formate anions (see Figure 1).

2. SubValence: Understanding Physics at Play. To have
a deeper understanding of the physics taking place in such
interactions, it is possible to extend the ELF analysis to the
computation of local electrostatic moments (see Table 1) and
Fukui functions (see Table 3) and to correlate them to RVS
energy decompositions (see Table 2).

From these tables, we see that the more covalent the
bonding character of the formate-cation intermolecular bond
is, the greater the RVS cation polarization energy and local
ELF cation dipole moment are. For example, a hard cation
such as Na(I), which is poorly polarizable (weak polariz-
ability), is involved in interactions dominated by electrostatics
(Table 2) and does not show any split within its subvalence,
whereas cations exhibiting stronger polarization and charge
transfer interactions possess a higher number of basins.
Moreover, for a covalently bonded very soft cation such as
Zn(II), a subvalent Zn-O basin is observed between the
formate oxygen lone pair and the metal, a hint of electron
sharing. Ca(II), which is less soft and less covalently bonded,
still exhibits a split, but subvalent basins remain distributed

around the nucleus (Figure 1) and do not form any bond.
Correlated CSOV energy decomposition computations have
also been performed and are fully in line with HF RVS
results. Details can be found in the Supporting Information,
S2.

Observations of both monodentate and bidentate coordina-
tion modes show that “soft cation” subvalent basins clearly
have the ability to orient themselves toward the formate
oxygen lone pairs. That way, depending on its electron
structure, each cation shows a specific topological signature
which enables one to predict specific abilities of the cation
to interact with its immediate environment thanks to the
plasticity of its valence electron spatial organization. An
indirect measurement of the soft/hard nature of the cations
can be appraised by studying the volumes and density values
of the formate oxygen lone pairs when interacting with
cations. Hard cations such as Li(I) or Mg(II) clearly act on
the lone pair densities which appear lower when compared
to softer cations. Figure 2 exhibits the four oxygen lone pairs
as they are when no metal cation interacts with the formate.
Volume and density values reveal a dissymmetry between
the internal and the external lone pairs, internal ones being

Figure 1. (a) ELF representation of formate interacting in a bidentate mode with metal cations. Topological analysis of interactions
between a formate and seven metal cations revealed, at the isosurface, a coefficient of 0.87 (except for Cu(I) and Zn(II) complexes,
where it is 0.77). As seen in these pictures, electron densities remain condensed around the nucleus position for hard cations
such as Li(I), Na(I), and Mg(II), whereas electron densities are split in four distinct subunits (basins), avoiding oxygen lone pairs,
for softer cations such as K(I) and Ca(II), and split in two distinct subunits (basins), one of which is inserted between oxygen
lone pairs and the cation, for soft cations such as Cu(I) and Zn(II). In soft cation complexes, a blue sphere describes the core
electrons of the cations. In hard cation complexes, the spherical subvalence obscures the core electrons so that the blue sphere
is not visible. (b) ELF representation of formate interacting in a monodentate mode with metal cations. Isosurface coefficients
used to make theses pictures are the same as the ones used for part a. A very similar pattern is observed as for the bidentate
formate-cation complexes. The Mg(II) electron density stays spherical. In the Ca(II) complex, three basins have merged into an
annular one still avoiding oxygen lone pairs. The same split as for the bidentate complex is shown for Zn(II).
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less populated and more contracted than the external ones.
This is due to the fact that the internal lone pairs interact

with each other because of the shorter distance between them.
From Figures 1 and 2, it is possible to appraise the electronic
redistribution within the oxygen lone pairs according to the
presence or not of a binding metal cation and to its hardness
or softness. Overall, it is important to point out that trends
are conserved between ELF observations and Parr’s hardness
concept.29 However, ELF pictures the final state of the cation
electronic structure within the complex after cation-ligand
orbital mixing and metal density relaxation (therefore, a
feature also linked to its polarizability).

Concerning the specific Ca(II)/Mg(II) differences, our
results demonstrate that overall less flexibility occurs in
Mg(II) density compared to Ca(II), which tends to adjust to
its immediate ligands. However, for Mg(II) in the mono-
dentate binding mode, a slight increase of cation polarization
associated with a topological split of its outer-shell density
is noted, and this leads to the fact that Mg(II) could act
slightly differently from usual hard cations. As we will see,
this will have some consequences. Figure 3 shows a ELF
representation of both monodentate and bidentate formate-
Mg(II) complexes. A well-separated additional basin is found
in the monodentate complex, where a partial charge is
transferred. It worth noting that the Sr(II) cation which is
sometimes found to substitute calcium under certain condi-
tions (ref 30 and references therein) exhibits the same
topological pattern as Ca(II).

To conclude, as the concepts of softness and hardness
are involved, it is of importance to also consider the
possibility of computing other popular local reactivity
indicators, usually utilized to rationalize such phenomena.
That way, we propose here an evaluation of the different
“local” Fukui functions at both QTAIM and ELF levels.
First, we computed such functions on an isolated formate
molecule (see Table 3a and b). Again, the ELF Fukui
analysis clearly shows the nonequivalence of the formate

Table 1. QTAIM and ELF M1 and Dipole Moments of
Formate-Cation Complexesa

M1 µ(D)

QTAIM ELF -QTAIM ELF

Ω(Μ) C(M) V(M) ab initio

formate 0.92 0.90
Li

mono 0.01 0 9.41 9.40 9.39
bi 0 0 3.95 3.95 3.96

Na
mono 0 0.07 11.60 11.67 11.69
bi 0 0.08 6.03 6.06 6.07

K
mono 0.21 0.31 12.50 12.60 12.70
bi 0.20 0.31 7.20 7.30 7.30

Mg
mono 0.15 0.06 0.19 13.30 13.30 13.30
bi 0.02 0.06 7.30 7.30 7.30

Ca
mono 0.19 0.37 14.80 14.90 14.90
bi 0.16 0.35 8.06 8.10 8.11

Cu
mono 0.18 0.47 8.08 8.10 8.13
bi 0.23 0.48 2.97 3.01 3.04

Zn
mono 0.23 0.36 0.45 6.41 6.44 6.45
bi 0.04 0.39 3.06 3.09 3.10

a Values of cation’s M1 and dipole moment (µ expressed in
Debye) for formate-cation complexes in both modentate (mono)
and bidentate (bi) binding modes. M1 is the polarization
component of the total dipole moment (see text and Supporting
Information). Concerning a cation, it is computed as the gap to the
sphericity: the more a cation exhibits a spherical subvalence, the
less its polarization and M1 value are and vice versa. Two sets of
M1 are reported: QTAIM values where all the electrons are
gathered around the nucleus Ω(M) and ELF values where
electrons are spread over the core basin C(M) and the subvalence
basin V(M). QTAIM and ELF values for the total dipole moment
are also reported; ab-initio dipole moments computed with
Gaussian G03 software are given for comparison.

Table 2. RVS Energy Components for Selected Formate-Metal Cation Complexesa

kcal/mol elec. exch. E1 Epol Epol(cation) ECT E2 Etot

formate Li(I)
mono -158.3 27.8 -130.4 -17.6 -0.2 -4.5 -22.1 -152.6
bi -179.2 28.1 -151.1 -14.5 -0.1 -6.7 -21.2 -172.3

formate Na(I)
mono -138.0 20.9 -117.1 -10.1 -0.3 -0.2 -10.3 -127.4
bi -159.2 22.7 -136.5 -8.3 -0.2 -1.0 -9.3 -145.8

formate K(I)
mono -125.9 26.4 -99.5 -8.7 -1.8 -1.3 -9.9 -109.5
bi -147.0 30.2 -116.8 -7.1 -1.7 -1.6 -8.6 -125.4

formate Mg(II)
mono -300.0 43.7 -256.3 -54.4 -0.4 -7.8 -62.1 -318.4
bi -354.7 52.7 -302.0 -48.4 -0.3 -15.8 -64.1 -366.1

formate Ca(II)
mono -287.7 76.3 -211.5 -39.8 -2.3 -17.8 -57.7 -269.1
bi -335.9 82.4 -253.5 -32.8 -2.0 -18.4 -51.2 -304.7

formate Cu(I)
mono -177.6 68.1 -109.5 -29.3 -15.3 8.4 -20.9 -130.4
bi -186.9 50.7 -136.2 -19.1 -8.1 3.3 -15.8 -152.1

formate Zn(I)
mono -319.5 66.7 -252.8 -64.9 -4.5 -6.7 -71.6 -324.4
bi -371.0 72.1 -298.9 -56.0 -3.4 -18.8 -74.8 -373.7

a Values are given for the two monodentate (mono) and bidentate (bi) cation binding modes. elec. is the Coulomb electrostatic energy;
exch. is the exchange repulsion. The sum of the two constitutes the first-order term E1. Epol and ECT are the polarization and charge
transfer components of the second-order term E2, Etot being the sum of E1 and E2. An RVS decomposition energy allows us to separate
the second-order terms over the constitutive fragments of a system. The individual polarization of each cation is reported. The more
spherical the subvalence of a cation is, the less Epol is. The same pattern is observed for the ECT of each complex. It can be seen that
ECT for the monodentate formate-Mg(II) complex is double that of the bidentate formate-Mg(II) complex. This is to be put in context with
the appearance of the additional subvalence basin in the monodentate formate-Mg(II) complex (Figure 3).
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oxygen lone pairs, the external basins having different
indicators from internal lone pairs. If QTAIM tends to
show a uniform Fukui descriptor (the dual descriptor ∆f
is always positive), ELF does not, as it provides a ∆f
negative value on the C-H bond, providing insight about
a possible different reactivity.

Concerning the metal cations, Table 3c brings interesting
information. Let us first consider first the isolated metal
cations. If all cations exhibit f - values of 1, they have very
different f + values. Again, following chemical intuition,
strong differences occur between hard and soft cations. Hard
cations such as Li(I) exhibit low values of f +, whereas soft
cations such as Zn(II) have f + values tending toward 1. The
dual descriptor appears then to be a good global indicator
reflecting the cation’s ranking as ∆f tends to 0 with increasing

Table 3. (a) ELF Integrated Fukui Functions and Dual Descriptor Values for an Isolated Formate Molecule, (b) QTAIM
Integrated Fukui Functions and Dual Descriptor Values for an Isolated Formate Molecule, (c) ELF and QTAIM Fukui
Functions and Dual Descriptor Values for Selected Metal Cationsa

part a

formate basin f -(ELF) f +(ELF) f 0(ELF) ∆f(ELF)

C(C) 0.00 0.00 0.00 0.00
C(O1) 0.02 0.00 0.01 0.02
C(O2) 0.02 0.00 0.01 0.02
V(C,H) 0.22 0.30 0.26 -0.08
V(C,O2) 0.04 0.01 0.02 0.03
V(C,O1) 0.04 0.01 0.02 0.03
V(O1) 0.20 0.01 0.10 0.19
V(O1) 0.13 0.03 0.08 0.10
V(O2) 0.14 0.03 0.09 0.11
V(O2) 0.20 0.01 0.10 0.19

part b

formate atom f -(QTAIM) f +(QTAIM) f 0(QTAIM) ∆f(QTAIM)

H 0.17 0.15 0.16 0.02
C 0.05 0.04 0.05 0.02
O1 0.38 0.03 0.21 0.35
O2 0.38 0.03 0.21 0.35

part c

cations f -(QTAIM) f +(QTAIM) f 0(QTAIM) ∆f(QTAIM), isolated ∆f(ELF), isolated ∆f(QTAIM), complexed ∆f(ELF), complexed

Li 1.00 0.23 0.61 0.77 0.70 -0.14 -0.11
Na 1.00 0.44 0.72 0.56 0.45 -0.34 -0.37
K 1.00 0.46 0.73 0.54 0.43 -0.30 -0.36
Mg 1.00 0.59 0.79 0.41 0.32 -0.67 -0.24
Ca 1.00 0.98 0.99 0.02 0.00 -0.55 -0.59
Zn 1.00 0.91 0.96 0.09 0.04 -0.69 -0.50

a Values are given for the isolated cations and for a cation within a bidentate formate-metal complex.

Figure 2. ELF representation of a formate without a binding
cation. This picture presents a formate in an uncomplexed
state, where densities are not rearranged through interactions
with a cation. Volumes of the oxygen lone pairs can be
compared to the ones of formate-cation complexes shown
in Figure 1a and b.

Figure 3. ELF representation of formate-Mg(II) complexes
at an isosurface coefficient of 0.22. The electron density of
the two formate-Mg(II) complexes are compared in this
picture. Contrary to the bidentate formate-Mg(II), where the
subvalence stays spherical, in the monodentate formate-Mg(II),
an additional basin appears at the opposite side of the
coordination to the oxygen. This is consistent with the
augmentation of both M1 shown in Table 1 and charge transfer
energy shown in Table 2 for this complex.
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cation softness. Table 3c depicts the results for selected
bidentate formate cations. Global trends are preserved despite
strong, different bonding modes. Again, the softer cations
exhibit smaller ∆f values (here more negative) than harder
ones. If they agree well, one difference between ELF and
QTAIM values is observed: ELF tend to show more
difference between Ca(II) and Mg(II) than QTAIM. This is
reflected by a difference of 0.2 (QTAIM) vs 0.3 (ELF) in
the ∆f values between the two cations.

Of course, the numerical values strongly depend on the
(never unique) topological partition scheme and therefore
on the density attribution to atoms/centers,18h but the ELF
and AIM approaches are not subject to strong basis set/
diffuse function dependence18a,h and are quite stable. Overall,
beyond the numbers, an interesting qualitative agreement is
observed and supports the previously depicted ELF subva-
lence basins and the numerical values extracted from other
interpretative techniques described above.

B. Metal Cation’s Electron Structure/Biological
Activity Relationship in Coagulation Proteins. We use here
the commonly accepted terminology, first, to differentiate
the γ-carboxyglutamic acid itself, identified as Gla, from the
γ-carboxyglutamic acid-rich domain, identified as GLA,
second, to name the first 11 residues at the N-terminal
extremity of the ω-loop, and third to specifically identify
residues 4, 5, and 8 (5, 6, and 9 for FIX) from the previous
sequence as the keel. In addition, since we have to compare
several GLA domain crystal structures, each having their
Ca(II) or Mg(II) positions differently numbered, we will use
for clarity purposes the same numbering for all, that is, the
one found in the crystal structure of the human factor VII
(1DAN, see ref 38).

1. Metal Cation’s Electron Structure/Biological ActiVity
Relationship in Coagulation Proteins. When a blood vessel
is injured, a cascade of protein-protein interactions1 rapidly
occurs, leading to the formation of a cross-linked fibrin clot,
eventually restoring the integrity of the circulatory system.
A number of proteins involved at the early stage of the
process are vitamin-K-dependent zymogens of serine pro-
teases.31 Among this family of coagulation factors, factor
VII, once activated and bound to tissue factor (TF), activates
zymogen factors IX and X into functional factors IXa and
Xa. These in turn transform prothrombin into active throm-
bin, which is ultimately responsible for the conversion of
fibrinogen to fibrin.32 A cell-based model of coagulation,
which incorporates the important roles of endothelial cells
and platelets, has recently been introduced, and this more
physiological view appears to be gaining acceptance.33 Many
other factors and cofactors are necessary for the completion
of the mechanism, but we will focus only on two steps.1

2. Structural Analysis and Biological ActiVity. The above-
mentioned three factors are made up by four domains. At
the N extremity, we find a GLA domain, followed by two
Epidermal Growth Factor (EGF) like domains, namely, EGF1
and EGF2, terminated by a Serine Protease (SP) domain.
The primary structures of GLA domains (residues 1 to 48)
are highly conserved:34 only a few residues differ along the
sequences of factors VII, IX, and X. Remarkably, the first
nine Gla residues, as well as two cysteines, are always found

precisely at the same place. Accordingly, for all factors, two
hydrophobic residues are adjacent to the first group of two
Gla residues: Phe4 and Leu5 for FVIIa and FXa factors and
Leu6 and Phe9 for FIXa. We can also notice the presence
of an Asn residue in the second position of the sequence.
Moreover, analysis of the PDB files for these factors shows
that the secondary structures are also very similar and
essentially superimposable. From the N extremity to the end
of the domain, we find successively the ω-loop with its two
above-mentioned hydrophobic amino acids along with either
another hydrophobic residue (FVIIa-Leu8 and FXa-Met8)
or a cationic one (FIXa-Lys6) pointing their side chains
toward the exterior of the protein. Three R-helices are also
found. The first two are parallel and maintained so by a
disulfide bridge established by the two cysteines cited before.
All Gla residues are distributed along these three subunits:
Gla6 and -7 are at the top of the central loop of the ω-loop;
Gla14, -16, -19, and 20 belong to the first R helix, whereas
Gla25, -26, and -29 belong to the second. The third R-helix
links the GLA domain to the remaining part (3rd helix) of
the protein. A Gla residue can also be found in this part of
the domain. In all examined X-ray structures, eight cations
are present.38 One cation is located at the hinge between the
third R helix and the first chain of the EGF1 domain. The
other seven cations are found aligned at the interstice between
the base of the two parallel R helices and the top of the
ω-loop. In this zone, two groups of cation binding sites can
be defined. The first group is called “high affinity” Ca(II)
binding sites39 and is constituted by the 5 inner Ca(II) sites
(numbered 3, 4, 5, 6, and 8, respectively).38 Within these
sites, Ca(II) were found coordinated 6, 7, 7, 7, and 3 times,
respectively, at distances in the 2.4-2.8 Å range in the very
first GLA domain ever structurally determined (1992),
namely, the GLA domain of Ca-Prothrombin Fragment I
(see Figure 4 and Table 3 of ref 35). Subsequently, several
authors36,37,41 reported very similar coordination numbers
and distances for the factors studied here. The second group,
called “low affinity” Ca(II) binding sites, defines the two
external sites. At these positions, cations can be either Ca(II)
or Mg(II). Figure 4 lists the cation binding sites present in
different PDB structures of the studied factors’ GLA
domains. Occupation by either Ca(II) or Mg(II) in all binding
sites seems to be due to details in the preparation of the
protein crystal during the X-ray crystallization process. In
fact, F VIIa (1DAN),38 F IXa (1J35),39 and F Xa (1IOD)40

were prepared using only CaCl2 as crystallographic salt. It
is noticeable that all the binding sites are occupied by
calcium, solely present in the environment. When MgCl2 is
added to CaCl2, at physiological concentration, for the
preparation of F IXa (1J34),39 all the inner binding sites are
occupied by calcium, while the external binding sites are
occupied by magnesium. But, prepared under the same
conditions, a recent X-ray structure deposited in the Protein
Data Bank by Bajaj et al. shows Mg(II) residing in the central
site number 5 replacing Ca(II) in the GLA domain of F VIIa
(2A2Q).41 However, when only MgCl2 is used for the
preparation of F Xa (1P0S),4 the two external sites contain
a Mg(II) cation, but the sole central site number 5 shows a
third Mg(II) cation. In addition, contrary to the five other
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structures that contain it, no ω-loop is present in the structure
of this domain, its constitutive peptide seeming to “float” in
the environment. From these observations, it may be
deducted that Ca(II) cations are necessary in the central zone
to structure the ω-loop and that the external sites are usually
occupied by magnesium. Close examination of the binding
of the ω-loop to the rest of the GLA domain reveals the
network of interactions between the amino acids borne by
the ω-loop, the cations and the amino acids present in the
two antiparallel R helices. In all factors where the ω-loop is
present, except for F VIIa with Mg(II) in the central site,
the NH3

+ extremity of Ala1 (or Tyr1 for F IXa) establishes
three H bonds with the surrounding residues, namely,
carbonyl O of Gln21 (F VIIa), Ala21 (F Xa), or Lys22 (F
IXa); Oε4 of Gla20 (F VIIa and F Xa) or Gla21 (F IXa);
and Oε4 of Gla26 (F VIIa and F Xa) or Gla27 (F IXa). In F
VIIa (2A2Q), however, a single H-bond remains with Oε2

of Gla26. A comparison between coordination numbers and
coordination distances for each cation of the two structures
of F VIIa (1DAN vs 2A2Q), as given in Table 2 of ref 41
by Bajaj et al., reveals that, when only Ca(II) is present in
the five inner sites, direct coordinations of cations by the
carbonyl O of Ala1 (or Tyr1 for F IXa); Oδ1 of Asn2; Oε1

and Oε4 of Gla6; and Oε1, Oε2, and Oε4 of Gla7 are observed.
By contrast, in F VIIa (2A2Q), where the central Ca(II) is
substituted by Mg(II) with two water molecules (S209 and
S363) completing the coordination sphere of this cation, the
same interactions are observed, but this time through a
network of eight water molecules (S209, S262, S363, S411,
S508, S602, S694, and S722), present in between the cations
and the ω-loop. As a consequence, the ω-loop has moved
down approximately 0.5 Å in order to leave enough space
for water to insert (see Figure 2A of ref 41).

The existence of the ω-loop is of much importance in that
the very first step of the coagulation process is for coagulation
factors to colocalize on cell surfaces.42 In that step, the
biological function of the GLA domain is first directly
responsible for the linkage of the factors to the membranes,
and ultimately to the fibrin clot. This can be done thanks to
the three hydrophobic residues of the ω-loop43 (or two
hydrophobic residues and a cationic one in F IXa), oriented
in such a way that they are able to dive deeply inside the
membrane and interact through hydrophobic bonds with
neighboring lipids,43,44 in addition probably through a buried
salt bridge involving Lys5 of F IXa.43 The deep insertion of
the GLA domain inside the membrane also allows the
creation of an interaction between a phosphatidylserine (PS)
of the membrane and the Ca(II) cation present in binding
site number 8, strengthening the anchorage of the coagulation
factor inside the cellular membrane.45 Inhibition of the GLA
domain by direct ligand bonding to the ω-loop (such as snake
venom protein, see ref 39) is responsible for the loss of
membrane linking with a subsequent loss of the coagulation
process.

3. Theoretical Study of Interactions of Ca(II) Vs Mg(II)
with Malonate Groups. In this section, we systematically
supplement the ELF analysis with detailed RVS energy
decomposition results.

In GLA domains, the transformation of glutamic acids in
Gla is realized by the action of vitamin K and several specific
enzymes with the addition of a carboxylate group to the
γ-carbon of the glutamate;46 two carboxylate groups borne
by the same γ carbon constitutes a malonate group. Two
malonates coordinating a metal cation is one of the unit
structures observed in GLA domains, displaying as many
as four monodentate formate-cation interactions. Two

Figure 4. Description of metal cation coordination sites of six GLA domains. The picture is a representation of the GLA domain
of F VIIa (1DAN), exhibiting its constitutive parts including the seven cation binding sites. For each site, a comparison of six
X-ray geometries shows its occupation by either a Mg(II) or a Ca(II) cation, according to the crystallographic salt used for the
preparation.
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different computations at the same level of theory (B3LYP/
6-311++G**) have been performed on these systems: a
single point calculation using directly extracted geometries
from PDB structures on which H atoms were added and
geometry optimizations performed using the previous sys-
tems as starting points. At the end of the optimization
process, the obtained complexes show the two approximate
planes of malonates perpendicular to each other around the

metal cation, itself four times tetrahedrally coordinated with
coordination distances of approximately 2.1 Å for the
magnesium and 2.4 Å for the calcium. A calcium complex
was extracted from the PDB structure of F Xa (1IOD),
whereas the magnesium complex was extracted from the
PDB structure of F IXa (1J34). From these two systems,
external binding sites (number 7 or 9) are selected, in which
cations are surrounded by solvating water molecules: two
for Mg(II) and three for Ca(II). Figures 5a and b show the
ELF topological analysis on the two optimized geometries.
As expected, Mg(II) (Figure 5a) does not exhibit any split
of its subvalence, whereas Ca(II) (Figure 5b) has its
subvalence split into four well separated basins, oriented in
such a manner that no oxygen lone pair faces a cation basin.
The same pattern as described above is observed in Figure
6a for Mg(II) and Figure 6b for Ca(II), within the extracted
geometries. Thus, upon increasing the coordination number
from two in the bidentate formate-cation complexes to four
in the optimized geometries shown in Figures 5a and b and
ultimately to their maximum in the extracted complexes, each
cation consistently exhibits the same behavior. Table 4
reports the results of the RVS analysis, disclosing the
individual contributions of the interaction energies for the
two malonate-cation complexes shown in Figures 5a and b
and 6a and b. These results show first a greater electrostatic
term for Mg(II) less compensated by the repulsion term than
for Ca(II). As a result, the excess of electrostatic energy
reflected by the negative first order term of Mg(II) over Ca(II)
is -90 kcal/mol for the optimized complexes and less than
-77 kcal/mol for the extracted geometries, reflecting the
hardness of the Mg(II) cation. Since a RVS analysis can
separate the second order energies for each constitutive
monomer of a many-body system, the individual polarization
energies of the cations are also reported. It can thus be
observed that, as Ca(II) moves away from its optimal
geometry, its polarization increases, and that Mg(II) is
essentially not polarized. The charge transfer contribution in
the Ca(II) complexes decreases upon moving away from the
optimal geometry but remains significant, whereas it is null for
the Mg(II) optimized complex and slightly increases in the

Figure 5. (a) Optimized geometry of a two-malonate-Mg(II)
complex. (b) Optimized geometry of a two-malonate-Ca(II)
complex. All the ELF pictures were revealed at the 0.87
isosurface coefficient. These pictures exhibit the perfect
tetrahedral binding mode of the cations. Mg(II) subvalence is
spherical, and the Ca(II) one is split in four well separated
basins recalling the bidentate formate-cation complexes.

Figure 6. (a) Extracted two-malonate-Mg(II) “deformed
tetrahedral” complex. (b) Extracted two-malonate-Ca(II) “de-
formed tetrahedral” complex. The Mg(II) complex is binding
site no. 7 of F IXa (1J34); the Ca(II) one is binding site no. 9
of F Xa (1IOD). Water molecules complete the coordination
sphere of each cation: six for Mg(II) and seven for Ca(II).
Cation coordinations are also disclosed in order to evidence
the “deformed tetrahedral” binding mode of the cations. Each
cation behavior does not change as the number of coordina-
tions increases.

Table 4. Theoretical RVS Analysis of Tetrahedral Cation Binding Sitesa

kcal/mol 2 malonates + Mg(II) 2 malonates + Mg(II) 2 malonates + Ca(II) 2 malonates + Ca(II)

geometry optimized F IXa 1J34 optimized F Xa 1IOD
figure number 5a 6a 5b 6b

electrostatic -777.7 -703.3 -709.0 -636.8
repulsion 90.8 68.2 111.5 78.2
first order energies (e1) -686.9 -635.1 -597.5 -558.6

polarization of cations -0.1 -0.3 -0.6 -2.2
polarization -94.2 -90.5 -63.0 -61.5
charge transfer 0.0 -1.4 -11.2 -9.7
second order energies (e2) -94.2 -91.9 -74.2 -71.2

total e1 + e2 -781.1 -720.9 -671.7 -629.8

a RVS energy decomposition has been performed upon theoretical models of tetrahedral binding sites. They are built on the same
number of atoms (no water molecules are considered) in order to directly compare the energy contributions. Optimized geometries are the
extracted ones on which the optimization process was performed. Mg(II) complexes’ first order terms are greater than the ones of Ca(II)
complexes, whereas Ca(II) cations are more polarized and generate a larger charge transfer than for Mg(II). This is consistent with the
Mg(II) cation having a spherical subvalence entering in more electrostatic types of interactions and the Ca(II) cation splitting its subvalence
and creating more interactions of covalent type.
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complex extracted from X-ray crystallography. It can be
deduced that, contrary to Mg(II), Ca(II) is polarized as it is in
the bidentate formate-cation type of complex and that the
charge transfer contribution becomes selective from one cation
to another in such complexes. Thus, Mg(II) enters a more
electrostatic interaction, whereas a polarized Ca(II), generating
a stronger charge transfer, enters a more covalent interaction.
It is important to point out that we also perform such analysis
in the presence of an additional PCM implicit solvent. We did
not observe any changes in the topology of the system. Such
results can be found in Supporting Information S3.

4. Theoretical Study of the SelectiVity Ca(II)/Mg(II).
a. Is the Mg(II) Cation Strictly Hard in the Gas Phase? In
the GLA domain of F Xa (1P0S), in which only magnesium

ions are present in the environment, a Mg(II) is observed to
be three times coordinated to oxygen atoms of Gla 16 and
26, in the 2.3-2.5 range of distances. Figures 7a and b
compare the topology of Mg(II) in two positions: the first
one (Figure 7a) comes from an external cation site (site no.
7 of F IXa 1J34); the second one (Figure 7b) is the central
site (no. 5). Due to the low resolution (2.8 Å) of the crystal
structure of F Xa (1P0S), no water molecule is resolved near
the cation in the central site no. 5. Despite the fact that water
must be present within the coordination sphere of Mg(II) in
a real enzyme, no water molecule is considered in the present
theoretical gas phase study, so that the coordination number
is four for the external site and three for the central site. As
can be seen in Figure 7a, the cation does not exhibit any
split of its subvalence, whereas in Figure 7b, the presence
of the additional basin (red circle), recalling the monodentate
formate-Mg(II) binding mode, clearly suggests that Mg(II)
transfers a part of its density into this additional basin. This
is confirmed by the magnitude of the RVS charge transfer
contribution (see FXa 1P0S in Table 5), namely, -7.6 kcal/
mol, instead of a null charge transfer in the optimized
geometry. In this particular case, it is important to point out
that Mg(II) does not have a hard cation behavior since it
exhibits some subvalence capabilities. However, if such a
finding is important for understanding the electronic distribu-
tion in Mg(II) complexes, could it have an impact when
considering more realistic condensed phase GLA domains
containing explicit solvent molecules?

b. SelectiVity of Ca(II) Vs Mg(II) Cations within the Six
Gla Domains. From Figure 4, we have found three possible
binding sites for Mg(II), namely, sites no. 7 and 9 (external)
and 5 (central), the latter exhibiting either a Mg(II) or a
Ca(II). The other sites are exclusively occupied by Ca(II)
cations, a necessity to structure the ω-loop in its functional
geometry. These observations have been confirmed by
several experiments, in which Mg(II) and Ca(II) were added
at physiological concentration to a previously divalent cation-
free environment.2 When only Mg(II) is present, no enzy-
matic activity occurs. This is to be put in relation with the

Figure 7. (a) “Hard” Mg(II) binding mode. (b) “Soft” Mg(II)
binding mode. (c) Localization of the two binding modes within
F Xa (1P0S). Electron densities are revealed at the isosurface
coefficient of 0.22. The additional basin shown in the red circle
is confirmed by the increase of the charge transfer energy
illustrated in Table 4 (-7.6 kcal/mol). As is the case when
only Mg(II) is present in a vitamin-K-dependent coagulation
factor environment, the cations occupy only the three tetra-
hedral binding sites, being unable to structure the ω-loop, and
leaving its constitutive peptide floating.

Table 5. RVS Analysis of Selected Cation Binding Sites, Extracted from X-Ray Structuresa

kcal/mol 2 malonates + Mg(II) 2 malonates + Mg(II) Mg(II) hexa coordinated 2 malonates + Ca(II) Ca(II) octa coordinated

Water molecules 2 0 3 3 2

PDB ID F IXa 1J34 F Xa 1P0S F VIIa 2A2Q F Xa 1IOD F IXa 1J34
figure number 6a 7b 8a 6b 8b

electrostatic -696.7 -577.9 -746.5 -690.6 -598.5
repulsion 130.0 23.7 184.5 188.3 111.1
first order energies (e1) -566.7 -554.3 -562.0 -502.3 -487.4

polarization of cations -0.4 -0.4 -0.1 -1.8 -0.5
polarization -122.8 -66.5 -92.6 -95.0 -33.0
charge transfer -9.8 -7.6 -2.7 -20.7 -4.9
second order energies (e2) -132.5 -74.1 -95.3 -115.7 -37.9

total e1 + e2 -699.2 -628.4 -657.3 -618.0 -525.3

a RVS energy decomposition has been performed upon various extracted geometries in order to confirm the theoretical results on realistic
systems. Thus, all the components, including water molecules, were taken into consideration. The number of water molecules is detailed for
each complex, as well as the X-ray structure from which the system was extracted and the corresponding figure referenced. The same
trend is observed, as for theoretical tetrahedral systems, concerning electrostatic energies favoring Mg(II) complexes, and the Ca(II) cation
being more polarized, producing a greater charge transfer.
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F Xa (1P0S) structure where the ω-loop is not formed. When
only Ca(II) is present, the enzymatic activity is signicantly
higher but can be enhanced by the addition of Mg(II). The
three possible Mg(II) sites are constructed from three pairs
of malonates provided by site no. 5 Gla16 and 26 (Gla17
and 27 for F IXa), site no. 7 Gla14 and 19 (Gla15 and 20
for FIXa), and site no. 9 Gla25 and 29 (Gla26 and 30 for F
IXa). Close examination of these sites reveals that they all
share the same pattern in which the cation is coordinated by
two groups of two oxygens residing in the same side of two
almost parallel malonate groups. Such geometry recalls the
optimized geometry of the two malonates bound to a cation
complex. Because they are not perfectly tetrahedral, these
three binding sites will be called “deformed tetrahedral”
cation binding sites. Figures 6a and b show ELF pictures of
such a “deformed tetrahedral” binding site occupied by a
Mg(II) cation as extracted from site no. 9 of F IXa (1J34)
and a Ca(II) cation as extracted from site no. 7 of F Xa
(1IOD), respectively. From Table 4, RVS total energies give
the preferrence of Mg(II) over Ca(II) within this type of site
by a difference of -109.4 kcal/mol for the optimized
geometries and -91.1 for the extracted ones. This is due to
the excess of first order energies in favor of Mg(II), namely,
-89.4 and -76.5 kcal/mol. This is consistent with Mg(II)
not splitting its subvalence and thus being involved in more
electrostatic types of interactions. The presence of water
molecules (two for Mg(II) and three for Ca(II)) within the
coordination sphere of cations does not modify this conclu-
sion (see Table 5).

The four other sites, however, are less structured, as their
Ca(II) cations are coordinated four to eight times, in both
monodentate and bidentate mode, by several carboxylate
groups belonging to different Gla residues, as well as by
carbonyl groups of the backbone of Ala1 (Tyr1 for F IXa)
and the side chain of Asn2. For example, in site no. 6 of F
IXa (1J34), Ca(II) is found octa coordinated, by Tyr1, Gla21
in a monodentate mode, Gla7 and -17 in a bidentate mode,
and two water molecules (Figure 8b). The now familiar split
of the subvalence of Ca(II) is observed. An ELF computation
performed on this model reveals that the net charge of the
cation within the system is +1.67 instead of +2 in the
fundamental state. This means that up to one-third of an
electron was transferred from the ligand oxygen lone pairs
to the Ca(II) cation, with Ca(II) consistently able to adapt
its electronic density to its environment by splitting its
subvalence, thus entering into more covalent types of
interactions. This capacity of adaptation for Ca(II) explains
why, when only present in a coagulation factor environment,
all the binding sites are loaded with Ca(II) (F VIIa 1DAN,
F IXa 1J35, and F Xa 1IOD).

Therefore, with respect to the experimental results shown
in Figure 5 of ref 2, a mechanism can be proposed for the
activation of vitamin-K-dependent coagulation factors by
Mg(II) and Ca(II) cations. Upon introducing first Mg(II) to
a cation-free environment of an enzyme, one Mg(II) cation
goes to each of the three “deformed tetrahedral” binding sites
(nos. 5, 7, and 9), completing its coordination sphere with
two water molecules. At this stage, the enzyme is not active
and the ω-loop is not structured (F Xa 1P0S). When Ca(II)

is added, one Ca(II) cation goes to each of the four other
sites (nos. 3, 4, 6, and 8). This anchors Ala1 (or Tyr1 for F
IXa) and Asn2 to the rest of the GLA domain47 and folds
the peptide in this particular ω geometry through interactions
involving Gla6 and -7 (Gla7 and -8 for F IXa) and the rest
of the domain (F VIIa 2A2Q). However, prepared with the
same mix of cations at physiological concentration39 as the
one used to prepare F VIIa (2A2Q)41 for the crystallization
process, F IXa (1J34) exhibits a Ca(II) cation in central site
no. 5 instead of a Mg(II) cation. Could the occupation of
the central binding site no. 5 by either a Mg(II) (2A2Q) or
a Ca(II) (1J34) be explained by the topological difference
of the two cations?

c. Direct Interactions with Cations Vs Interactions with
Cations through Water. We consider here a system consti-
tuted by the five central Ca(II) binding sites extracted from
the geometry of the GLA domain of F VIIa (1DAN), which
is very similar to the one of F IXa (1J34). This complex
was built from the backbone of Ala1, a formamide group
representing the side chain of Asn2, and two malonates for
Gla6 and -7, with Ala1, Asn2, Gla6, and Gla7 being part of
the ω-loop, in addition to three malonate groups from Gla16,
-20, and -26 and a formate given by Gla29 and the five Ca(II)
ions. In addition, up to six water molecules were placed on
the calcium ions according to their position in the X-ray
structure. This system, which is globally neutral, is an X-ray
crystal snapshot where hydrogens and waters have been
added, focusing on the interactions between Ca(II) cations
and their ligands. Such a system is found in X-ray crystal
structures 1DAN, 1J34, 1J35, and 1IOD in which cations
directly interact with their environment. Figure 9 exhibits
the ELF study on this system. This picture reveals the
network of interactions between the subvalence basins of
the cations and the lone pairs of the coordinating oxygens.
The split of all Ca(II) subvalences indicates that these
interactions are partially covalent because they are built from
electronic exchanges between the cations and the lone pairs
present in their immediate environment. This results in a

Figure 8. (a) Extracted geometry of binding site no. 5 of F
VIIa (2A2Q) with Mg(II). (b) Extracted geometry of binding site
no. 6 of F IXa (1J34) with Ca(II). Part a shows a tetrahedral
binding site loaded with a Mg(II) cation, that structure being
the ω-loop through a network of H-bonds established by highly
polarized water molecules coordinated to the cation. Part b
shows direct interactions between a Ca(II) cation and some
constitutive segments of the ω-loop. The subvalence pattern
of the two cations stays consistent with the one observed in
all the studied geometries, whatever the size of the system
considered.
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network of many-body interactions at the center of the GLA
domain. QTAIM values of M1 of each Ca(II), computed with
the ELF function, confirm the intensity of the charge transfer.
Ca(II) no. 3 and 5, each being 7-fold coordinated, have the
lowest value of the series with a M1 value of 0.041 D and a
net charge of +1.66 instead of +2, whereas Ca(II) no. 4
and 6, with 6-fold coordination, exhibit enhanced values,
namely, 0.060 D and +1.68, for M1 and the charge,
respectively. Ca(II) no. 8, being four times coordinated,
shows values of M1 very close (0.166 D, +1.72) to the one
found for the small bidentate formate-cation complex (0.160
D and +1.70 for M1 and the charge, respectively, see Table
1). This indicates that the greater the coordination number,
the less the polarization and therefore the residual charge.

In the GLA domain of F VIIa (2A2Q), the central Mg(II)
is found six times coordinated: four times tetrahedrally by
malonates of Gla16 and -26 and two times by water
molecules S209 and S363 (Figure 8a). The formamide moiety
of Asn2, a formate group from Gla7, and a third water
complete the network of H-bonds through which this central
Mg(II) contributes to structure the ω-loop. As seen in Figure
8a, the central Mg(II) subvalence remains almost perfectly
spherical, as in the bidentate formate-Mg(II) complex and
in the two-malonate-Mg(II) tetrahedral optimized geometry.
Close examination of the RVS polarization contribution
(Table 5) reveals that, if the cation is as expected almost
not polarized, the polarization of the three water molecules
accounts for approximately 30% of the total polarization
of -92.7 kcal/mol. Indeed, one of the water molecules is
highly polarized and bears an Epol(RVS) value of -13.9
kcal/mol. Thus, interactions between the cation and the
ω-loop are established through highly polarized water
molecules.

While the presence of Ca(II) is required2,3,48 in the central
region for an effective coagulation function, it has been
demonstrated that the affinity of coagulation factors for either
cellular membranes,45,49 tissue factors,5 or anticoagulant
agents36,40 is strongly enhanced when external sites are
occupied by Mg(II).40 This supports our findings that these
sites are better stabilized by Mg(II)37 rather than Ca(II).

Therefore, the difference of the two geometries (1J34 and
2A2Q) resides in the fact that, in 2A2Q, the central site is
occupied by a Mg(II) which is only able to complete its
coordination shell with water, for which the residence time
has been measured to be on the order of 1 µs.8 This explains
the greater distance between the two R-helices and the ω-loop
(2A2Q case), namely, the interposition of a water layer.
Therefore, one of the roles of the cations is to fix water,
which in turn binds to the ω-loop through a network of
H-bonds. By contrast, in FIXa 1J34, where all the central
cation binding sites are occupied by Ca(II), interactions take
place directly between metal cations and the lone pairs borne
by its ligating oxygens. In this connection, it was recently
demonstrated that water layers present either between
separate domains of a protein or in between different proteins
are in dynamic short time exchanges with the solvation water
present in the environment.50,51 Therefore, it is possible to
make the hypothesis that F VIIa crystallized by Bajaj et al.
(2A2Q), with interactions through water (i.e., water mediated
interactions), could be present, free in the blood plasma since
the latter is a highly hydrophilic environment. On the other
hand, the GLA domain of F IXa crystallized by Shikamoto
et al. (1J34) is found bound to a ligand (in this case, a snake
venom protein); this binding could impose the “direct
interactions with cations” geometry. It is, then, perhaps
reasonable to suggest that this is the geometry that inserts
deeply into the cell membrane, the interior of which is a
highly hydrophobic environment. Indeed, the insertion within
the membrane may expel water molecules from the inserted
part of the GLA domain, imposing a switch between “physics
at play”: going from a “through water structure” to a “direct
electronic interactions structure”.

Conclusion

In this contribution, we have used several theoretical tools
to illustrate the relationship between the electronic
structure of selected metal-cation complexes and the so-
called hard and soft chemical behavior. The ELF analysis
allows ranking cations according to their topological
signature, namely, their ability to split their valence into
subdomains (subvalent basins). Hard cations will not
exhibit such a capability as soft cations do. The covalent
character of the ligand-metal cation interaction is as-
sociated with a basin between the metal and the neighbor-
ing heavy atoms. That way, such a covalent interaction
can be directly affected by the cations’ environment, and
as we have seen, an electrostatic interaction, as in Mg(II)
monodentate-like complexes, can become covalent, ex-
hibiting an extra subvalent localization basin under specific
stress conditions. This topological metal cation ranking
has been shown to be relevant when compared to RVS
and CSOV energy analyses, as well as in good qualitative

Figure 9. Topological analysis of the five central Ca(II)
binding sites of F VIIa (1DAN) GLA domain. This picture
unravels the network of charge transfer interactions between
the five Ca(II) cations and the oxygen lone pairs borne by
Gla residues of the two upper R-helices, on one hand, and
the oxygen lone pairs borne by Ala1 (backbone), Asn2 (side
chain), and Gla6 and -7 of the lower ω-loop, on the other hand.
These interactions structure the ω-loop in its functional
geometry. It can be noticed that Ca(II) cations show different
patterns of their subvalence split according to their different
numbers of coordinaton. The numbering of the calcium ion
binding sites of Figure 3 is used.
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agreement with local Fukui functions extracted from both
QTAIM and ELF analyses.

Our integrated methodological approach uncovered a
clear relationship between the underlying metal electron
structure and the biological activity of enzymes such as
vitamin-K-dependent coagulation factors. The present
approach could then be extended to other biological
systems involving metal cations. It is also important to
point out that these results on metal cation-ligand
complexes, such as the dissymmetry between internal and
external carboxylate oxygen lone pairs, could also provide
useful information for the design of new force fields.7a,52

Moreover, applications to the problem of blood coagula-
tion allowed us to address the Ca(II) vs Mg(II) selectivity
in their interaction with GLA domains. Only the two X-ray
structures, crystallized using the same Mg(II)/Ca(II) mix
found under physiological conditions (1J34 and 2A2Q),
have been investigated.

In the first one (1J34), Ca(II) has been shown to be
more covalently bonded to ligand than Mg(II), enabling
the creation of a “direct charge transfer network” between
its subvalence and the carboxylate oxygen lone pairs. We
showed that this concept could also uncover the distinct
role of the two cation binding sites present in GLA
domains. Being at the origin of the observed charge
transfer network, calcium cations are mandatory in the
central region to conserve the folding, whereas external
binding sites are better stabilized by Mg(II), in agreement
with the experiment, thanks to strong electrostatic interac-
tions with the environment.

In the second structure (2A2Q), in which some interac-
tions between metal cations and Gla are established
through the presence of crystallized water molecules, we
have shown that magnesium is able to form “an indirect
charge transfer network” with malonates through its
interaction with two highly polarized water molecules that
are responsible for a structure of the ω-loop similar to
that observed in the first structure (1J34). To conclude,
as the two crystal structures have been solved, they could
be the two interconverting forms of the same system, each
of them having a different water requirement. In both
cases, the ω-loop is present. This is required for the active
enzyme, but the underlying physics is not the same. In
the first structure, the folding is mainly due to electronic
effects: Ca(II) is preferred in the five central binding sites.
By contrast, the presence of water molecules is able to
reverse the direct electronic selectivity of cations (Mg(II)
could be present if interacting with two water molecules).
This clearly indicates that dynamical solvent effects could
play a key role in the observed structure of the domain.
The connection between the two structures might be
established through a series of molecular dynamics
simulations. This work also emphasizes again53 the
importance of a “discrete” water molecule to understand
the stability of biological systems, as the presence of a
limited number of structured water molecules could be
critical to obtain meaningful theoretical models.
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Abstract: Chemical bonding in simple transition metal carbonyls is examined under the
interacting quantum atoms approach (IQA), which provides an energetic viewpoint within the
quantum theory of atoms in molecules (QTAIM). We have studied both classical and nonclassical
isoelectronic series of complexes, with different coordinations and geometries and studied the
evolution of the IQA interatomic interactions, using several levels of theory. Our results in classical
carbonyls are compatible with the standard Dewar-Chatt-Duncanson model, although multi-
center bonding may have an important role in some complexes. The increase (decrease) in the
CO distance upon bonding is faithfully coupled to a decrease (increase) in the CO covalent
energy, although the main energetic change in the CO moiety is electrostatic and due to charge
transfer and/or polarization of its electron density. The metal-ligand interaction energy is
dominated by covalent effects and depends strongly on the total net charge of the complex,
being larger for negatively charged molecules, where π-back-donation is very important. The
electrostatic (ionic-like) metal-ligand interaction energy is small in general, although it becomes
more and more stabilizing with increasing coordination number.

1. Introduction

The metal (M) carbonyl (CO) interaction has probably
sparked more interest than any other in metallorganic
chemistry. This importance stems from its paradigmatic role
in chemical bonding theory as well as in surface chemistry
and catalysis.

As bonding is regarded, the M-CO interaction is generally
gauged against the classical model proposed by Dewar, Chatt,
and Duncanson (DCD) in 1951.1,2 Succintly, a synergistic
interaction is proposed to occur between σ charge donation
from the CO highest occupied molecular orbital (HOMO)

and a consequent π-back-donation from the M d orbitals to
the CO lowest unoccupied molecular orbital (LUMO). Since
its proposal, most theoretical works, using very many
interpretation tools that range from Kitaura-Morokuma
energetic decompositions to Natural Bond Orbital (NBO)
analyses or real space techniques like those based on the
Quantum Theory of Atoms in Molecules (QTAIM) or the
use of the Electron Localization Function (ELF), have
corroborated the essence of the DCD model.3-8

It is generally thought, for instance, that although the σ
donation is larger than the π-back-donation, their energetic
bonding role is reversed,9 and the back-donation contribution
is actually dominant.10,11 From a simple molecular orbital
(MO) perspective, the CO HOMO is its 5σ orbital, while
the LUMO is a relatively low lying 2π* function. Similarly,
the metal frontier orbitals are the (crystal field splitted) d
orbitals. The success of the DCD model is based on its
simple, straightforward qualitative predictions. For instance,
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it has been repeatedly reported that, for the CO bond, the
5σ orbital is either nonbonding,12 or slighty antibonding,13

while the nature of the 2π* is definitely antibonding. In this
way, the flow of electrons into the latter easily rationalizes
the weakening of the CO bond, with its consequent lengthen-
ing14 and reduction of stretching frequencies.15 These two
effects are standardly used to quantify the back-donation and
evaluate the (reduced) CO bond strength.

A number of other experimental facts stem from similar
DCD MO arguments. Back-bonding, for instance, clearly
depends on the d-2π* energy gap,16 which in turn is related
to the electron-nuclear attraction and then, for an isoelec-
tronic series, to the M atomic number. Since π-back-bonding
implies a withdrawal of electronic density from M to the
CO ligand, it is related to the M ionization potential. Further,
π-back-donation being a shorter ranged interaction than σ
donation, it turns out to be relatively sensible to the M
covalent radius. Thus, relativistic effects and lanthanide
contractions play a non-negligible role in its magnitude.17

The model illustrated so far was first questioned in the
1970s when, for the first time, the metal carbonyl cations
Cu(CO)n

+, n ) 1 and 2, were synthesized.18 These examples
were followed by other homoleptic noble metal carbonyls
like Ag(CO)n

+, n ) 1 and 2, or Au(CO)2
+. Their common

feature was a higher CO stretching frequency than that found
in free CO (2143 cm-1), so they were called “nonclassical”
by Strauss et al.17 The effect was ascribed to the absence of
π-back-donation, such that the remaining weak σ donation
removed density from the antibonding 5σ orbital, this
resulting in a shorter CO bond with a larger force constant.
Criticisms about the arbitrariness of such an explanation soon
arrived,19,20 and for instance, the antibonding character of
the 5σ MO was put into question. Not only did a few studies
demonstrate that this orbital was not antibonding, but also
that the CO bond stiffenning was correctly reproduced by
just modeling the electric field induced by the M cation.
Slowly, an image in which the density redistribution induced
by this field increased the covalency of the CO bond
emerged.21,22

It is now relatively clear that it is not so easy to correlate
CO stretching frequencies or force constants to M-CO back-
donation due to mode coupling, that Strauss’ inverse cor-
relation between M-C and C-O distances may fail,21 and
that back-bonding is basically dependent on the M-CO
distance, so that a particular onset distance exists for nearly
every system that may be larger or smaller than its particular
equilibrium geometry.23 It has even been shown that the
amount of donation-back-donation cannot be used as an
indicator of binding energies.24

Real space analyses of chemical bonding in transition
metal carbonyls have also been commonplace, in both the
QTAIM and ELF flavors.20,23,7,5,6 The MC bond is usually
characterized by large positive laplacians at the bond critical
point (bcp), with relatively large delocalization indices (δAB)
for the MC pair. According to the QTAIM indicators, the
MC bond has characteristics similar to those found in dative
interactions of main group elements. Attempts to validate
the DCD model have also been made either by partitioning
densities into σ and π contributions,7 by showing how the

δMO correlates, as expected, with back-bonding,5,25 or by
using the domain averaged Fermi hole (DAFH) technique,26

as introduced by Ponec.27,28 The DCD model has also been
examined in terms of real space valence charge concentra-
tions for the metal-olefin link.29 The solid theoretical
foundation of these real space techniques is making them
increasingly popular in the field of chemical bonding in
transition metal (TM) chemistry.8 However, a real space
energetic image of these important bonds is lacking, and our
interacting quantum atoms approach (IQA) may clearly fill
this gap.

IQA30-34 provides a theory of cohesion within the QTAIM
by extending the domain partitioning of one-electron ob-
servables to interelectron repulsions. By doing so, we get
an exact, chemically appealing partition of the molecular
energy that may be recast into an easy to comprehend
language. Within IQA, binding is the result of a competition
between atomic deformation, which is an analogue of the
classical promotion energy needed for an atom to get bonded
to another, and pairwise additive interatomic interaction
energies. The latter are made up of classical (or ionic-like)
and exchange-correlation, purely quantum mechanical (or
covalent-like) components. IQA has now been applied to
provide a real space energetic view of a wide number of
problems,35-37 to shed some light into core concepts of the
QTAIM,38 and to propose statistical images of the chemical
bond.39-42 Recently, we have shown how to generalize its
framework to wave functions containing effective core
potentials (ECPs),43 opening a window to examine chemical
bonding issues in TM chemistry.

In this paper, we will examine the energetics of simple
metal carbonyls under the IQA light, paying particular
attention to the possible difference between classical and
nonclassical systems. We will also show how many of the
accepted energy features of the DCD model are translated
into state of the art, orbital invariant real space analyses.

The layout of the paper is as follows. First, a brief
summary of the IQA procedure will be presented, followed
by a description of the computational details of our calcula-
tions. Then, we will describe our results in a number of
classical and nonclassical carbonyls. We will end with some
conclusions.

2. Brief IQA Survey and Summary

Let us succintly introduce a survey of the IQA parlance. Full
accounts may be found elsewhere.30-34 Let us start with a
QTAIM partition of the space into atomic domains.44 Then,
at any molecular geometry,

where A ≡ ΩA is the atomic basin of nucleus A; TA is its
atomic kinetic energy; and Ven, Vne, Vee, and Vnn are the
potential energies describing the several pair interactions

E ) ∑
A

(TA + Ven
AA + Vee

AA)

+ ∑
A>B

(Vnn
AB + Ven

AB + Vne
AB + Vee

AB)

) ∑
A

Eself
A + ∑

A>B

Eint
AB

(1)
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between the electrons and nuclei that reside in basins A and
B, in an easy to decode terminology. Now, IQA uses ideas
borrowed from McWeeny’s45 electronic separability to gather
the above terms using chemical insight. All intrabasin terms
are added to define the self-energy of a quantum atom (or
group) Eself

A , while the interbasin ones are gathered in the
interaction energy between pairs of atoms, Eint

AB. This interac-
tion energy may be further partitioned into a classical
component, Vcl

AB, obtained by adding Ven, Vne, and Vnn; the
Coulombic part of Vee, VC

AB; and a quantum mechanical,
nonclassical, or exchange correlation term Vxc

AB ) Vee
AB - VC

AB.
This may always be done, so Eint

AB ) Vcl
AB + Vxc

AB. When
particular energetic references exist for the quantum groups,
Eself

A,0, we define atomic deformation energies, Edef
A ) Eself

A -
Eself

A,0, such that molecular binding is the result of a competition
between terms with the same order of magnitude: group
deformation (which is usually positive) and intergroup
interaction (overall negative):

We have shown32,34 that the classical and exchange-
correlation interaction components are associated with the
conventional notions of ionicity and covalency, so IQA
translates quantum-mechanical energetic quantities into
standard chemical concepts.

The formalism is immediately extended if several quantum
groups are gathered to form functional groups G, H, etc.32,34

Equation 1 applies for groups, too, if Eself
G is defined to contain

all intragroup energetic components, and also eq 2 if whole-
group references are used to define Edef

G . In this work, it will
be useful to consider each carbonyl ligand (L) as a quantum
group, such that ΩL ) ΩC∪ΩO. In this way, we may discuss
either the ML link interaction as a whole or each of its MC
and MO components. Also, it is advantageous to discuss the
changes in the ligand-related properties with respect to those
in the isolated CO molecule, introducing the notation ∆X )
X (coordinated L) - X (free L). Using this notation, with
free CO as a reference, the ligand deformation energy can
be written as Edef

L ) ∆Eself
C + ∆Eself

O + ∆Eint
CO. Binding of the

n CO ligands to the metal will thus comprise n ML
interactions, Eint

ML ) Eint
MC + Eint

MO, n of the above-mentioned
ligand deformation energies measuring the cost in coming
from the free CO state into the complex, plus the much
smaller LL interactions, and the metal deformation energy
Edef

M .

3. Computational Details

IQA partitioning, necessarily based on numerical integration
techniques, is computationally intensive30 and requires well-
defined first and second order density matrices. Thus, only
Hartree-Fock (HF) or variational multiconfigurational tech-
niques may be used. Since the literature on M-CO systems
is huge, much is known about the performance and limita-
tions of methods with different levels of approximation for
the treatment of electron correlation. For instance, Sherwood
and Hall46 showed that 97% the total energy is recovered at
the HF level for Cr(CO)6. At this moment, it is well-known

that MP2 results paralell those trends found at the SCF level,
with only quantitative differences. Single determinant ap-
proaches give rise to lower binding energies, thus longer MC
and shorter CO distances,47 and to underestimated π-back-
donating but reasonable σ-donating effects.24

Less is known about the performance of DFT techniques
as chemical bonding is regarded in these compounds. The
B3LYP functional seems to overestimate back-donation,8

which has turned out to be quite sensitive to the exchange-
correlation functional.21 Similarly, both BLYP and B3LYP
overestimate binding energies giving rise to long MC
distances in CuCO+ and CuCO2+.48 All in all, whenever a
multiconfigurational calculation cannot be undertaken due
to computational constraints, a simple HF wave function
provides a reasonable account of the major binding forces
acting on simple transition metal carbonyls. Thus, we present
here a combination of HF, CASSCF, and DFT (approximate)
results.

All electronic structure calculations were performed with
GAMESS.49 H and main group elements were modeled with
a 6-31G(d,p) basis set, while standard Hay and Wadt small
core relativistic ECPs together with their standard basis sets
(3s4s1s3p1p1p4d1d) were used for the transition metals.50

IQA analyses were done with our PROMOLDEN code, and
ECPs were treated according to our previously published
protocol,43 with M core densities obtained from 3-21G basis
sets added in the computation of appropriate interatomic
surfaces. It is important to recall that deformation energies
are not accessible with our protocol for those quantum atoms
bearing ECPs.43 In the present case, we thus have access to
Edef

L , but not to Edef
M , so we will only briefly consider the ligand

deformation energies in a subset of our calculations, focusing
the discussion on the ML interactions.

We have studied several ideal low-spin isoelectronic series
at the HF level: The d10 Td [Fe(CO)4]2-, [Co(CO)4]-,
Ni(CO)4, [Cu(CO)4]+, and Pd(CO)4 systems, together with
their d8 D4h [Ni(CO)4]2+ and [Pd(CO)4]2+ planar counterparts;
the d8 D3h [Mn(CO)5]-, Fe(CO)5, [Co(CO)5]+, and Ru(CO)5

pentacarbonyls; and the d6 Oh [Ti(CO)6]2-, [V(CO)6]-,
Cr(CO)6, [Mn(CO)6]+, and [Fe(CO)6]2+ species. Homoleptic
noble metal cations [M(CO)n]+, M ) (Cu, Ag, Au) with n
) 1 and 2, have also been studied at the CASSCF//MP2
level with an active space comprising the five valence M d
orbitals supplemented with the five outer orbitals of each
carbonyl and four suitable low-lying virtuals. Due to the lack
of appropriate basis sets, no core density was added in the
CASSCF calculations. In order to test how IQA performs
when using a Kohn-Sham determinant to approximately
construct first- and second-order density matrices, we also
performed some test DFT calculations at MP2 geometries
for [Ag(CO)2]+ and [Au(CO)2]+. Several functionals have
been used: BLYP; BLYP-LC; and the M06-l, M06, and
M06-HF series, characterized by 0%, 27%, and 100% HF
exchange, respectively. The d10 Td molecules were also
computed at the M06 level. To ascertain the role of
electrostatic effects in nonclassical carbonyls, we have also
computed the HCO+ and COH+ systems at the equivalent
CASSCF level. Wave functions for the isolated CO ligand

Ebind ) ∑
A

Edef
A + ∑

A>B

(Vcl
AB + Vxc

AB) (2)
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have been obtained for comparison purposes at all the
computational levels previously described.

PROMOLDEN integrations have been performed using
typically tight parameters, truncated at lmax ) 10, with 631-
point radial and 5810-point Lebedev angular grids. �-spheres
up to l ) 6 with radii equal to 90% of the distance from the
nuclear position to the closest bcp have been used, and 431
radial and 534 Lebedev angular grid points have been
selected for them. These are fairly standard computational
conditions for IQA calculations32 that usally provide interac-
tions converged to about 1 kcal/mol.

Since IQA interaction energies vary in wide ranges, we
will use atomic units for them in all of our tables. However,
some of the arguments in the text will refer to relevant
differences among them. In those cases, we will shift to
kilocalories per mole to provide more chemically meaningful
quantities.

4. Bonding in the Td M(CO)4 Systems

Let us examine the isoelectronic d10 Td Fe, Co, Ni, Cu, and
Pd tetracarbonyls from our IQA perspective. We will start
with a brief analysis of some standard QTAIM integrated
quantities. Table 1 contains topological charges, Q, and
delocalization indices, δ, for our systems, including the
isolated CO ligand.

Although these kind of results are known, it should be
noticed that all the metals bear small positive topological
charges, meaning that, in the most simple DCD model, back-
bonding should be extremely large in the Fe compound, for
instance. The geometric correlations of the model, as briefly
explained in the Introduction, do also come out easily from
the computed data. For instance, the changes in the CO
stretching frequencies upon bonding, the changes in d (CO),

and the total net charge of the ligand correlate among each
other. Notice that the total charge of the ligand is mostly
absorbed by the C atom, so charge transfer is fairly localized
in the MC region.

Similar insight is obtained from electron delocalization
properties, like the delocalization index, δ, a measure of bond
order in real space. For 3d metals, the MC bond order
decreases as the MC distance increases, as expected. In line
with DCD, this increase is coupled to a lengthening of the
CO distance and a decrease in the CO bond order. Not so
obviously, however, it is also clear that δCO does also
correlate with the overall CO (L) polarization. The only
system in which the L net charge is positive is [Cu(CO)4]+,
meaning that charge transfer goes from the ligand to the
metal in a σ-like fashion. This is also a possible nonclassical
carbonyl, with smaller d(CO) and larger δCO than those found
in free CO. Polarization of the CO ligand as induced by the
metal is clearly related to the CO bond covalency, as pointed
out by Lupinetti and co-workers.23 Finally, another interest-
ing point is related to the non-negligible δCC value that exists
between adjacent L’s in the Co and Fe compounds. This
points toward an important multicenter character of the M-L
bonding in those cases where back-bonding is also deemed
important, i.e., in electron-rich compounds. As we will show
with our DAFH analyses, this is true and should be
understood as one limitation of the DCD view.

The energetic view provided by IQA enlightens the above
comments. Let us start with a fine-grained view, by examin-
ing the MC and MO IQA quantities. Eint

MC is large and splits
the Td systems into two categories of negative and positive
total MC interaction. As we will see, this is related to the
total QL charge, and positive MC total interactions will
become common for other stoichiometries. The Vcl

MC contri-
bution to the MC interaction is destabilizing, due basically
to the positive net charge at the metal site. However, its
particular value is the result of a complex balance among
the MC distance, the positive net M and C charges, and the
polarization of the charge distribution. The covalent contri-
bution to the MC bond, provided by Vxc

MC, follows the total
net charge of the complex. Its value in the Fe, Co, and Ni
compounds, about -200 kcal/mol in the first, is considerably
large if we compare it to the -260 kcal/mol value obtained
for the free CO ligand, Vxc

CO, a formal triple bond. MC
covalency is the basic stabilizing interaction in this series,
and even in the Cu case, where back-bonding is thought to
have a minor role, it amounts to about -40 kcal/mol. The
MO interactions may be obtained from the table by subtrac-
tion (MO ) ML - MC) and deserve similar comments. Eint

MO

is obviously stabilizing, controlled by the negative electro-
static component which may be faithfully approximated by
a point charge contribution, and its range of variation is
smaller. Just as delocalization between the metal and the
oxygen atom of each carbonyl provides a real space
measure25 of the relative intensity of π-back-donation, Vxc

MO

gives us its energetic signature. It is negligible in [Cu(CO)4]+,
about 1 kcal/mol, and 10 times larger in the [Fe(CO)4]2-

anion. Notice that Vxc
MO is always smaller than 7% Vxc

MC: this
property should not be interpreted as a direct measure of
the total energetics associated with back-donation, which

Table 1. Basic Geometric and QTAIM Integrated
Properties Together with IQA Interactions for the
[Fe(CO)4]2-, [Co(CO)4]-, Ni(CO)4, [Cu(CO)4]+, and Pd(CO)4

d10 Td Tetracarbonylsa

M Fe Co Ni Cu Pd

d(MC) 1.735 1.766 1.924 2.296 2.229
∆d(CO) 0.049 0.024 0.002 -0.010 0.000
∆ν -491 -295 -64 90 -32
QM 0.282 0.189 0.122 0.802 0.064
QL -0.570 -0.297 -0.031 0.050 -0.016
∆QC -0.439 -0.234 -0.086 -0.035 -0.025
δMC 1.347 1.153 0.798 0.313 0.623
δMO 0.198 0.166 0.097 0.024 0.075
δCC 0.130 0.084 0.039 0.012 0.016
∆δCO -0.318 -0.231 -0.046 0.037 -0.056
Eint

ML -0.343 -0.277 -0.192 -0.070 -0.131
Eint

MC -0.215 -0.187 -0.142 0.122 -0.098
∆Eint

CO 0.374 0.220 0.212 0.050 0.044
Vcl

ML -0.008 0.011 0.005 -0.005 0.002
Vcl

MC 0.100 0.084 0.045 0.185 0.029
∆Vcl

CO 0.312 0.180 0.224 0.068 0.040
Vxc

ML -0.334 -0.288 -0.197 -0.067 -0.134
Vxc

MC -0.314 -0.271 -0.187 -0.065 -0.127
∆Vxc

CO 0.063 0.041 -0.011 -0.017 0.004
Edef

L 0.236 0.179 0.110 0.064 0.087

a HF data in atomic units, except distances in Å and
frequencies in cm-1. Parameters for the isolated CO molecule are
as follows: d(CO) ) 1.114, ν(CO) ) 2439, QC ) 1.403, δCO )
1.508, Eint

CO ) -2.120, Vcl
CO ) -1.706, and Vxc

CO ) -0.415. Recall
that ∆X ) X (coordinated L) - X (free L).
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does also include the C atom of the ligand, but rather as an
isolated energetic signature, not affected by the covalent
contribution of σ donation.

Moving to group interactions, the total Eint
ML ) Eint

MC + Eint
MO

is always negative, although in the Cu case it is relatively
small, -44 kcal/mol. Notice that its classical component is
small, its absolute value not exceeding 7 kcal/mol, and that
it oscillates from positive to negative. Thus, even if each of
the MC and MO electrostatic terms may be large, the
polarization pattern of L conspires to overall small Vcl

ML values
such that in the end it is covalency, not electrostatics, that
governs the ML bonding. Continuing with the group descrip-
tion of the CO ligands, their energetic change upon bonding
deserves comment. The overall CO deformation energy, Edef

L ,
is positive (as found in most of the systems examined by
IQA up to now) and is clearly correlated to the total net
charge of the ligand, QL. This is expected, since, in the case
of highly heteropolar links, self-energies are controlled by
ionization costs. Notice that the deformation energy in the
Cu complex, with a rather low positive net charge, is
relatively small, about 40 kcal/mol. In all the cases examined,
deformation of the ligand is dominated by ∆Eint

CO; we will
concentrate on its components and will not consider Edef

L ’s
themselves again.

Regarding the different properties involved in the CO
deformation upon coordination, ∆dCO, ∆δCO, and ∆Vxc

CO are
quite linearly correlated, whereas ∆Vcl

CO is not. In agreement
with previous IQA knowledge, and also with the results by
Lupinetti and co-workers,23 the CO distance responds
basically to changes in covalency. These coordinated CO
bonds display Vxc

CO values smaller than those in free CO
(except in the Cu complex), so ML bonding decreases the
covalency of the CO bond. Although Vcl

CO shows a relatively
complex pattern, the simple QCQO/dCO point charge term
correlates rather well with it. In general, depolarization of a
bond leads to a decrease in its electrostatic contribution, as
may be rationalized from the smaller value of (q - ε)(-q
+ ε) with respect to -q2 in Coulomb’s law when charge is
transferred from one point charge to the other in an ionic
pair.

We also note that, although in the Cu compound the
covalent CO interaction energy is comparable but smaller
than that in the free CO molecule, its electrostatic interaction
is considerably (by about 60 kcal/mol) larger. The combina-
tion of both facts justifies its d (CO), 0.01 Å smaller than
the free value. We want to stress that ∆d (CO), QL, ∆δCO,
Eint

MC, and ∆Vxc
CO all change sign in this complex with respect

to the rest of the series, so the overall positive charge of the
species has a big impact on its detailed energetics.

The behavior of the neutral Pd complex is also noteworthy,
at least when compared to the also neutral Ni case. This is
probably related to its large ionization potential that justifies
its smaller QM and the relatively small change in the net
charges that it induces on the CO ligand. However, the effect
of its diffuse d shell on the ligand is not small, and the CO
moiety suffers a rather big density polarization that increases
its classical attraction.

Table 2 summarizes our M06 DFT results in the same set
of complexes. We must stress that standard Kohn-Sham

(KS) DFT calculations lack a properly defined second order
density matrix, so our Vxc and δ values are approximate,
obtained by constructing a Dirac-Fock pseudo-pair density
from the KS determinant. There is nevertheless evidence51

that DFT δ’s do compare reasonably well with wave function
based values.

All of our previous arguments apply, mostly unchanged,
to the DFT data. This fact seems to support the soundness
of these IQA procedures based on Dirac-Fock density
matrices constructed from KS determinants. A couple of
points deserve mentioning, nevertheless. The DFT free CO
molecule description takes into account, even with the above-
mentioned approximations, the rather large change in po-
larization caused by electron correlation. This is seen in the
clearly smaller DFT Q’s and Vcl

CO interaction and in a
noticeably larger Vxc

CO. Formation of the complexes gives rise
to a decrease in the overall polarity of CO, and both the Q
and Vcl

CO values decrease markedly. The DFT free or
coordinated CO is clearly less ionic and more covalent than
the HF one. As expected, correlation increases back-donation
as measured by δMO. Notice how in the Cu compound Vxc

CO

has now decreased below the free CO value by about 20
kcal/mol. This is consistent with the onset of a nonclassical
carbonyl.

5. Classical Penta- and Hexacarbonyls

We will summarize in this section our results on the d8 D3h

pentacoordinated and octahedral classical carbonyls. Tables
3 and 4 show that most of our comments regarding the
M(CO)4 species hold in these compounds.

The pentacarbonyls are characterized by well differentiated
axial and equatorial ML bonds. It is well-known that the
equatorial link is generally stronger and shorter, but this gets
reversed in the Co case. In this latter complex, the overall
topological charge of the CO ligands is positive, as in
[Cu(CO)4]+. It is also known, though nonetheless interesting,
that the metal is quite positively charged even in the Mn

Table 2. DFT M06 Geometric and QTAIM Integrated
Properties for the Td Complexesa

M Fe Co Ni Cu Pd

d(MC) 1.745 1.764 1.843 2.038 2.081
∆d(CO) 0.055 0.029 0.006 -0.010 0.004
QM 0.327 0.119 0.305 0.684 0.250
QL -0.582 -0.280 -0.077 0.079 -0.063
∆QC -0.480 -0.252 -0.128 -0.054 -0.110
δMC 1.404 1.259 0.968 0.565 0.874
δMO 0.240 0.213 0.148 0.059 0.132
δCC 0.141 0.103 0.067 0.034 0.038
∆δCO -0.333 -0.242 -0.113 0.032 -0.077
Eint

ML -0.368 -0.329 -0.244 -0.126 -0.192
Eint

MC -0.253 -0.272 -0.154 0.024 -0.116
∆Eint

CO 0.441 0.302 0.206 0.149 0.177
Vcl

ML -0.019 -0.004 0.002 0.009 0.007
Vcl

MC 0.073 0.032 0.078 0.153 0.071
∆Vcl

CO 0.384 0.270 0.204 0.178 0.181
Vxc

ML -0.350 -0.325 -0.246 -0.135 -0.199
Vxc

MC -0.327 -0.304 -0.232 -0.129 -0.187
∆Vxc

CO 0.057 0.033 0.002 -0.029 -0.004

a Data for the isolated CO species: d(CO) ) 1.137, QC ) 1.209,
δCO ) 1.726, Eint

CO ) -1.773, Vcl
CO ) -1.310, and Vxc

CO ) -0.463.
The structure of the table repeats that found in Table 1.
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complex. This means that the ligands in the complexes bear
a considerable negative charge, larger in the equatorial
positions. The values of the average MC delocalization
indices are similar to those found in the equivalently charged
Td molecules, and so is the covalent energy associated with
the MC bond. There is however a tendency toward stronger
(weaker) MC links for the negatively (positively) charged
D3h complexes when compared to their equivalently charged

Td counterparts. Together with δMO, our calculations show
that π-back-bonding is largest in the Mn compound and
smallest in the cobalt one. This also justifies the large positive
metal charges. Our Vxc and Vcl values validate that, in general,
the axial ML bonds are more ionic in the four D3h cases
than the equatorial ones, although in some cases the
difference is small. A salient feature of our data is the positive
value of these axial Eint

MC’s for all of the systems except
Ru(CO)5, so it is the very stabilizing MO interaction which
stabilizes the ML link. This is related to the combined effect
of the larger positive charges of the M and the axial carbon
atoms. Contrarily to the uniform MC electrostatic behavior,
there is a clear change in the MC covalency. The axial links
in the Mn and Fe moieties are less covalent than the
equatorial ones, while the opposite holds in the Ru(CO)5

molecule.
As regards the CO moiety, it is relatively interesting to

notice that the equatorial CO distance is larger than the axial
one, independently of the M-C distance behavior. This
correlates reasonably with delocalization indices and Vxc

values, and as in the Td compounds, ∆δ’s are considerably
larger than ∆Vxc’s. In the Mn and Fe complexes, the axial
carbonyls are slightly more covalent than the equatorial ones,
but the situation is clearly reversed for Ru(CO)5. As found
in the tetrahedral cases, the total CO electrostatic interaction
is related to the repolarization of the carbonyl group,
increasing on average with |∆QC|. As with [Cu(CO)4]+, ∆d
(CO), QL, ∆δCO, Eint

MC, and ∆Vxc
CO change sign for [Co(CO)]+.

This consistency shows how intimately coupled the changes
in the CO ligands are to the ML bonding features.

Finally, it is worthwhile noticing the similarity in the trends
of the CO variations upon bonding for equally charged Td

and D3h systems, e.g., [Co(CO)4]- and [Mn(CO)5]-, and the
prominent CC delocalizations in the Mn and Fe pentacar-
bonyls, which again point toward non-negligible multicenter
bonding features among the carbonyls with covalent contri-
butions as large as 10 kcal/mol.

Correlation effects may alter significantly the HF geometry
of these compounds. For instance, the M06 geometry for
Fe(CO)5, one of the systems with more dramatic changes,
gives axial and equatorial MC distances of 1.798 and 1.801
Å, respectively, with ∆d(CO) equal to 0.010 and 0.012 Å in
the same order. At this geometry, a HF IQA analysis provides
QM ) 0.516, so the total charge transfer has not changed
much due to the geometry change, but other quantities
depending on the quite shorter MC distances are altered as
expected. For instance, δax

MC ) 0.829 and δeq
MC ) 0.994.

Similarly, δax
MO ) 0.106 and δeq

MO ) 0.129. As the ML
interactions are regarded, Vcl

MLax ) 0.005 and Vcl
MLeq ) 0.016

au, while Vxc
MLax ) -0.209 and Vxc

MLax ) -0.239 au. The
decrease in the ML distances thus leads to increased ML
interactions, much more important in the axial than in the
equatorial link.

The octahedral d6 hexacarbonyls follow similar basic rules.
As we move from Ti to Fe, the MC distance increases with
the exception of the Ti molecule, and the CO bond length
decreases monotonically, getting shorter than in the isolated
molecule for both the Mn and Fe complexes, which also
show positive QL values. Simultaneously, QM passes through

Table 3. Geometric, QTAIM Integrated Properties, and
IQA Interactions for the d8 D3h [Mn(CO)5]-, Fe(CO)5,
[Co(CO)5]+, and Ru(CO)5 Complexesa

M Mn Fe Co Ru

d(MC)ax 1.937 2.061 2.176 2.047
d(MC)eq 1.822 1.875 2.251 2.043
∆d(CO)ax 0.013 -0.002 -0.011 0.000
∆d(CO)eq 0.030 0.008 -0.009 0.006
∆νax -192 -11 140 -50
∆νeq -360 -188 0 -113
QM 0.678 0.570 0.852 0.515
Qax

L -0.192 -0.034 0.036 -0.061
Qeq

L -0.431 -0.156 0.025 -0.139
∆Qax

C -0.155 -0.118 -0.051 -0.136
∆Qeq

C -0.369 -0.232 -0.050 -0.209
δax

MC 0.750 0.521 0.365 0.834
δeq

MC 1.100 0.933 0.377 0.955
δax

MO 0.110 0.059 0.030 0.106
δeq

MO 0.158 0.123 0.032 0.126
δaxeq

CC 0.105 0.069 0.038 0.055
∆δax

CO -0.186 -0.028 0.012 -0.076
∆δeq

CO -0.234 -0.067 0.018 -0.055
Eint

MLax -0.204 -0.130 -0.094 -0.203
Eint

MLeq -0.318 -0.231 -0.087 -0.226
Eint

MCax 0.009 0.029 0.125 -0.042
Eint

MCeq -0.095 -0.065 0.119 -0.078
∆Eint

COax 0.153 0.214 0.069 0.226
∆Eint

COax 0.309 0.344 0.059 0.317
Vcl

MLax -0.024 -0.010 -0.012 -0.007
Vcl

MLeq -0.048 -0.002 -0.006 -0.004
Vcl

MCax 0.178 0.143 0.204 0.144
Vcl

MCeq 0.159 0.151 0.197 0.132
∆Vcl

COax 0.124 0.225 0.084 0.230
∆Vcl

COeq 0.269 0.354 0.074 0.330
Vxc

MLax -0.180 -0.120 -0.081 -0.195
Vxc

MLeq -0.270 -0.227 -0.081 -0.222
Vxc

MCax -0.169 -0.114 -0.078 -0.185
Vxc

MCeq -0.254 -0.215 -0.078 -0.210
∆Vxc

COax 0.031 -0.010 -0.014 0.003
∆Vxc

COeq 0.041 -0.009 -0.014 -0.012

a HF data in atomic units, except distances in Å and
frequencies in cm-1.

Table 4. Geometric, QTAIM Integrated Properties, and
IQA Interactions for the d6 Oh [Ti(CO)6]2-, [V(CO6)]-,
Cr(CO)6, [Mn(CO)4]+, and [Fe(CO)6]2+ Systemsa

M Ti V Cr Mn Fe

d(MC) 2.036 1.986 2.012 2.159 2.225
∆d(CO) 0.041 0.023 0.005 -0.008 -0.016
∆ν -495 -288 -108 57 148
QM 1.461 1.188 0.930 0.994 1.153
QL -0.574 -0.361 -0.154 0.002 0.141
∆QC -0.509 -0.352 -0.162 -0.071 -0.118
δMC 0.622 0.739 0.680 0.444 0.374
δMO 0.092 0.111 0.098 0.045 0.032
δCC 0.140 0.106 0.067 0.039 0.050
∆δCO -0.225 -0.175 -0.124 -0.012 0.156
Eint

ML -0.324 -0.267 -0.192 -0.113 -0.090
Eint

MC 0.071 0.060 0.067 0.137 0.156
∆Eint

CO 0.416 0.343 0.150 0.082 0.218
Vcl

ML -0.187 -0.096 -0.034 -0.013 -0.004
Vcl

MC 0.200 0.221 0.216 0.232 0.239
∆Vcl

CO 0.376 0.319 0.135 0.093 0.272
Vxc

ML -0.138 -0.171 -0.158 -0.099 -0.085
Vxc

MC -0.130 -0.161 -0.149 -0.095 -0.082
∆Vxc

CO 0.041 0.025 0.015 -0.010 -0.053

a HF data in atomic units, except distances in Å and
frequencies in cm-1.
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a minimum in the Cr complex. Notice how, as QL goes from
negative to positive, ∆QC becomes decoupled from it. The
double negative Ti anion has the largest positive metal charge
and the most negatively charged CO species of all the
examples examined up to now. However, both δMC and δMO

and their Vxc covalent energy counterparts clearly show that
back-bonding in these Oh complexes has saturated at the
vanadium complex, and that in titanium the approach of the
six carbonyls is only possible at a slightly larger MC final
distance. This is accompanied by a quite large intercarbonyl
delocalization, as measured by δCC. Another way to look at
the same saturation stems from the metal localization index,
λTi ) 18.39. This parameter grows monotonously up to 23.69
in the Fe hexacarbonyl. Only about 18 electrons (its [Ar]
core) are localized in the Ti atomic basin as far as two-center
delocalizations are regarded, so all of the valence has been
used in bonding to a first approximation. This effect may
explain the unexpectedly large TiC distance.

The Oh systems show very large M charges, thus positive
total Eint

MC values independently of the value of QL. This
behavior is different from that found in our previous example
and makes the MO interaction decisive in accounting for
the negative Eint

ML values and the stability of the complexes.
We want to stress that, as we go from the tetra- to the
hexacarbonyls, the value of Eint

ML turns out to be a function
of the net charge of the complex and its coordination. For a
given total charge of -2, -1, 0, +1, and +2, its most
negative value, -0.34, -0.31, -0.23, -0.11, and -0.09 Eh,
is attained for the [Fe(CO)4]-2, [Mn(CO)5]-, Fe(CO)5,
[Mn(CO)6]+, and [Fe(CO)6]2+ complexes, respectively. Thus,
the ML interaction is most favorable for middle 3d metals,
low coordinations, and negatively charged complexes. How-
ever, as the total charge becomes positive, higher coordina-
tions become preferable (notice that we have only one
dication in this series).

We also notice that the covalency of the MC interaction
decreases on going from anions to cations (as back-bonding
arguments suggest) for any coordination, except in
[Ti(CO)6]2-, for which we have already suggested a satura-
tion phenomenon. Moreover, the MC Vxc decreases with
coordination, and as we move from tetra- to hexacarbonyls,
the ML link becomes more ionic, as measured by Vcl

ML. This
is a very well-known bonding tendency in solid state physics,
where larger coordination phases tend to be more ionic and,
in fact, a simple consequence of Pauling’s rules. Overall,
Vcl

ML is negligibile, except in penta- and hexacoordinated
anions, where Vxc

ML peaks, so almost all of the ML stabiliza-
tion energy comes from covalent contributions that may be
small in cations.

With all the above arguments, the changes in the CO
quantities of our M(CO)6 molecules are easily rationalized.
As seen in Table 4, both ∆d (CO) and ∆Vxc

CO are negative in
the Mn and Fe molecules. Their stronger CO links do also
display a positive CO net charge with rather small negative
QO and small δMO, thus very small back-bonding. As we
will explore in the next section, both the change of sign and
the decrease in magnitude of the CO polarity are signatures
of this behavior.

6. Nonclassical Carbonyls

Let us start by considering the d8 square planar [Ni(CO)4]2+

and [Pd(CO)4]2+ 16-electron complexes. Table 5 summarizes
our results. A first look confirms our previous observations:
shortening instead of lengthening of d (CO), large metal
positive topological charges, positive but small total net
charge for the carbonyl ligands, relatively small MC delo-
calization indices coupled to very small δMO or back-bonding,
and positive ∆δCO. Energetically, we find positive MC
interaction energies with large negative Eint

MO and not too large
covalent contributions that point to important MC ionicity,
and as far as the CO ligand is regarded, larger covalency
than in free CO. This provides an image in which almost all
the characteristics of standard carbonyls have been reversed.
Notice how, as we move from anionic to cationic species,
the overall Vcl

ML passes from negative values to even
destabilizing interactions, here exemplified by the [Pd-
(CO)4]2+ system. Its only overall stabilizing ML term is Vxc

ML,
clearly dominated by the MC contribution.

Since there are a number nonclassical mono- and dicar-
bonyl cations traditionally considered as nonclassical, we
have performed CASSCF calculations on some of them to
ascertain the role of at least static correlation on the IQA
energetic quantities of these complexes. Our results are
gathered in Table 6.

Most of our previous findings apply unchanged. However,
caution is necessary when comparing the CASSCF free CO
quantities with those found in the complexes, since the
limited amount of correlation accounted for does not affect
the CO moiety in the same manner when isolated or
interacting. Even with this in mind, we clearly see a
shortening of the CO bond length in all the cases, positive
CO net charges that increase with the coordination index,
relatively small MC delocalization indices, and very low
δMO’s, except in the gold complexes, which display a large
covalency in the MC link and behave differently, see below.
These systems do also show negative ∆Vxc

CO values and lowly
polarized CO ligands with larger CO total interactions. In
the dicarbonyls, ∆Eint

CO and even ∆Vcl
CO may become negative.

Notice that the total ML interaction energies are not small,
peaking at -109 kcal/mol for the Au(CO)+ molecule, and
that the general behavior of the HCO+ system parallels rather
closely that of the gold compounds.

A comparison among the Cu, Ag, and Au compounds, on
one hand, and of mono- and dicarbonyls, on the other, is

Table 5. Geometric, QTAIM Integrated Properties, and
IQA Interactions for the d8 Square Planar [Ni(CO)4]2+ and
[Pd(CO)4]2+ Complexesa

M Ni Pd Ni Pd

d(MC) 2.126 2.131 QM 1.490 1.104
∆d(CO) -0.019 -0.020 QL 0.128 0.224
∆ν 172 120 ∆QC -0.057 0.035
δMC 0.383 0.614 Eint

ML -0.091 -0.101
δMO 0.026 0.050 Eint

MC 0.264 0.171
∆δCO 0.092 0.069 ∆Eint

CO 0.107 0.080
Vcl

ML -0.004 0.042 Vxc
ML -0.087 -0.143

Vcl
MC 0.348 0.309 Vxc

MC -0.084 -0.138
∆Vcl

CO 0.146 0.118 ∆Vxc
CO -0.038 -0.036

a HF data in atomic units, except distances in Å and
frequencies in cm-1.
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interesting by itself. Our data provide a fresh new perspective
to some reported observations. For instance, it has been
found23 that the Cu and Ag dicarbonyls display larger
electron and energy densities at the MC bond critical point
than those in the monocarbonyls, but that the contrary is true
for the Au compounds. This is interpreted in terms of larger/
smaller covalent contributions using the empirical correlation
between these quantities. Our Vxc

MC and Vxc
ML values provide

direct support to these claims, being larger in the dicarbonyls
except for the Au systems. There is also consensus about
significant back-donation in Au(CO)+, small back-donation
in Cu(CO)+, and negligible back-donation in Ag(CO)+. Our
δMO and Vxc

MO support this statement.
However, a rather constant argument in the literature

ascribes a mainly electrostatic character to the ML link in
Ag(CO)+, for instance. Our analysis allows us to pinpoint
the nature of this claim by using either the atomic or
functional group point of view for the CO ligand. The overall
AgC interaction energy is positive, thus destabilizing, by 58
kcal/mol, a result coming from a large electrostatic repulsion
associated with 113 kcal/mol and a significant covalent
interaction of -55 kcal/mol. It is only in this sense that the
AgC link is mainly ionic in nature: it is the MO electrostatic
attraction associated with an energy of -106 kcal/mol (and
a weak covalent term of -2 kcal/mol) which leads to the
overall negative AgL interaction of -50 kcal/mol. Shifting
to the functional group view of the carbonyl ligand, as is
usually done, the picture changes dramatically, for the overall
Vcl

ML is now very small, +7 kcal/mol, and it is not electrostat-
ics, but covalency, which binds the system.

The nature of the stiffening of the CO interaction in
nonclassical carbonyls may also be explored with our
procedure. We have thus performed equivalent CASSCF
calculations to those presented in Table 6 in the HCO+ and
COH+ systems for several HC or OH distances and relaxed
CO bond lengths. Table 7 gathers the most interesting results.

First, the effect of the electric field imposed by the H proton
is clear, and the polarization of the CO group is quite
different in both cases. The proton is shielded much more
efficiently in the HCO+ case, as the QH value shows, even
though it approaches the CO moiety toward the positively
charged end. This already points toward covalency as an
important factor in accounting for the stiffening phenomenon,
more important for a HC interaction than for a HO one due
to the smaller electronegativity difference between the atoms
in the first case. Notice that the CO distance decreases from
the isolated CO molecule in the HCO+ case, but increases
in the COH+ one.

The origin of this very different behavior may be traced
to the HC and HO delocalization indices in Table 7, which
have a huge impact on δCO. The latter is much smaller in
the COH+ system, and this propagates the covalent energies,
which are more stabilizing than those in the free CO molecule
for the HCO+ case and considerably less stabilizing in COH+.
Notice how, from all the data contained in the table, the
behavior of ∆δCO and ∆Vxc

CO stands out. As found before,
δ’s are very sensitive indicators of the CO behavior. The
CO stiffening in HCO+ is thus a covalent effect, which as
our examples show, and in agreement with Lupinetti and
co-workers,23 is triggered by the particular polarization
pattern generated by an RCO+ arrangement, characterized
by a smaller CO charge separation than in COR+. We want
to stress that, as found in other IQA studies,36 bond lengths
and probably force constants are strongly correlated to the
Vxc component of the interaction energy. We can see that
the CO electrostatic contribution is clearly more stabilizing
in the COH+ arrangement, and that even the total Eint

CO may
exceed that found in HCO+. However, the general d-1

distance dependence of Vcl makes this term vary more slowly
than Vxc, which changes exponentially with the distance of

Table 6. HCO+, Together with the d10 Linear Cu(CO)+,
Ag(CO)+, Au(CO)+, [Cu(CO)2]+, [Ag(CO)2]+, and
[Au(CO)2]+ Data, in This Order, Calculated at the CASSCF
Level with MP2 Geometries, as Described in the Texta

M H Cu Ag Au Cu Ag Au

d(MC) 1.090 1.967 2.311 1.975 1.937 2.234 2.006
∆d(CO) -0.015 -0.007 -0.006 -0.006 -0.006 -0.005 -0.007
∆ν 13 95 77 90 107 120 119
QM 0.414 0.887 0.889 0.782 0.786 0.768 0.645
QL 0.586 0.114 0.111 0.220 0.108 0.118 0.179
∆QC 0.281 -0.033 -0.011 0.043 0.030 0.113 0.151
δMC 0.687 0.567 0.434 0.975 0.573 0.483 0.855
δMO 0.058 0.036 0.026 0.080 0.039 0.032 0.072
∆δCO 0.007 0.046 0.052 -0.031 0.109 0.144 0.123
Eint

ML -0.090 -0.115 -0.079 -0.173 -0.121 -0.088 -0.166
Eint

MC 0.034 0.077 0.093 0.004 0.069 0.087 0.015
∆Eint

CO 0.115 0.102 0.071 0.119 -0.004 -0.107 -0.099
Vcl

ML 0.129 0.014 0.011 0.057 0.014 0.016 0.043
Vcl

MC 0.247 0.202 0.180 0.226 0.200 0.188 0.216
∆Vcl

CO 0.146 0.118 0.086 0.132 0.011 -0.092 -0.084
Vxc

ML -0.220 -0.129 -0.090 -0.231 -0.135 -0.104 -0.209
Vxc

MC -0.213 -0.125 -0.087 -0.223 -0.131 -0.101 -0.201
∆Vxc

CO -0.031 -0.016 -0.015 -0.013 -0.015 -0.015 -0.014

a All data in atomic units, except distances in Å and frequencies
in cm-1. CASSCF//MP2 data for isolated CO: d(CO) ) 1.147, QC

) 1.188, ν(CO) ) 2137 cm-1, δCO ) 1.384, Eint
CO ) -1.711, Vcl

CO )
-1.295, and Vxc

CO ) -0.416.

Table 7. Topological Charges, Sharing Indices, and IQA
Properties for the CASSCF Descriptions of HCO+ and
COH+ as the HC or OH Distances (d) Are Varied with
Respect to Their Respective Equilibrium Values: ∆d ) d -
deq

a

HCO+

∆d -0.2 -0.1 0.0 0.1 0.2 0.3
∆d(CO) -0.002 -0.001 0.000 0.004 0.005 0.005
QL 0.699 0.574 0.521 0.554 0.529 0.511
∆QC 0.418 0.302 0.257 0.268 0.248 0.234
QH -0.301 0.426 0.477 0.443 0.469 0.488
δHC 0.884 0.791 0.744 0.650 0.615 0.584
∆δCO 0.042 0.054 0.059 0.011 0.010 0.010
∆Eint

CO 0.048 0.068 0.067 0.086 0.082 0.079
∆Vcl

CO 0.083 0.104 0.103 0.121 0.116 0.112
∆Vxc

CO -0.035 -0.036 -0.036 -0.035 -0.034 -0.033

COH+

∆d(CO) -0.001 0.000 0.000 0.000 0.000 0.001
QL 0.410 0.324 0.270 0.232 0.202 0.190
∆QC 0.274 0.263 0.252 0.242 0.231 0.220
QH 0.590 0.675 0.730 0.770 0.800 0.811
δHO 0.595 0.484 0.403 0.343 0.297 0.276
∆δCO -0.255 -0.269 -0.218 -0.200 -0.182 -0.168
∆Eint

CO 0.104 0.079 0.067 0.062 0.059 0.061
∆Vcl

CO 0.022 0.000 -0.008 -0.009 -0.008 -0.002
∆Vxc

CO 0.083 0.079 0.075 0.071 0.067 0.063

a CO distances for the optimum HCO+ and COH+ molecules
are 1.119 and 1.166 Å and should be compared to the isolated
CASSCF CO one, 1.150 Å. All data in atomic units, except
distances in Å.
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the two centers. Larger classical terms at the expense of
covalent contributions, as found in this case, usually lead to
larger bond lengths and smaller force constants. Similar
polarizations are obtained if the H atom is substituted by a
positive point charge.

A comment on the values of δ upon inclusion of electron
correlation is needed. It is now known that electron correla-
tion tends to localize electrons in atomic basins beyond the
HF independent electron model, so the number of effective
pairs of electrons participating in bonding decreases, some-
times dramatically.35 In this work, for instance, free δCO

changes from 1.51 (HF) to 1.38 (CASSCF) on including our
limited amount of correlation. Simple density functional
calculations provide a much larger value, about 1.7, as seen
in the caption of Table 2. This is due to the pseudo-single-
determinant structure of the KS description, and to the
smaller CO bond length predicted at this level of theory. A
definitive value for CO is lacking, but δ changes are well
reproduced by any description, as we are seeing.

We have also performed a comparison of the IQA
descriptions for these linear carbonyls when several levels
of theory are employed, including the approximate DFT
descriptions previously described. Table 8 contains a survey
of topological charges and sharing indices for the [Ag(CO)2]+

and [Au(CO)2]+ systems at the DFT level, with several
density functionals to be compared with the CASSCF data
contained in Table 6. Notice that introducing HF exchange
increases, in general, the topological net charge of C and O
and approaches the CASSCF values, which include a very
limited amount of correlation (compare with the HF column).
Any functional provides noticeably larger delocalization
indices than our CASSCF results, with δCO close to 1.8. A
comment on this large value has already been made in this
paper. The DFT data also confirm how electron correlation
increases back-donation, as measured by δMO, in agreement
with general knowledge.

7. Discussion and Conclusions

The results explored in the previous sections show that the
IQA view provides a real space image of bonding in simple
metal carbonyls that is compatible with existing knowledge.

Overall, IQA interactions show several general features that
deserve further comment.

Most, if not all, of the IQA quantities show a very clear
dependence on the total net charge and coordination of the
complexes examined. As far as the ML interaction is
concerned, for instance, Tables 1-6 show that Vcl

ML is
basically controlled by the stoichiometry. As we move from
mono- to hexacoordinated complexes, there is a clear
tendency for the ML classical interaction to progress from
destabilizing to stabilizing values. For a given stoichiometry,
it evolves toward increasing stabilization as the net charge
of the complex passes from positive to negative values. These
trends are a result of the expected increase that QM

experiences as both the coordination index and the net charge
of the complex grow. ML covalency, measured by Vxc

ML, is
again dependent on both parameters, but here a more subtle
balance takes place. On one hand, larger coordinations
saturate the metal binding ability, so Vxc

ML per ML link tends
to decrease on going from mono- to hexacoordinated
molecules. On the other hand, extra electrons minimize this
saturation tendency, so the largest ML covalent energies
appear on the negatively charged tetrahedral carbonyls. As
a result of this interplay, except in the octahedral compounds,
the total Eint

ML is dominated by covalency, and its largest values
(which are always stabilizing) again occur for negatively
charged tetrahedral, pentacoordinated, and octahedral sys-
tems, where large π-back-bonding exists. Similarly, the
smallest total ML interactions are found in some positively
charged complexes.

The change in the local properties of the CO moiety upon
bonding has played a dominant role in the chemistry of metal
carbonyls. We have found almost a full match between
traditional thinking and the IQA relaxation quantities for CO.
Figure 1 shows the change in the CO interaction parameters
upon bonding. There, it is clear that the total CO interaction
becomes clearly destabilized upon formation of the com-
plexes, except in the Ag and Au dicarbonyls, and that this
effect is overwhelmingly dominated by the change suffered
by the electrostatic component, ∆Vcl

CO, which may be obtained
by subtracting the much smaller xc component of the lower
diagram. Polarization of the CO charge density upon
coordination (which includes a charge transfer component)
becomes the dominant energetic effect in CO. This conclu-
sion is not affected much by the inclusion of ∆Eself for the
C and O atoms, which is almost always negative, so the total
CO deformation is generally positive, with minima appearing
when QM is smallest for each stoichiometry. The change in
the CO covalency, shown in the lower diagram of Figure 1,
has been discussed in a coordination-like manner in previous
sections. Here, it serves us to show that it is the change in
the CO covalency which correlates with the CO distance and
stretching frequency. So, despite the large electrostatic
contributions due to MTL charge transfer and polarization,
it is electron sharing, i.e., electronic effects, which determines
the basic signature of ML bonding.

Finally, we will consider an interesting correlation shown
by our data.33,34,42 As already commented upon, the value
of δMO, expected to include negligible σ contributions, has
been proposed as a measure of the intensity of π-back-

Table 8. Topological Charges and Sharing Indices for
Several DFT Descriptions of the [Ag(CO)2]+ and
[Au(CO)2]+ Systems, Together with HF Data, All of Them
at the MP2 Geometrya

B3LYP BLYP BLYP-LC M06-l M06 M06-HF HF

QAg 0.711 0.695 0.701 0.728 0.706 0.739 0.770
QC 1.189 1.147 1.176 1.187 1.208 1.237 1.338
QO -1.044 -0.995 -1.027 -1.050 -1.060 -1.107 -1.223
δAgC 0.576 0.610 0.579 0.573 0.573 0.510 0.482
δAgO 0.063 0.074 0.059 0.069 0.060 0.046 0.042
δCC 0.013 0.017 0.011 0.013 0.012 0.006 0.005
δCO 1.795 1.840 1.815 1.782 1.769 1.748 1.599
QAu 0.624 0.622 0.612 0.650 0.638 0.596 0.652
QC 1.200 1.152 1.190 1.193 1.209 1.272 1.371
QO -1.012 -0.962 -0.996 -1.017 -1.028 -1.070 -1.196
δAuC 0.948 0.979 0.941 0.953 0.942 0.880 0.849
δAuO 0.119 0.133 0.111 0.127 0.114 0.092 0.085
δCC 0.047 0.055 0.042 0.047 0.040 0.034 0.027
δCO 1.748 1.791 1.772 1.737 1.732 1.709 1.559

a All data in atomic units.
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bonding in these systems.5,25 We similarly expect that Vxc
MO

will extract its energetic content. Figure 2 shows a nice linear
correlation between these two quantities. The largest and
smallest covalent energies and delocalization indices cor-
respond to negatively and positively charged complexes,
respectively. We must again stress that the small value of
the energies involved, smaller than 15 kcal/mol, does not
measure the energetic intensity of π-back-donation. It will
always be the Vxc

MC component, mixed with σ donation, that
dominates. Anyway, our data show that δMO, much easier
to compute than Vxc

MO, may be used safely to measure π-back-
donation. We will corroborate this in a forthcoming paper
in which Vxc’s and δ’s will be decomposed using DAFHs.

To conclude, we have applied the interacting quantum
atoms approach (IQA) within the QTAIM to explore chemi-
cal bonding in real space in simple transition metal carbonyls.
This is the first time that such an energetic viewpoint is
provided for TM complexes, thanks to recent protocols
devised to deal with effective core potentials in the IQA
scheme.43

We have explored several classical and nonclassical
compounds, with different stereochemistries, and at different
levels of theory. As a general conclusion, the bonding image
provided by our procedure does not change qualitatively with
the inclusion of electron correlation, as noticed by other
authors, and is consistent with previous knowledge. It
however sheds light on some issues by providing an orbital
invariant energetic description of the several metal-carbonyl
interactions.

The topological charges of the metal have been found to
be positive in all the systems examined, even in dianions.
This is known, but clearly shows that formal oxidation states
must be taken with care. As expected, π-back-donation in
the standard DCD model accounts reasonably well for our
findings, being cleanly related to the amount of electron
sharing between the metal and the oxygen atom of each
carbonyl group. Negative or neutral complexes show the
traditional CO bond length elongation, accompanied by a
decrease in both the CO bond order and the covalent energy
of the CO bond. Interestingly, our analyses point toward non-
negligible multicenter character of the ML bonds, and several
carbonyl groups may be involved in it when back-bonding
is prominent, as revealed by unexpectedly large intercarbonyl
CC delocalization indices. This issue needs to be further
explored and will be the subject of further studies.

Covalency dominates the ML link and decreases on going
from anions to cations for a given coordination and decreases
as coordination increases. Simultaneously, the metal to ligand
electrostatic interaction becomes more stabilizing on going
from tetra- to hexacarbonyls, mimicking well-known solid
state physics behaviors. Vcl

ML, although smaller than Vxc
ML,

covers a rather full spectrum, from rather stabilizing (up to
-120 kcal/mol) in negatively charged hexacarbonyls, passing
through practically electroneutral in most tetrahedral com-
pounds, to clearly destabilizing in some nonclassical systems.
It is particularly interesting that the latter, which were
originally thought to be mainly bonded by electrostatic
forces, tend to be those systems which would not be stable
without covalent contributions.

The IQA description of nonclassical carbonyls recovers
many of the features already reported using other bonding
analyses, showing that these features are rather robust, for
instance, the larger covalency of the [Ag(CO)2]+ system with
respect to the Ag(CO)+ one and the reverse behavior of the
gold cases. The stiffening of the CO bond is neatly revealed
by larger covalent contributions for the CO interaction than
those found in the isolated carbon monoxide molecule, even
though the energetic changes derived from CO repolarization
(as measuered by ∆Vcl

CO) are much larger. Stiffening is thus
shown not to be a simple consequence of the electrostatic
field imposed by the metal positive net charge, but of the
complex reorganization of the CO moiety induced by it.

Figure 1. Comparison of the behavior of ∆Vcl
CO (upper

diagram) and ∆Vxc
CO (lower diagram) versus the ligand topo-

logical charge (QCO) for the carbonyls examined in this work.
Systems have been gathered by symmetry and stoichiometry,
and a color code has been added to identify the total net
charge of the complex.

Figure 2. Correlation between Vxc
MO and δMO for the systems

studied in this work. The total net charge of the complexes is
indicated by the same color code used in Figure 1.
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The energetic perspective provided by IQA may thus be
added to the toolkit that the modern theory of chemical
bonding in real space provides in transition metal chemistry.
By adding interaction energy terms to other well tested
indices, it may provide new insights into the field.
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Abstract: A new message passing interface/open multiprocessing (MPI/OpenMP) hybrid parallel
algorithm of the Hartree-Fock calculation is developed and implemented into the quantum
chemistry program package GAMESS. In the algorithm, internode distribution is performed by
MPI and intranode parallelization by OpenMP. It is applied to a TiO2 cluster (Ti35O70, 6-31G,
1635 basis functions) and to insulin (C257H381N65O77S6

2-, STO-3G, 2430 basis functions) using
the Cray XT5 supercomputer (quad-core Opteron 2.3 GHz, 2048 CPU cores). The speed-ups
of the whole calculations, including the initial guess generation, are 1238 and 745 using 2048
CPU cores for the TiO2 cluster and insulin, respectively. Hartree-Fock calculations with hundreds
or thousands of CPU cores are now practical.

1. Introduction

Quantum chemistry calculations have played important roles
for analysis and prediction of chemical reactions, molecular
spectra, and so on. Calculated molecular systems are becom-
ing larger and larger, and large and complicated systems,
such as nanomaterials, self-assembled materials, and biologi-
cal materials, are now challenging targets. Such systems
could introduce unique properties owing to the steric effects
with bulky substituents or to a lot of noncovalent interactions,
such as dispersions and hydrogen bonds, although the high
computational cost is required. Because the size is one of
the important factors, calculations of realistic systems are
necessary. Several approaches have been proposed to make
these calculations possible for large molecules. These ap-
proaches could be categorized into mostly two different ways,
the reduction of computational costs and the acceleration of
calculations. While most of the former are based on modeling
by dividing large systems into several or many parts, the
latter uses high-performance accelerators or a number of
computers.

One of the approaches is the quantum mechanical/
molecular mechanical (QM/MM) method1,2 in which a
system is divided into a small reaction center as the QM
region and the other as the MM region. The ONIOM
method3,4 divides a molecular system into two or three layers

which are treated with different methods and basis sets. These
methods can reduce the computational costs by dividing a
large molecular system and calculating the important part
with a high-level method and the others with a low-level
method. A different approach to divide a system into small
fragments, called the fragment molecular orbital (FMO)
method,5,6 is also developed, which is especially suitable to
proteins. The total computational cost can be reduced because
the cost of each fragment is low. However, these methods
include approximations or cut-offs, and their accuracies have
been discussed by changing computational models or by the
combination of computational methods.7,8

On the other hand, parallel calculations using central
processing units (CPUs), graphics processing units (GPUs),
and accelerators are now common because the performance
improvement of single CPU cores almost stopped due to heat
and power problems. GPUs9–14 and accelerators15 are applied
to Hartree-Fock (HF), density functional theory (DFT), and
quantum Monte Carlo (QMC) calculations. Many efforts
have been made for effective GPU computation, for instance,
the use of both single- and double-precision values to
minimize numerical errors, and the sorting of bra- and ket-
pairs for two-electron repulsion integrals (2-ERIs) to utilize
the Schwartz screening16 and to calculate ERIs of same type
together.

We can now use hundreds or thousands of CPU cores of
supercomputers and PC clusters, and the number of available* Corresponding author. E-mail: e1502@mosk.tytlabs.co.jp.
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CPU cores is increasing. Recent supercomputers have more
than 100 000 CPU cores.17 The parallel efficiency has to be
raised for such computer systems by improving the load-
balancing and parallelization ratio. Furthermore, large memory
space is required for electron correlation calculations, such
as perturbation and coupled cluster theories. If only the
message passing interface (MPI), which is the most com-
monly used method, is applied to parallel calculations, the
available memory space per process becomes small, because
each CPU core allocates each array.

One of the solutions for these problems of CPU parallel
calculations is global memory access models such as global
arrays18,19 and distributed data interface (DDI)20 in which
data of other nodes can be accessed through network
communication. Another solution is to introduce open
multiprocessing (OpenMP), which is a method of intranode
parallelization. This supports dynamic load balancing and
memory array sharing within a node. OpenMP parallelization
has been applied to ab initio calculations21–23 for multicore/
multisocket shared-memory processors. Moreover, the com-
bination of MPI and OpenMP can improve the parallel
efficiency and available memory size, in which internode
parallelization is performed by MPI and intranode parallel-
ization by OpenMP. The MPI/OpenMP hybrid parallelization
makes large molecular calculations using a high level of
theory possible without errors caused by approximate models.
The hybrid parallelization has been introduced into various
calculations, QMC,24 tight-binding,25 four-atom QM,26 and
Car-Parrinello molecular dynamics.27 A similar approach,
the combination of Linda and OpenMP, has been imple-
mented into the Gaussian program package.28 Another
approach, the combination of MPI and Pthreads,29 has been
employed to a four-index transformation of 2-ERIs for
electron correlation methods in the massively parallel
program suite MPQC.30 Communication bottlenecks are
avoided by creating computation and communication threads
and overlapping them.

The distribution of the 2-ERI calculation is one of the most
important steps to apply the hybrid parallelization to quantum
chemistry calculations. In this study, the MPI/OpenMP
hybrid parallelization technique is introduced to the HF
calculation, which is the basic theory of quantum chemistry.
For self-consistent field (SCF) calculations, efficient distrib-
uted data parallel algorithms31,32 have been proposed for
distributed memory platforms. Our target is to calculate
nanosize molecules which consist of hundreds of atoms using
hundreds or thousands of CPU cores. For such computer
systems, network communication could be a critical bottle-
neck. Therefore, we employ replicated data parallelization
to reduce and control communication. Furthermore, the initial
guess calculation is also parallelized and accelerated to
improve the parallel efficiency of the whole calculation. On
the basis of the HF parallelization, algorithms of DFT and
electron correlation theories will be developed for large
molecules, and most calculations based on the QM method
will become faster.

2. Algorithm

The HF calculation mainly consists of the initial guess, Fock
matrix generation, and new MO coefficient generation from
the Fock matrix. The most time-consuming step is the Fock
matrix F generation from the 2-ERI (µν|λσ) and the density
matrix D,

where � and H denote the contracted basis function and the
one-electron integral matrix, respectively.

A new parallel algorithm for the 2-ERI generation is shown
in Figure 1. 2-ERIs are generated in the quadruple loop of
basis shells, Μ, Ν, Λ, and Σ. Indices of the first loop are
distributed in intranode by OpenMP and indices of the third
loop are distributed in internode by MPI ranks. At the
beginning of a calculation, MPI ranks are set to each process.

The OpenMP parallelization is performed at the outermost
loop to reduce OpenMP overheads, such as thread generation
and data copy. The dynamical distribution and the order of
the loop index from a large to a small task are applied to
obtain better load balancing. The Fock matrix is allocated
by each thread before the quadruple loop and accumulated
to the master thread after the loop. Other valuables in the
loop are distinguished into shared and private ones. Basis
functions, coordinates, molecular orbital, and density matrices
are shared with all threads in a process, and blocks of 2-ERIs
and intermediate valuables are not shared. Therefore, all large
arrays except for the Fock matrix are shared in a node, and
data synchronization of threads is not needed during the

Figure 1. MPI/OpenMP hybrid parallel algorithm for two-
electron integral generation.

(µν|λσ) ) ∫ �µ(r1)�ν(r1)�λ(r2)�σ(r2)

r1 - r2
dr1dr2 (1)

Fµν ) Hµν + ∑
λσ

Dλσ{2(µν|λσ) - (µλ|νσ)} (2)
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quadruple loop. Shared valuables are set as common or
module ones, and private valuables are set as subroutine
arguments of the Fortran language.

The third loop is chosen for the parallelization by MPI
ranks from the balance between the parallel granularity and
the cost, because the granularity of divided tasks becomes
small in an inner loop and the cost of distribution, such as
counters, becomes large in an inner loop. To reduce the cost
of distribution, an if clause is not used, and the counter is
located in the second loop. After the calculation finishes in
all processes, the Fock matrix is accumulated, and all
processes have the full Fock matrix.

In the initial guess calculation, the extended Hückel (EH)
calculation is performed, and the obtained orbitals are
projected from the basis for the EH calculation to the basis
for the HF calculation. The following formula33 including
many matrix-matrix multiplications is used to make paral-
lelization easy and to reduce the number of floating opera-
tions, which is used in the parallel quantum solutions (PQS)
program suite:34

where C1 is the initial guess molecular orbital (MO)
coefficient for the HF calculation, C2 is the EH MO
coefficient, S11 is the overlap integrals of the basis for the
HF calculation, and S12 is the overlap integrals of the bases
between the HF and the EH calculations.

The Fock matrix diagonalization is performed only at the
first and last iterations. During HF iterations, an approximate
second-order self-consistent field (SOSCF) method35,36 is
applied to reduce the number of matrix diagonalizations
because linear algebra package (LAPACK) routines are
parallelized only in intranode.

Intranode parallelization of matrix-matrix multiplications
and diagonalization is achieved using thread-parallel basic
linear algebra subprograms (BLAS) and LAPACK libraries.
In the calculation of matrix-matrix multiplications, columns
of the matrix on the right side are distributed to each process,
and the result of each process is collected to the master
process. The diagonalization calculation is performed only
in the master process, and then obtained molecular energies
and orbitals are distributed to all processes.

3. Results and Discussion

The algorithm was implemented into the quantum chemistry
program package GAMESS37 version April 2008. Bench-
mark calculations on Cray XT5 (Opteron 2.4 GHz Shanghai
core, 512 KB L2-Cache and 6 MB shared L3-Cache, 8 CPU
cores per node) 2048 CPU cores were performed using a
TiO2 cluster (Ti35O70, 6-31G, 1645 basis functions) as a
complicated system including d electrons and insulin
(C257H381N65O77S6

2- (PDB code: 1HIU),38 STO-3G, 2430
basis functions) as a simple system in which only s and p
basis functions are used. The computer has a PGI Fortran
compiler-8.0.2, LIBSCI-10.3.3.5 as a BLAS and LAPACK
library, and XT-mpt-3.1.2.1 based on MPICH2-1.0.6p1 as
an MPI library. The divide and conquer method39 is used
for diagonalization calculations. The threshold of the density

matrix convergence is set to be 1.0 × 10-4. The numbers of
SCF cycles for the TiO2 cluster and insulin are 30 and 45,
respectively.

Three kinds of parallel calculations were performed using
the following programs: the original GAMESS program
using only MPI, the developed programs using only MPI,
and MPI for internode and OpenMP for intranode. Eight
threads per process run were used in MPI/OpenMP hybrid
calculations.

The speed-up of the whole HF calculations for the TiO2

cluster is displayed in Figure 2. The calculations are
performed using from 16 to 2048 CPU cores. The speed-up
of 16 CPU cores is set to be 16, while the speed-up of 32
CPU cores is set to be 32 only for the original GAMESS of
insulin. The speed-up of this work (only MPI) is improved
in comparison with that of the original GAMESS (only MPI)
because the initial guess calculation is simplified. Moreover,
the speed-up of this work (MPI/OpenMP) is better than that
of this work (only MPI) because the load balancing is
improved by the MPI/OpenMP hybrid parallelization. It is
surprising that the MPI/OpenMP calculation keeps the scaling
performance even for 2048 CPU cores, though the parallel
efficiency of the original GAMESS drops for 512 or 1024
CPU cores.

The MPI/OpenMP algorithm improves not only the speed-
up but also the total computational (elapsed) time as shown
in Table 1. The difference between the original GAMESS
and this work (MPI/OpenMP) becomes large as the number
of CPU cores increases. The MPI/OpenMP algorithm ac-
celerates 1.6-3.7 times for 2048 CPU cores, while the
computational times of the TiO2 cluster for 16 CPU cores
are almost the same. The MPI/OpenMP hybrid parallelization
is achieved without increasing the computational cost.

Table 2 shows the computational time and speed-up of
the Fock matrix generation for TiO2 cluster and insulin. The
speed-up of this work (MPI/OpenMP) is better than that of
the original GAMESS, especially for over 512 CPU cores.
For instance, the computational time of TiO2 cluster is 174.8
s for 2048 CPU cores. Since the number of the SCF cycles
is 30, the time per cycle is 5.8 s. This indicates that to make
distributed tasks more equal by the hybrid parallelization is
quite important to achieve extremely good speed-up.

The original GAMESS takes much more time than either of
our two algorithms (only MPI, and MPI/OpenMP) for insulin.

C1 ) S11
-1S12C2{C2

t S12
t S11

-1S12C2}
-1/2 (3)

Figure 2. Speed-up of whole Hartree-Fock calculation for
TiO2 cluster.
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In the original, the if clause and the counter are used for the
distribution of the 2-ERI calculation in the third loop, and all
processes run until the if clause. A lot of 2-ERI are skipped by
the Schwartz screening because of the tight basis set, STO-3G,
and the computational cost for each integral is small. The cost
for the if clause and the counter becomes relatively high,
although that of the TiO2 cluster is negligible because the
computational cost of 2-ERI including d functions is large.
Therefore, the developed algorithm can drastically reduce the
computational time due to the simple distribution.

Table 3 summarizes the computational time and the ratio
of the initial guess calculation for the TiO2 cluster and the
insulin. In the original, the initial guess calculation occupies

about 37% of the total calculation time for 2048 CPU cores,
though the ratio is less than 1% for 16 CPU cores. The ratio
of this work (MPI/OpenMP) becomes about 5-11% even
for 2048 CPU cores because of the simple orbital projection.
The acceleration of the initial guess calculation contributes
to the speed-up of the total time. The parallelization and
acceleration of all steps are significant, and the initial guess
calculation is not a bottleneck of parallel HF calculations
for hundreds or thousands of CPU cores.

The computational time and the ratio of solving the
Hartree-Fock equation are shown in Table 4, in which the
diagonalization of the Fock matrix in the first and last
iterations, the approximate SOSCF calculation in other

Table 1. Computational Time (Second) and Speed-up (in Parentheses) of Whole Hartree-Fock Calculation

number of CPU cores 16 32 256 512 1024 2048

TiO2 Cluster
original only MPI 18 176.4 9223.1 1368.6 806.8 527.6 383.5

(16.0) (31.5) (212.5) (360.5) (551.2) (758.3)
this work only MPI 18 045.6 9111.8 1241.2 695.2 428.7 273.7

(16.0) (31.7) (232.6) (415.3) (673.5) (1054.9)
this work MPI/OpenMP 18 121.6 9052.4 1214.6 656.5 381.1 234.2

(16.0) (32.0) (238.7) (441.7) (760.8) (1238.0)

Insulin
original only MPI 18 289.3 3629.9 2586.8 2054.1 1793.7

(32.0) (161.2) (226.2) (284.9) (326.3)
this work only MPI 21 988.8 11 157.5 1765.0 1073.4 721.7 540.9

(16.0) (31.5) (199.3) (327.8) (487.5) (650.4)
this work MPI/OpenMP 22 377.1 11 337.6 1654.1 975.6 642.1 480.4

(16.0) (31.6) (216.5) (367.0) (557.6) (745.3)

Table 2. Computational Time (Second) and Speed-up (in Parentheses) of Fock Matrix Generation

number of CPU cores 16 32 256 512 1024 2048

TiO2 Cluster
original only MPI 17 881.8 8984.9 1175.2 614.0 334.0 188.6

(16.0) (31.8) (243.5) (466.0) (856.6) (1517.0)
this work only MPI 17 953.5 9038.3 1175.2 627.9 360.0 203.1

(16.0) (31.8) (244.4) (457.5) (797.9) (1414.4)
this work MPI/OpenMP 17 777.6 8903.9 1150.4 597.2 316.4 174.8

(16.0) (31.9) (247.3) (476.3) (899.0) (1627.2)

Insulin
original only MPI 16 856.3 2491.9 1455.6 928.3 665.9

(32.0) (216.5) (370.6) (581.1) (810.0)
this work only MPI 21 454.4 10 827.8 1504.6 814.0 456.7 272.7

(16.0) (31.7) (228.1) (421.7) (751.6) (1258.8)
this work MPI/OpenMP 20 664.9 10 392.8 1384.3 734.8 410.7 253.9

(16.0) (31.8) (238.8) (450.0) (805.1) (1302.2)

Table 3. Computational Time (Second) and Ratio (in Parentheses) of Initial Guess Calculation

number of CPU cores 16 32 256 512 1024 2048

TiO2 Cluster
original only MPI 163.7 151.6 142.0 141.2 141.7 141.9

(0.9%) (1.6%) (10.4%) (17.5%) (26.9%) (37.0%)
this work only MPI 17.9 16.4 16.9 17.2 17.4 17.7

(0.1%) (0.2%) (1.4%) (2.5%) (4.1%) (6.5%)
this work MPI/OpenMP 16.5 13.7 11.9 12.0 12.2 12.3

(0.1%) (0.2%) (1.0%) (1.8%) (3.2%) (5.3%)

Insulin
original only MPI 695.6 667.8 671.6 674.0 667.8

(3.8%) (18.4%) (26.0%) (32.8%) (37.2%)
this work only MPI 74.8 72.8 73.2 73.7 74.2 74.6

(0.3%) (0.7%) (4.1%) (6.9%) (10.3%) (13.8%)
this work MPI/OpenMP 68.6 59.1 52.8 52.6 53.0 53.3

(0.3%) (0.5%) (3.2%) (5.4%) (8.3%) (11.1%)
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iterations, and the new density matrix generation are
performed. The computational times of all algorithms are
reduced as the number of CPU cores increases because the
SOSCF calculation is originally parallelized by MPI. The
difference of the computational time for insulin cluster is
large for 2048 CPU cores. The dimension of the Fock and
MO matrices is 1.5 times larger than that for the TiO2 cluster,
and cache misses easily occur in the density matrix genera-
tion because BLAS routines are not used in the original. The
difference between only MPI and MPI/OpenMP of insulin
is 20 s for 2048 CPU cores. This comes from the intranode
parallelization of the Fock matrix diagonalization. This
indicates that introducing internode parallelization of diago-
nalization is significant to reduce the computational time
more.

4. Conclusion

We developed the new MPI/OpenMP hybrid parallel algo-
rithm of the HF calculation and implemented it into the
GAMESS program. The computational time and the speed-
up of the whole Hartree-Fock (HF) calculation are improved
by introducing the MPI/OpenMP hybrid parallelization and
the simple formula for the initial guess calculation. The basis
sets used here are 6-31G and STO-3G. When a larger basis
set is used, the hybrid parallelization effect is expected to
be more important. The ratio of the initial guess calculation
will decrease because the numbers of occupied orbitals and
basis functions for the extended Hückel (EH) calculation are
constant. The hybrid parallelization can reduce the amount
of the memory use per node at the replicated data approach
because all large matrices except for the Fock matrix are
shared with all threads in a process.

For the Fock matrix generation, the better load balancing
is obtained by the OpenMP dynamic distribution and the less
MPI processes compared to that of the conventional MPI
parallelization. The reduction of the computational time is
also achieved by the distribution without the if clause. The
ratio of the initial guess calculation becomes about 37% for
2048 CPU cores using the original GAMESS. The compu-
tational time and the ratio are drastically reduced by the use
of the simple formula for the orbital projection and the
parallelization of all steps. It is significant to apply basic
linear algebra subprograms (BLAS) and linear algebra

package (LAPACK) libraries of matrix multiplications and
diagonalization for intranode parallelization and reduction
of cache misses. The introduction of internode parallelization
of diagonalization is necessary to accelerate more.

HF calculations of nanosize molecules without errors
caused by modeling or approximations are now practical with
hundreds or thousands of CPU cores. On the basis of the
parallelization technique, algorithms for DFT and electron
correlation calculations will be developed with high parallel
efficiencies and large memory arrays, and most calculations
based on the QM method will be accelerated.
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Abstract: In previous work (J. Chem. Theory Comput. 2009, 5, 719), we assessed the
performance of standard semilocal exchange-correlation density functionals plus the nonempirical
dispersion model of Becke and Johnson (J. Chem. Phys. 2007, 127, 154108) on binding energy
curves of rare-gas diatomics. The results were encouraging. In this work, we extend our study
to 65 intermolecular complexes representing a wide variety of van der Waals interactions including
dispersion, hydrogen bonding, electrostatic, and stacking. Comparisons are made with other
density-functional methods for van der Waals interactions in the literature.

1. Introduction

An accurate description of van der Waals (vdW) interactions
is required for electronic structure calculations on biomol-
ecules, intermolecular complexes, molecular crystals, and
polymers. Although conventional semilocal density-func-
tional theory (DFT) gives accurate predictions for many
molecular and solid-state properties, semilocal functionals
are inherently unable to describe dispersion, a nonlocal
correlation effect.1 Thus, generalized gradient approximation
(GGA), meta-GGA, and hybrid functionals are unreliable for
systems where van der Waals interactions are important, even
though they may give accidentally good results in limited
cases.

Many methods have been developed to treat van der Waals
interactions with DFT. These range from physically rigorous
dispersion functionals derived from first principles to entirely
empirical corrections or parametrizations. A comprehensive
review of such methods is given by Johnson et al.2 We
provide an overview of the established methods and mention
more recent approaches not covered in the review of Johnson
et al.

The most rigorous description of dispersion interactions
is provided by explicitly nonlocal correlation functionals.
However, these methods are more computationally demand-
ing and complicated than standard DFT. An example is the
Andersson-Langreth-Lundqvist (ALL) functional3 for non-
overlapping systems, also derived by Dobson and Dinte
(DD),4 which has been applied to intermolecular complexes

in conjunction with long-range corrected (LC) exchange-
correlation functionals.5,6 A seamless van der Waals density
functional (vdW-DF), valid at all interatomic distances, has
been developed by Langreth and co-workers7,8 and applied
to many molecular, solid-state, and biochemical systems.9

Other approaches use ab initio methods such as MP2 or
CCSD(T) to describe long-range electron correlation, which
is combined with short-range DFT.10-13 The advantages of
these range-separated hybrid (RSH) methods compared to
standard MP2 or CCSD(T) are reduced basis-set dependence
and smaller basis-set superposition error (BSSE).

An entirely empirical approach to dispersion interactions
involves the parametrization of highly flexible density
functionals by including van der Waals complexes in their
fitting sets, in spite of the failure of semilocal DFT to capture
dispersion physics. Early functionals of this type such as
X3LYP,14 M05, and M05-2X15 give large errors for
stacking interactions,16-18 while the newer M06-2X func-
tional performs better due to additional empirical param-
eters.19 Also, these functionals do not improve the description
of prototypical vdW systems such as rare-gas diatomics,
compared to the standard GGAs B97-1 and PBE.20 Neither
are they able to reproduce the asymptotic R-6 behavior of
the dispersion energy at large separation.2,17

Theoretically more sound, but still highly empirical, is the
addition of explicit dispersion corrections to conventional
functionals. These can take the form of C6R-6 corrections
(DFT-D)21-27 or atom-centered dispersion-correcting pseudo-
potentials (DCP).28-31 Both approaches are easy to imple-
ment in existing electronic structure codes and have negli-* Corresponding author e-mail: axel.becke@dal.ca.
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gible computational cost. However, the necessary C6

coefficients and vdW radii (DFT-D), or pseudopotential
parameters (DCP), must be empirically determined for each
element and have limited transferability. Real dispersion
coefficients depend on the oxidation state of an atom and its
molecular environment, which is disregarded in the DFT-D
and DCP approaches.2,32

Much more satisfying dispersion corrections are now
available using system-dependent dispersion coefficients
calculated from first principles. Three recently proposed
methods provide dispersion coefficients from the ground-
state electron density of the system. Tkatchenko and Schef-
fler32 use Hirshfeld atomic volumes to calculate atom-in-
molecule dispersion coefficients from corresponding free-
atom dispersion coefficients. Their method yields accurate
C6 coefficients but relies on free-atom reference data for
dispersion coefficients and polarizabilities. Sato and Nakai33

have formulated the local response dispersion (LRD) method,
which evaluates polarizabilites and dispersion coefficients
from first principles without the need for free-atom reference
data. It uses the same local density approximation to the
response function as in the DD/ALL and vdW-DF ap-
proaches. A multipole expansion of the dispersion energy is
introduced, and numerical evaluation of a Casimir-Polder
imaginary frequency integral is used to obtain dispersion
coefficients,33 replacing the double numerical integrations
required in the ALL and vdW-DF methods.

Preceeding both the Tkatchenko-Scheffler and LRD
methods is the nonempirical dispersion model of Becke and
Johnson.34 This model generates dispersion coefficients from
the exchange-hole dipole moment (XDM)35 using occupied
orbitals or the electron density.36 Its theoretical foundations
have been investigated by various other authors.37-39 In
addition to the exchange-hole dipole moment, the method
uses atom-in-molecule polarizabilites derived from atomic
reference data and Hirshfeld atomic volumes.34 A modifica-
tion introduced by Krishtal et al.40 employs intrinsic atomic
polarizabilites, obtained by a Hirshfeld partitioning of
molecular polarizibility tensors, which also gives anisotropy
corrections. Kong et al.41 recently implemented the XDM
model self-consistently and assessed the importance of self-
consistency on the calculation of dispersion energies and
forces.

The XDM dispersion model is part of the DF07 func-
tional,42 a universal DFT for thermochemistry, kinetics, and
van der Waals interactions.43 DF07 is exact-exchange-based,
using 100% Hartree-Fock (HF) exchange. HF exchange is
computationally expensive, however, and a combination of
XDM dispersion with a pure GGA functional is desirable.
Unfortunately, standard exchange GGAs give everything
from artificial binding (e.g., LDA, PW91,44,45 PBE,46 and
B8647) to strong over-repulsion (B8848) in rare-gas diatomic
tests, compared to HF repulsion.49

In a previous paper,50 we benchmarked standard exchange
GGAs for their ability to reproduce HF repulsion in 10 rare-
gas diatomics and found that the nonempirical exchange
GGA of Perdew and Wang (PW86)51,52 performs best. This
conclusion was reached by comparing GGA exchange-only
interaction energies, at equilibrium separations, to exact

Hartree-Fock interaction energies. More recently, Murray,
Lee, and Langreth53 have examined standard exchange GGAs
in interacting molecular systems (dimers of H2, N2, CO2,
ammonia, methane, ethene, benzene, and pyrazine). They
also find that PW86 best reproduces Hartree-Fock repulsion
energies over a range of intermolecular separations.

We then combined50 the PW86 exchange functional with
the PBE46 correlation functional and the XDM dispersion
model as follows,

and obtained excellent binding energy curves for our 10 rare-
gas diatomics. In the present work, we extend the bench-
marking of eq 1 from rare-gas diatomics to intermolecular
complexes. A comprehensive test set of 65 complexes has
been assembled (see section 2), containing vdW interactions
from He2 through electrostatic, hydrogen bonding, and
stacking interactions of importance in biochemistry. With
only two parameters, an excellent fit is obtained to binding
energies spanning 3 orders of magnitude in strength.

In section 3, we compare our results with results from a
variety of other methods in the literature. Our method
compares quite favorably, especially considering its small
number (2) of fitted parameters.

2. Fitting of Dispersion Damping Parameters

In the XDM model of Becke and Johnson, the dispersion
energy is given by

The nonempirical, system-dependent dispersion coefficients
C6,ij, C8,ij, and C10,ij are obtained from the exchange-hole
dipole moment and atom-in-molecule polarizabilities using
second-order perturbation theory.35 In the “exact-exchange”
(XX) version of the XDM model, the dipole moment of the
exchange hole is calculated using occupied orbitals.34

Alternatively, the Becke-Roussel density-functional model
of the exchange hole54 can be used to calculate an ap-
proximate dipole moment, giving the “BR” variant of the
XDM model.36

The van der Waals separations RvdW,ij in eq 2 are assumed
to be linearly related to “critical” interatomic separations Rc,ij

by

where a1 and a2 are universal parameters and Rc,ij is the
average value of the ratios (C8, ij/C6, ij)1/2, (C10, ij/C6, ij)1/4, and
(C10, ij/C8, ij)1/2. At this separation, the three asymptotic
dispersion terms are approximately equal to each other:

EXC ) EX
PW86 + EC

PBE + Edisp
XDM (1)

Edisp
XDM ) -1

2 ∑
i*j

( C6,ij

RvdW,ij
6 + Rij

6
+

C8,ij

RvdW,ij
8 + Rij

8
+

C10,ij

RvdW,ij
10 + Rij

10) (2)

RvdW,ij ) a1Rc,ij + a2 (3)

C6,ij

Rc,ij
6

≈
C8,ij

Rc,ij
8

≈
C10,ij

Rc,ij
10

(4)
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and the asymptotic expansion of the dispersion energy is no
longer valid.34

In our previous work,50 the a1 and a2 parameters in eq 3
were fit to the binding energies of 10 rare-gas diatomics.
Good performance in rare-gas systems does not, however,
guarantee good performance in intermolecular complexes.16,55

In this work, we therefore fit the damping parameters to a
larger set of 65 complexes. This set includes the following:

• The 22 complexes of the “S22” biochemical benchmark
set.55 S22 uses CCSD(T) or MP2 geometries, and the binding
energies are CCSD(T)/complete basis-set estimates. Mono-
mer deformations are not considered.

• Ten rare-gas diatomics involving He through Kr. We use
the experimentally derived data of Tang and Toennies (TT).56

• Twelve complexes from the NC31/05 “non-covalent”
database of Zhao and Truhlar,20,57 excluding those systems
duplicated in the S22 and TT sets. The NC31/05 database
uses mainly MC-QCISD/3 geometries and W1 binding
energies, including monomer deformation energies. We also
exclude charge-transfer complexes from our training set, as
GGAs strongly overestimate charge-transfer interactions due
to severe self-interaction error.58,59 This error is partly
removed by hybrid functionals that mix in a fraction of HF
exchange,58,59 and more completely by LC-hybrid methods
that use 100% long-range HF exchange.27,60 However, the
focus of the present work is on a pure GGA functional
without inclusion of HF exchange.

• Twenty-one systems from the 45 vdW complexes of
Johnson and Becke (JB),34 excluding systems contained in
the preceding databases. Binding energies for the JB systems
are mainly at the estimated CCSD(T)/complete basis-set limit
and do not include monomer deformation energies.

This compilation of reference data from various sources
comprises a diverse set of intermolecular complexes with
binding energies ranging from 0.022 kcal/mol (He2) to 20.65
kcal/mol (hydrogen bonded uracil dimer) and including
dispersion, hydrogen bonding, electrostatic, and stacking
interactions.

The damping parameters a1 and a2 are determined by
minimizing the root-mean-square percent error (RMS%E)

of our calculated binding energies BEi
calc with respect to the

reference binding energies BEi
ref at the reference geometries.

Cartesian coordinates for the complexes and monomers of
this training set are provided in the Supporting Information.
Our calculations were performed with the fully numerical,
basis-set-free Numol program of Becke and Dickson61-63

using LDA orbitals (i.e., “post-LDA”) and the Perdew-Wang
uniform-electron-gas exchange-correlation parametrization.64

We use numerical grids of 302 angular points per atom and
80 (Z e 2), 120 (2 < Z e 10), 160 (10 < Z e 18), and 200
(18 < Z e 36) radial shells per atom.

The binding energies of the 65 complexes are shown in
Table 1. Binding energies are taken to be positive quantities,
i.e., negative values indicate a repulsive interaction. Table 1

also lists the dispersion contribution to the binding energy,
calculated as

Hydrogen bonded complexes have dispersion contributions
< 20% and dipolar and “mixed” interactions < 75% (with
the exception of the T-shaped benzene dimer), while in
dispersion-bound and “stacked” complexes, the contribution
of the dispersion energy exceeds 50%.

Table 2 contains the optimized a1 and a2 values and error
statistics. As can be seen from Tables 1 and 2, PW86PBE
describes hydrogen bonding and dipolar (electrostatic) interac-
tions well but fails for dispersion. The addition of the XDM
dispersion energy gives accurate binding energies for the whole
set of 65 complexes. A few systems (C2H4 ·HF, HF ·HF,
NH3 ·H2O, H2S ·HCl, and CH3SH ·HCl) are slightly overbound
by PW86PBE itself, and addition of the dispersion energy
worsens the agreement with the reference binding energies.

Table 2 also shows that, for this set of 65 complexes, the
BR variant of the XDM dispersion model is significantly
more accurate than the XX version. The opposite result was
found in our work on rare-gas diatomics.50 This can be
understood by considering how well the exchange hole in
the XDM dispersion model actually approximates the full
exchange-correlation (XC) hole.37,38 In rare-gas systems,
which do not have nondynamical correlation, the exact-
exchange hole (XX) is apparently a better approximation of
the XC hole than the approximate BR hole. In molecular
systems, however, nondynamical (left-right) correlation leads
to a multicenter-to-single-center localization of the XC
hole.65,66 As the localized XC holes in molecules are more
effectively modeled by semilocal (meta-)GGAs such as BR
than by the delocalized exact-exchange hole, the BR version
of the XDM dispersion model can be expected to work better
in intermolecular complexes. Dynamical correlation also
contributes to the XC hole, but the dipole moment of the
XC hole should be rather insensitive to the effects of
dynamical correlation,38 thus justifying the use of the
exchange-only hole in the XDM dispersion model.

Table 3 contains the a1 and a2 damping parameters for the
PW86PBE-XDM functional obtained in our previous work50

on rare-gas diatomics. Using these rare-gas-optimized param-
eters to calculate binding energies for the current set of 65 vdW
complexes, we obtain similar error statistics (Table 3) compared
to the fit in Table 2. In other words, the damping parameters
optimized for rare-gas systems are transferable to more complex
intermolecular interactions. Conversely, the damping parameters
obtained in this work give good results for the binding energies
of rare-gas diatomics, with mean absolute percentage errors
(MA%E) of 24.7% for XDM(XX) and 10.3% for XDM(BR).
This is very gratifying. The functional of eq 1, with the damped
XDM dispersion model of eq 2, is apparently universally
applicable to vdW interactions spanning 3 orders of magnitude
in strength, with only two fitted parameters.

3. Performance on the S22 Benchmark Set

The “S22” database of Jurecka et al.55 contains 22 intermo-
lecular complexes of biochemical interest and covers hy-

RMS%E ) 100 × � 1
N ∑

i

N (BEi
calc - BEi

ref

BEi
ref )2

%disp ) 100 × BE(PW86PBE-XDM) - BE(PW86PBE)
BE(PW86PBE-XDM)
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drogen bonding, dispersion, and stacking interactions. It
provides CCSD(T) binding energies at the estimated com-
plete basis-set limit and has been widely adopted to assess
the performance of electronic structure methods for inter-
molecular interactions. In Table 4, we list mean absolute
errors (MAE, kcal/mol) and mean absolute percent errors
(MA%E) for a variety of DFT methods for which benchmark
data on the S22 set are available in the
literature.17,19,27,30,32,33,67-71

The Becke-Roussel variant of the XDM dispersion model,
XDM(BR), gives excellent binding energies for the S22 set
as demonstrated by its low MAE and MA%E values. Its
accuracy is comparable to the empirical DFT-D methods,
the highly parametrized M06-2X and ωB97X functionals,
and the much more expensive “double hybrid” functionals
(which include nonlocal correlation through second order
MP2 perturbation theory). By coincidence, our previous
damping parameter fit to rare-gas systems50 (denoted as “TT”
in Table 4) gives slightly better error statistics than the current
fit to 65 intermolecular complexes. We also note that the
exact-exchange version of the XDM dispersion model,
XDM(XX), is much less accurate for the S22 set for reasons
explained in section 2. Given its higher accuracy and lower
computational cost, we prefer the XDM(BR) variant over
XDM(XX). XDM(BR) is also the method which was recently
implemented self-consistently.41

The nonempirical dispersion approaches of Sato and Nakai
(LRD) and Tkatchenko and Scheffler (TS) also give excellent
binding energies for the S22 set, as do the empirical (DFT-
D) dispersion corrections. The van der Waals density
functional (vdW-DF) is less accurate, and as shown by
Gulans et al.67 and Klimes et al.,68 the results depend on the
underlying exchange functional. With revPBE72 exchange,
thecomplexesof theS22setaresystematicallyunderbound,67,68T
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Table 2. Optimized Dispersion Damping Parameters and
Error Statistics for the Training Set of 65 vdW Complexes

dispersion none XDM(XX) XDM(BR)

a1 0.68 0.82
a2 (Å) 1.43 1.16
RMS%E (%) 96.8 24.0 15.8
MA%E (%) 79.1 19.9 12.6
MAE (kcal/mol) 1.72 0.53 0.33
MaxE(-)

(kcal/mol)
-11.28

(A ·T stack)
-3.93

(A ·T stack)
-2.16

(A ·T stack)
MaxE(+)

(kcal/mol)
0.73

(CH3SH ·HCl)
2.30

(CH3SH ·HCl)
1.98

(CH3SH ·HCl)

Table 3. Error Statistics for the Current Set of 65 vdW
Complexes Using Rare-Gas-Optimized Damping
Parameters50

dispersion XDM(XX) XDM(BR)

a1 0.95 0.75
a2(Å) 0.87 1.25
RMS%E (%) 30.5 18.9
MA%E (%) 23.3 14.2
MAE (kcal/mol) 0.73 0.35
MaxE(-) (kcal/mol) -5.95 (A ·T stack) -0.76 (A ·T stack)
MaxE(+) (kcal/mol) 1.74 (CH3SH ·HCl) 2.26 (CH3SH ·HCl)
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while the combination of B8647 exchange and vdW-DF gives
substantially improved results.68

A similar case is B3LYP-DCP,69 which combines the
dispersion-correcting pseudopotentials of DiLabio and Mack-
ie73 with the B3LYP74,75 functional. Due to the use of overly
repulsive B88 exchange48 in B3LYP, B3LYP-DCP un-
derbinds all systems in the S22 database except for the water
dimer.69 The revPBE+LAP30 method, which combines the
revPBE72 exchange-correlation functional with a dispersion-
correcting local atomic potential (LAP),30 does not suffer
from this deficiency but is still rather inaccurate for hydrogen-
bonded complexes.

A variety of DFT methods reproduce the binding energies
of the intermolecular complexes in the S22 database very
well. Those that use nonempirical dispersion coefficients and
only a few parameters in their damping functions are the
present XDM(BR), the LRD of Sato and Nakai, and the
Tkatchenko-Scheffler methods. The nonempirical vdW-DF
is comparably less accurate with the original revPBE
exchange but can be improved by changing the underlying
exchange functional.68 The influence of the exchange
functional is well-known49,76,77 but has been somewhat
overlooked until the recent studies of refs 50, 53, and 68
and the present work.

4. Conclusions

We have shown that the XDM dispersion model of Becke and
Johnson can be combined with standard GGAs for exchange
(PW86) and correlation (PBE) to give an excellent description
of van der Waals interactions. The XDM dispersion model
contains only two empirical parameters in the damping function.
These have been fit to a set of 65 complexes ranging from rare-
gas systems to nucleic acid base pairs and spanning 3 orders
of magnitude in binding energy strength. Also, the dispersion
damping parameters optimized for rare-gas diatomics in our
previous work50 are found to be highly transferable to the larger
set of intermolecular interactions.

The Becke-Roussel variant of XDM, XDM(BR), is more
accurate for intermolecular complexes than the exact-exchange-
hole variant, XDM(XX), and we have rationalized this result.
The performance of the XDM dispersion model on the S22
database has been compared to a variety of alternative DFT
methods that account for dispersion, and the XDM(BR) method
compares very favorably. In future work, we will explore
geometry optimizations of intermolecular complexes using
XDM-derived dispersion forces.
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(10) Ángyán, J. G.; Gerber, I. C.; Savin, A.; Toulouse, J. Phys. ReV.
A 2005, 72, 012510.
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Abstract: I demonstrate that a modification of the resonance color theory (in its form advocated
by Brooker (Rev. Mod. Phys. 1942, 14, 275) and by Platt (J. Chem. Phys. 1956, 25, 80)) provides
an accurate framework for rationalizing the ab initio excitation energies of the protonation states
of the green fluorescent protein (GFP) chromophore (an asymmetric oxonol dye). I suggest
that the original model space used in the resonance theory (specifically, a pair of Lewis structures)
is formally inconsistent with a core aspect of the theory (specifically, a relationship between
excitation energies and group-specific basicities (Brooker basicities) of the terminal rings). I
argue that a more appropriate model space would consist of a complete active space ansatz
based on group-localized orbitals. I then show that there is a solution to the state-averaged
complete active space self consistent field (SA-CASSCF) problem with exactly this form. This
family of SA-CASSCF solutions provides an objectively rigorous foundation for the resonance
color theory. The solutions can be expressed in a localized set of active space orbitals, which
display the same transferability pattern implied by the Brooker basicity scale. Using Platt’s model
Hamiltonian formulation of the resonance theory, I show that the accuracy of the set of excitation
energies calculated with these solutions can be accurately reproduced using only two parameters
per dye in the set. One of these parameters is the isoenergetic energy of the dyesthe harmonic
mean of the excitation energies of its symmetric parent dyes. The other parameter is a local
basicity index (Brooker basicity), which is specific to each terminal ring and independent of the
ring to which it is conjugated in a given dye. I proceed to show that the Brooker basicities,
defined by differences between many-electron states, are also basicities in the usual (one-
electron) sense and, finally, that Platt’s construction of the color theory is an approximation to
a ab initio effective Hamiltonian obtained by a minimum-norm block diagonalization procedure.
What emerges is a powerful, simple, and accurate conceptual framework for thinking generally
about color in monomethine dyes, and specifically about color tuning in the chromophore of
green fluorescent proteins.

Introduction
Understanding relationships between the optical properties
of molecules and their chemical constitution is a long-
standing goal of theoretical chemistry.1 Methine dyes, such
as those in Figure 1, have a prominent place in the history

of these endeavors, and in chemistry itself. It is sometimes
said that the modern organic chemical industry began with
Perkin’s discovery of the methine dye MauVeine in 1856,
although the synthesis of the original Cyanine by Williams
may predate this event.2

Methine is a limit of sp2 carbon where the Lewis octet
rule is satisfied by participation in multiple alternate struc-

* E-mail: s.olsen1@uq.edu.au. Website: http://www.uq.edu.au/
∼uqsolse1.
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tures, which differ by bond alternation and formal charge
relocation. An archetypical methine dye is composed of two
groups, usually heterocyclic rings, each of which can access
two redox states, separated by a bridge containing one or
more methine units. A monomethine dye has a single methine
unit in the bridge, while a polymethine dye has more than
one.

When the terminal groups are different, one of the
resonating structures will dominate over the other. Within
this context, the resonant methinic structure is a particular
limit in a continuous set, the extreme elements of which are
ionic polyenic structures with definite and opposing bond
alternation. Though the dyes in Figure 1 are ions, the methine
electronic structure is also relevant to neutral donor-acceptor
chromophores. Within these systems, which resonate between
neutral and zwitterionic closed shell states (as opposed to
diametrically opposed charge structures as in Figure 1), it
has been shown that the optical properties of the chro-
mophores are strongly dependent on their proximity to the
methine limit.3 For this reason, the methine electronic
structure is a subject of continuuing interest in the study of
organic photonic and electronic materials.4–7

The molecule that I use an example at the top of Figure 1
is the chromophore of the green fluorescent protein, a system
which has lept to prominence8 for its utility in biooptical
technologies.9 The chromophore is a p-hydroxybenzylidene-
imidazolinone motifsan oxonol dye system. The chro-
mophores of almost all fluorescent proteins are derivatives
of this dye structure.10 Many of the technologies for which
fluorescent proteins are used depend in some way on the
color of the protein,9 which in turn depends on the color of
the chromophore. The color of proteins with derived chro-
mophores cluster together according to the nature of the
derivation.10 Spectral variation within each group derives
from variations in the interaction of the chromophore with
its protein.11 Each fluorescent protein chromophore is

synthesized within a particular protein and bound inside that
protein for the duration of its functional existence.10 Fluo-
rescent proteins are therefore very interesting natural labo-
ratories for studying structure-property and environment-
property relationships in methine dyes.

The issue of the color of fluorescent protein chromophores
is a good example of how the general problem of color and
constitution in methine dyes has maintained its relevance,
despite its already long history.12

The Resonance Color Theory and the
Brooker Basicity Scale

The problem of color and constitution in methine dyes
received considerable attention during the early part of the
twentieth century.1,13–19 Considerable motivation for devel-
opment derived from the herculean experimental program
of LGS Brooker and his group at Kodak, where a great many
methine dyes were synthesized and studied (methine dyes
are useful photographic sensitizers).18 Methine dyes had been
known for almost a century when Brooker’s work emerged,
so his group was far from the first to study these systems.
However, the scale and scope of the contribution have raised
Brooker’s name to prominence. For a thorough review of
early work, I recommend a crucial (and very well-referenced)
paper by Platt.14 I also recommend the books by Griffiths2

and by Fabian and Hartmann,20 as well as an article by
Berneth in Ullmann’s Encyclopedia of Industrial Chemis-
try.21 An early work of particular interest, which Platt’s work
builds upon, is Kuhn’s description of the methine limit as a
free-electron gas.13 Few theories can rival it for simple,
effective insightssave possibly Platt’s perimeter model of
cata-condensed hydrocarbons, published in the same year.22

The spectroscopy of methine dyes up to and including
Brooker’s studies had established several empirical rules,14

one of which will be our particular focus. The rule in question
relates the color of an asymmetric methine dye (such as the
GFP chromophore in Figure 1) to the color of the symmetric
“parent” dyes produced by conjugating each terminus with
a copy of itself (for the GFP chromophore, such dyes are
shown at the bottom of Figure 1). This rulesThe DeViation
Rule18sis summarized as follows:

The absorbance waVelength of an asymmetric dye is no
redder than the mean waVelength of its symmetric parents
and deViates from this by a blue shift which increases as
the difference in basicity of the terminal groups.

It is clear from Brooker’s language17,18 that, when he used
the word “basicity”, he was using it in the sense that it is
normally meantsan energy associated with a one-electron
process. This interpretation is implicit in theoretical works
that followed Brooker’s paperssspecifically Herzfeld and
Sklar’s tight-binding Hamiltonian treatment23 and Kuhn’s
free-electron model,13 both of which describe the chemical
asymmetry in terms of a one-electron potential.

Brooker measured the absorption of many dyes and
catalogued the deviations (“Brooker deviations”) of these
from the mean of each dye’s symmetric parents’ parents.18

He used this data for formulation of an affine basicity scale
for the terminal groups in the dyes (“the Brooker basicity

Figure 1. The classical resonance theory of methine dye
color relates the color of an asymmetric methine dye (such
as the Green Fluorescent Protein chromophore, top) to the
colors of its symmetric parents (bottom), and to the energy
difference between the resonance forms for the asymmetric
dye. The latter is dominated by the difference in electronic
basicities of the terminal heterocycles, which bear the charge
in different structures.

1090 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Olsen



scale”).18 The Brooker basicity scale is correlated with other
basicity scales such as the Hammet σR scale.2 Platt’s
contribution was to verify that the deviations in Brooker’s
data set could indeed, to within the experimental error, be
expressed by two numerical parameters: one specifying the
mean parental wavelength and the other a basicity index
specific to each terminal group, and independent of the group
to which it was conjugated a giVen dye.14

In rationalizing his results, Brooker invoked a theory of
the color of dyes, which was framed in a heuristic model
space of resonating Lewis structures.17,19 Within this theory,
the optical excitation of the dye emerges from the effective
coupling between two isoenergetic extreme structures, which
are analogues of those in Figure 1.16 Overlap arguments
suggest that the direct coupling will be too small to explain
the commonly measured wavelengths, so the theory hypoth-
esizes intermediate structures, which place the formal charge
on the bridge.16,19 The latter postulate is particularly im-
portant in long polymethine chains, where the exponential
decay will decimate the bare coupling.24 The intermediate
structures are higher in energy than the extreme structures.
They play an indirect role in the optical excitation, for which
purpose they can be expressed as an effective potential.16,24

This potential creates a gap between the extreme structures.
The excitation should be optically intense by very simple
dipole length arguments.25,26

There is only one bridge, and since the electronic structure
on the bridge differs only by bond alternation in the extreme
structures, the residual splitting between the extreme struc-
tures will be dominated by the difference in basicity of the
terminal groups.18 This residual splitting is present in the
absence of interaction and leads to a blue shift of the dye
relative to its symmetric parents.14,16 This implies a two-
state picture where the interaction matrix element is equal
to the harmonic mean (in energy units, the arithmetic mean
in wavelength) of the excitation energies of the symmetric
parent dyes.14

Although the resonance theory in its classical form
generated very effective heuristic explanations, attempts to
translate it into quantitative models were problematic.14,16

It appears the resonance color theory faded into obscurity, a
casualty of the early competition between molecular orbital
(MO) theories of electronic structure and the valence-bond
(VB) theories that were descendents of the early resonance
theories.27–29 MO representations offer efficient techniques
for storing and manipulating many-body states in the
Born-Oppenheimer (clamped classical nuclei) electronic
structure problem, because the one-electron density operator
matrix elements span a Lie algebra.30,31 Valence bond
theories have other strengths, particularly for constructing
diabatic states whose character is maintained over an open
neighborhood of nuclear geometries, and which can more
easily accommodate nuclear motion and bond rearrange-
ments.32,33 Their representation is less economical, so a
computational threshold had to be crossed before they were
incorporated into regular computational use.34,35 It is now
well-known that MO and VB are only different ways of
generating bases for the quantum mechanical state space.36,37

States are vectors in quantum mechanics, so the representa-

tion does not matter if both representations can be spanned
within the same complete space.38 Observables in both
representations can be represented in the same algebra.39–41

Platt’s Construction

Platt constructed a quantitative empirical framework for the
resonance color theory.14 Platt’s construction is a recipe for
generating 2 × 2 model Hamiltonians for a set of dyes built
from a common set of terminal groups. The construction
describes a given dye with two parameters, to be extracted
from empirical data. The first of these is the “isoenergetic
excitation energy”, which is the harmonic mean of the
excitation energies of the parent symmetric dyes (propor-
tional to the mean wavelength).

Here, EI(A,B) is the isoenergetic excitation of the dye (A,B)
generated with terminal groups A and B. The isoenergetic
excitation of a symmetric dye (such as (A,A) and (B,B)) is
equal to its excitation energy. The second quantity in the
Platt construction is the Brooker basicity difference b(A,B).

where ∆E(A,B) gives the excitation energy of the dye (A,B)
generated with terminal groups A and B. Platt’s construction
yields a traceless model Hamiltonian HP(A,B).

The definition of b(A,B) ensures that the splitting between
the eigenvalues of HP(A,B) is equal to the dye excitation
energy ∆E(A,B).

Platt’s primary contribution was to show that the quantity
b(A,B) could be expressed as a difference between basicities
that were constant for each terminal group in the set. He
showed that Brooker’s data could, within the experimental
error, be described by a b(A,B) formula with the simple
parametric form (eq 4).

where bA and bB are constants characteristic of groups A
and B and are independent of the conjugate groups with
which they paired in any giVen dye. Platt showed this by
demonstrating that the b(A,B)’s extracted from Brooker’s
data obey the following “consistency rules”.

The consistency rules above are not actually independent,
since the second can be derived from the first, provided that
the b(A,B) actually can be written as a difference (so that
b(A,B) ) -b(B,A)).

Platt went on to demonstrate that a large data set published
by Brooker could be compactly summarized and reproduced
by his construction, using a suitable set of bA parameters.14

1
EI(A, B)

) 1
2( 1

EI(A, A)
+ 1

EI(B, B)) (1)

b(A, B) ) √(∆E(A, B))2 - (EI(A, B))2 (2)

HP(A, B) ) 1
2( b(A, B) EI(A, B)

EI(A, B) -b(A, B) ) (3)

b(A, B) ) bA - bB (4)

b(A, C) - b(B, C) ) b(A, D) - b(B, D) (5)

b(A, C) ) b(A, B) + b(B, C) (6)
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In what follows, I will demonstrate that the excitation
energies obtained for an example set of dyes within an ab
initio representation that mimics the structure of the model
space in color theory can also be expressed this way. That
is, I will extract a set of bA’s from a set of calculated
excitations, and show that the excitation reconstructed with
these parameters does not meaningfully deviate from the
input set. I will then demonstrate that the bA’s actually do
measure a one-electron energy difference and that the Platt
construction can be considered as a synthetic approximation
to a quasi-diabatic ab initio effective Hamiltonian.

Revising the Model Space in the Resonance
Color Theory

I want to point out that the information content implied by
the Lewis structural representation of resonance theory,
outlined in Figure 1, is not formally consistent with the
definition of the Brooker basicity scale. There are different
ways to highlight the problem. The problem is that a
“basicity” usually means an energy associated with a one-
electron process, while the Lewis structures in Figure 1 are
rich in pair information (i.e., the bonding). Operators on a
one-electron Hilbert space will generally not commute with
pair operators defined on the tensor product of the space with
itself. Although the set of one-electron operators spans a Lie
algebra closed under commutation, the set composed of one-
and two-electron operators generally does not.30 This means
that not only do the one- and two-electron operators not
commute but expressing the commutator requires expanding
the set of operators.42 These statements imply that uncertainty
relations preVent the precise, simultaneous specification of
the basicity of a group and the bonding within the group. A
second argument simply notes that the underlying one-
electron basis implied in the Lewis structure representation
is one of the (perhaps orthogonalized) atomic orbitals. If the
basicities of the different states in the group are not equal,
then there will be multiple detachment/attachment states, and
a distribution of possible basicity Values, associated with
the ring. This will be true even for a single dye molecule in
a given Lewis structure. These problems are already apparent
in discussions put forward by Brooker, who, as expected,
had to invoke additional resonance structures beyond the
canonical pair (e.g., Figure 1) for the dyes that he studied in
order to rationalize his results.18

I propose that a more appropriate model space for the
formulation of the resonance color theory could be obtained
from a “methine-adapted” complete active space valence
bond (CASVB) ansatz38 built from group-localized orbitals,
such as that outlined in Figure 2. This ansatz is consistent
with the precise definition of group basicities, if the basicities
are defined so that the group-localized orbitals are the
relevant attachment/detachment states. Furthermore, the
ansatz in Figure 2 still contains enough pairing degrees of
freedom to index states in the model space spanned by the
canonical resonating structures (Figure 1). This means that
the information content of the theory can be preserved.

In molecular orbital theories, monomethine dyes are related
to odd alternate systems.15,43 This means that, when the π

molecular orbitals are paired according to their bonding or
antibonding character, there will be a nonbonding orbital
(NBO) left over. In diarylmethine dyes (for example
Michler’s hydrol blue), the NBO is doubly occupied. In
monomethine cyanines (for example Williams’ cyanine), this
orbital is empty. In MO theories, the optical excitation of
the former class is a HOMO-LUMO excitation from the
occupied NBO to the lowest antibonding orbital. In the latter
class, the excitation is a HOMO excitation from the highest
bonding orbital into the NBO. The symmetry of odd alternant
hydrocarbons in simple MO theories is such that these
excitations would be the same for the anion and the cation
formed from the same molecular frame. This implies that
the four-electron/three-orbital CASVB representation outlined
in Figure 2 unifies the state spaces of the resonance color
theory and odd alternate MO theories for diarylmethines, and
the corresponding two-electron/three-orbital CASVB space
does the same for the monomethine cyanines. The GFP
chromophore system is not strictly alternate, because it
contains rings with an odd number of sites. Even so, it is
isoelectronic with an odd-alternate hydrocarbon, and its
orbitals can be identified with such a system. Therefore, a
model space oVer three frontier orbitals is also indicated
by simple MO theories.

A Self-Consistent Representation of the
Resonance Color Theory

There is a methine-adapted solution to the two-state-
averaged44,45 complete active space self-consistent field46,47

(SA2-CASSCF) problem with the form of Figure 2 for a

Figure 2. A model space for the resonance theory that is
consistent with the precise basicity value for the rings would
be a “methine-adapted” complete active space valence bond
(CASVB) representation with one orbital state for each of the
terminal rings (plus one for the bridge). The Lewis structure-
based model space is not consistent with a precisely defined
basicity, because there is too much information needed to
specify the rings’ internal structure. As a result, given a dye
in a precisely defined Lewis structure, there would be a spread
of possible basicities.
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large range of monomethine dyes. This includes the systems
I use here as examples but appears to be much more
general.48 I conjecture that the existence and stability of such
a solution can be safely used as an operational definition of
the term “monomethine dye”. In a complete active space
representation, the dyes I examine here have an active space
with four electrons in three orbitals (SA2-CAS(4,3)). The
solutions obtainable for monomethine cyanines have two
electrons in three orbitals (SA2-CAS(2,3)).49 In either case,
the orbitals, after localization of the active orbitals with the
Foster-Boys technique,50 have the group-localized structure
shown in Figure 2. The Boys localization procedure is
unitary, so that the CASSCF state is invariant as long as the
transformation respects the boundaries between the occupied,
active and virtual spaces.45,51

I argue that the methine-adapted SA-CASSCF solutions
described above are self-consistent representations of the
resonance color theory. This is important, because it high-
lights a strategy for making quantitative and objective
predictions where the old resonance theory yielded only
heuristic ones. It also means that the resonance color theory
rests on stronger foundations than had previously been
apparent.2 The domain of application of the theory can be
objectively assessed as the domain of applicability of the
corresponding self-consistent field solutions.

A Set of Example Dyes

In what follows, I will support my assertion of cor-
respondence between the resonance color theory. To do this,
I will first describe a data set of excitation energies obtained
by multistate52 multireference second-order perturbation
theory53,54 (MS-MRPT2) on the methine-adapted SA-
CASSCF reference space. Then, I will apply Platt’s synthetic
Hamiltonian construction14 to this data set. Finally, I will
show that the accuracy of the excitation energies recalculated
using Platt’s construction is within the expected accuracy
of the original calculations themselVes. I will use a data set
composed of 28 independent dye structures, all of which are
monomethine pairings of different protonation states of a
phenoxy and imidazolinoxy group (e.g., Figure 3). This set
includes several protonation states of the GFP chromophore
motif (which have been previously studied by quantum
chemistry55–83).

In general, methine dyes can have multiple cis-trans
isomeric states. In the context of the example set here, there

is no meaningful distinction between cis and trans isomeric
states of the phenoxy-methine bond (due to symmetry about
its axis). Such a distinction is meaningful only for the
imidazolinoxy-methine bond, for which I examine only the
cis forms here (the imine nitrogen at position 2 is Z with
respect to the conjugate terminal group). Each dye was
relaxed in its cis conformation by performing an MP284

optimization with a cc-pvdz basis set.85 For a few dyes in
the set, the ground state minimum is a different cis-trans
isomer and is not contained in the set. As my goal is to
investigate the resonance color theory as a theory of the
electrons, restricting the set of structures in this way makes
sense. This procedure generates structures that are minima
with respect to bond alternation coordinates. This is impor-
tant, because one would expect that the model states of the
resonance theory (e.g., Figure 1) are coupled through bridge
bond-stretching vibrations.

For each dye in its relaxed cis geometry, I obtained the
“methine adapted” SA2-CAS(4,3)/cc-pvdz solution space
using unrestricted Hartree-Fock charge-density natural
orbitals86,87 for the oxidized doublet radical as an initial guess
for the self-consistent field optimization. I then calculated
the excitation energy of the dye by applying a multistate
multireference perturbation theory (MS-MRPT2) correction
to the SA2-CAS(4,3) reference space. The MS-MRPT2
correction is formally size-extensive.88 This is consistent with
the interpretation of the underlying CASSCF as a form of
maximum entropy inference.31,89 Only the highest-lying 32
orbitals were correlated, though, and some extensivity error
might arise from this.90 The perturbation theory calculations
on the methine adapted SA2-CAS(4,3) solutions converged
quickly and easily without the use of level shifts. The above
procedure yielded 28 excitation energies for symmetric and
asymmetric dyes generated by the groups in Figure 3.
Additional details, as necessary to reproduce the wave
function (i.e., state-averaged natural orbitals and occupation
numbers, and MS-MRPT2 mixing matricies) are available
in the Supporting Information. The most concrete result of
this paper is that the resulting set of excitation energies can
be accurately represented by Platt’s construction,14 where
each group is assigned its own basicity index independent
of the terminal group to which it is conjugated in a given
dye.

I used the Molpro software package for all electronic
structure computations.91

Figure 3. The data set used here consists of excitation energy calculations on a set of monomethine dyes generated by
conjugating phenoxy and imidazolinoxy groups in different titration states (shown here). The generated dye set includes several
conceivable protonation states of the green fluoroescent protein chromophore, as well as several bis-phenoxy and bis-imidazolinoxy
dyes.
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My goal is to show that the methine-adapted solution to
the SA-CASSCF problem contains the resonance color
theory. We are now at a point where I can present the first
pieces of suggestive evidence in defense of this notion. These
are highlighted in Figures 4 and 5. Figure 4 shows that the
Boys localized active space orbitals associated to each of
the rings in the set of dyes maintain their shape when the
conjugate dye is varied. This is exactly the pattern expected
in order for a transferrable basicity scalessuch as the Brooker
scalesto apply.18 Figure 5 shows that the excitation energies
obtained for the asymmetric dyes are consistent with Brook-
er’s deviation rule, in that none of the asymmetric dyes
shown is redder than the mean wavelength of its parents.92

I want to highlight a particular structure to the excitation
energies generated using the SA2-CAS(4,3) ansatz, not
necessarily to argue for its absolute accuracy as an ap-
proximation to the exact Born-Oppenheimer electronic
structure. It is convienent, however, that the excitations do
compare well against observed excitations for chemically
similar systems. In particular, the excitation energy of the
anionic phenolate-imidazolinolate (PhO-, ImO-) dye is
in reasonable range of the measured excitation energies of
green fluorescent protein (GFP) chromophore models in their
anionic state,93–97 as well as the B band of GFPs,98–100 and
is broadly consistent with computational models using larger
active spaces.60,63,72,75,82 Moreover, the excitation energy of
the bis-phenolate (PhO-, PhO-) dye is quite close to the
lowest excitation of benzaurin and phenolpthaleins in alkaline
solution, and the corresponding diprotonated cations (PhOH/
PhOH) are close to the excitation of the benzaurin cation.2

It does seem, interestingly, that there may be a systematic
overprediction of the excitation energies of the neutral oxonol
dyes in the set (e.g., (PhOH, ImO-), (PhO-, ImOH), etc.).
The calculated excitations of the (PhOH, ImO-) and (PhO-,
ImOH) dyes are both bluer than GFP chromophore models
at neutral pH in several solvents,96 models in an ion ring,55

the A band of GFPs,98–100 and results from larger active

spaces.55,83 Similarly, the excitation of the (PhOH, PhO-)
dye is bluer than the absorbance of benzaurin at neutral pH.2

It may be that the estimates provided by the methine-adapted
solution spaces overestimate the blue shift near the polyenic
limits of the resonance scale. This question is not relevant
to my purpose, which is to show that the excitations within
this model follow a specific simple pattern, and this pattern
is predicted by the resonance color theory. The difficulty of
producing quantitatively accurate absolute excitation energies
for dyes contained in the set has been highlighted in two
recent benchmarking studies using similar techniques.60,61

It is worth noting that the dimethyl derivative of the
(PhO-, ImO-) dye (HBDI), is autoionizing in its first
excited state.60 This is interesting, because one might expect
this to artificially depress the excitation energy, and violate
Brooker’s deviation rule. Apparently, this is not happening
(Figure 5). Possible explanations may be that (a) compensat-
ing artifacts occur in the parent dyes, so that the deviation
rule is preserved, (b) the dye is nonresonant but appears so
due to the artifact, (c) the calculation is (somehow101)
managing to pick out the appropriate valence state from the
embedding continuum, or (d) substituent effects induced by
removing the methyl groups raise the ionization threshold
above the first excited state.

Extraction and Validation of Basicity Indices
for Terminal Groups

I extracted single basicity indices for each terminus in the
following steps. First, I collected all basicity differences
b(A,C) - b(B,C) using Platt’s construction,14 where A, B,
and C ranged over the set of termini (Figure 3). I grouped
these according to B and performed a linear regression fit
within each of these groups. This step yielded the data in
Figure 6. The lines for each B are parallel to a very good
approximation. Therefore, the scales given by different B
groups can be expressed relative to a common origin by

Figure 4. The Boys-localized active space orbitals obtained from the methine-adapted SA2-CAS(4,3) solution for the example
dyes are transferrable in the manner suggested by the Brooker basicity scale. The shape of the orbital for each group is
independent of the group to which it is paired in a given dye structure (i.e., orbitals within each row are similar). The Brooker
scale associates a basicity (one-electron energy) to each group, independent of its context. Orbital isosurfaces are set at (0.04.
Overall, signs do not matter, by the SA-CASSCF convergence criteria.
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shifting each group according to the y intercept of the
respective regression line. This was also supported by the
application of Friedman’s test102 to the data, which indicated
a high degree of agreement between scales corresponding
to different choices of B.

After shifting, the basicities corresponding to each A are
clustered together. Figure 7 shows a histogram of the shifted
basicities colored according to the value of A.

I extracted a single basicity for each terminal group A by
taking the median of the distribution of shifted basicities for
each A. The median basicities and associated median absolute
deviations are listed in Table 1.

If the resonance theory is a reasonable model for the
excitations in the data set, then reconstructing the excitation
energies for each of the asymmetric dyes in the set using
Platt’s construction14 should not significantly degrade the
accuracy of the set. I tested this by back-calculating the
excitation energies for each asymmetric dye in the set using
the median shifted basicities and the isoenergetic excitations
of the parent symmetric dyes. The set of reconstructed
excitation energies fits the original set very well, as I show
in Figure 8, by a linear fit between the two sets. The residuals
of the fit (vertical distances to the regression line) were under
1000 cm-1 (0.123 eV) for all of the dyes in the set. This is

as good a leVel of accuracy as would be expected a priori
from quantum chemical estimates anyway,60,75,103–109 so the
approximation of using group-specific basicities does not
meaninfully degrade the accuracy of the set.110

Brooker Basicities are Correlated with
One-Electron Basicities

An interesting feature of the resonance color theory is that
the “Brooker basicity” is defined by a difference between
observables on a many-electron Hilbert space. Yet, it is
interpreted as a real chemical “basicity”, which usually
implies a one-electron energy. Even more interesting is that
this relationship is experimentally verifiable.2 I will now
show that this relationship also emerges in the ab initio SA2-
CAS(4,3) representation, by showing that the Brooker (many-
electron) basicity scale extracted from the calculated exci-
tations is correlated with a one-electron basicity scale
extracted from the set of Boys-localized active space orbital
energies (diagonal state-averaged Fock matrix elements).

I extracted group-specific one-electron basicities for the
terminal groups in much the same way as for the Brooker
basicities. Specifically, I collected differences b′(A,C) -
b′(B,C) where b′(A,C) is the difference between the orbital

Figure 5. Excitation wavelengths calculated using the methine-adapted SA2-CAS(4,3) solutions are consistent with the Brooker
deviation rule. Calculated excitation energies for a selection of dyes in the data set are shown. Excitations were calculated
using MS-MRPT2 theory corrections to the methine-adapted SA2-CAS(4,3)/cc-pvdz reference model spaces. Excitations of
asymmetric dyes are green dots and type, excitations of symmetric parents are red and blue dots and type, and mean wavelengths
of the symmetric parents are purple circles and type. To the right of each row is a picture of the corresponding asymmetric dye,
and a label. All of the calculated excitations are consistent with Brooker’s deviation rule, because the excitation wavelengths of
the asymmetric dyes are not redder than the mean wavelengths of their symmetric parents. Brooker deviations are greatest
when the titration states of the aryloxy sites are different, indicating strong detuning from resonance. When they are the same,
as in the anion (PhO-, ImO-) and dihydroxy cation (PhOHZ, ImOHZ), the deviation is small, indicating resonance.
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energies (diagonal state-averaged Fock matrix elements) of
Boys-localized active orbitals corresponding to the groups
A and C in the dye (A,C). I then followed the same procedure
that I used to extract the Brooker basicities bA from the
differences b(A,C) - b(B,C) above. The data behaved in a
very similar fashion to the Brooker deviation data at each
step (Figures S1.1 and S2.2 in the Supporting Information
are analogs to Figures 6 and 7 for the Brooker data). After
extracting the group-specific one-electron basicities, I per-
formed a linear regression fit between the Brooker and Boys
orbital basicities to determine their correlation. I show the
results of this comparison in Figure 9. The Brooker and Boys
basicities are strongly correlated. This demonstrates that the
ab initio Brooker basicity does measure a group “basicity”
in the usual (one-electron) sense. This is a core assertion of
the resonance color theory.14,18

The relationship between the many-electron (Brooker) and
one-electron basicity scales should reflect the importance of
electron correlation in the electronic structures of the terminal
groups. Specifically, the distance from the (one- vs many-
electron) regression line should reflect the relative importance
of electronic correlations to the basicities. With this in mind,
Figure 9 suggests that electron correlations are most important
for the oxygen-protonated termini PhOHE/Z and ImOHE/Z. The
orderings of basicities of the PhOHE/Z and ImOHE/Z termini
are apparently reversed between the one-electron and many-
electron scales. The difference to the regression line is still
small compared to the total range sampled, so it is probably
reasonable to say that the basicities of the PhOHE/Z and
ImOHE/Z termini are not operationally distinguishable. This
viewpoint was supported by a statistical variance analysis

of the entire distribution of shifted basicities for all terminal
groups in the set, wherein the distinguisability of these two
specific groups depended sensitively on the parameters used
in the test. These tests also indicated that the distributions
corresponding to OHE vs OHZ conformations were indistin-
guishable, so that the basicity does not depend on the oxygen
lone pair to which the proton is bound.

Platt’s Construction Approximates an Ab
Initio Effective Hamiltonian

Platt’s construction14 is a recipe for synthesizing a 2 × 2
spectroscopic Hamiltonian from a collection of given absorp-
tion wavelengths. Though Platt’s language14 suggests he had
the Lewis structural representation in mind, he did not
actually write down any constraints on the form of the
representation to which his synthetic Hamiltonian matrix
corresponds. The representation is defined only through the
matrix elements of the Hamiltonian he constructed. It is safe
to conclude that any representation that obeys the right
relationships between the absorbance wavelengths of a
collection of asymmetric dyes and their symmetric parents,
and for which a consistent set of basicities can be defined,
is a candidate. One could, if one wished, consider an
ensemble of representations consistent with the constraints
(perhaps supplemented by other physically motivated con-
straints) and consider the state as a random variable.111 In
the context of the modified resonance-theoretic model space
that I have proposed, it seems reasonable to insist that the
constraints include a map between the energies defined in

Figure 6. The Brooker basicities assigned to the different termini are consistent, if any single termini is chosen as a reference
for the scale. The basicities with respect to the ImNH terminus are used as the abcissa, and basicities with respect to other
termini are plotted against these. Relative Brooker basicity differences b(A,C) - b(B,C) are plotted for all choices of groups B
and C (see Figure 3). Groups corresponding to different B’s were fit to a linear regression model. Coefficients of determination
(R2) are shown, indicating that each group B * ImNH is well correlated with B ) ImNH. The lines fit to different B’s are parallel
with a slope close to unity, indicating that they are also well correlated with each other. Groups corresponding to different choices
of B can be brought into the same scale by shifting each according to the y intercept of its regression line.
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the one- and many-electron spaces, so that the Brooker
basicities measure basicities calculated with the one-electron
set.

I have shown above that the family of methine-adapted
SA2-CAS(4,3) solutions for the example dye set obeys these
requirements, to within the expected accuracy of the com-
putations. We can use this to probe the relationship between
the Platt Hamiltonian and other 2 × 2 Hamiltonians that can
be extracted from the quantum chemical model space. For
example, I could extract the angle between the Platt
Hamiltonian and the Hamiltonian defined in the eigen
representation of the SA-CASSCF solution (or its image
under rotation by the MS-MRPT2 mixing matrix). Another
interesting candidate for comparison would be the 2 × 2
Hamiltonian obtained by a minimum-norm block diagonali-
zation transformation.112 This is the transformation that does

as little as possible other than block-diagonalize the Hamil-
tonian, in the sense that it is closest to the identity on the
space of configuration state functions (CSFs).112–114 The
CASVB structure of the CSF basis in Figure 2 was a
significant motivation for my assertion of correspondence
between the family of methine adapted SA-CASSCF solu-
tions and the resonance theory. One might therefore expect
that the angles parametrizing the 2 × 2 unitary transforma-
tions that diagonalize the minimum-norm and Platt Hamil-
tonians would be close to each other (in some reaonable
metric114). I show that this is true in Figure 10, where the
distribution of angle differences is plotted in a histogram.
The distribution appears to have two components: a large
spike at 0° (which includes all of the symmetric dyes in the
set, plus a few asymmetric ones) and a broader peak centered
near -5°. Since I parametrized the Platt Hamiltonian using
the MS-MRPT2 corrected energies, the minimum-norm
Hamiltonians used in the comparison also used these
energies. The eigenvector information required to build the
minimum-norm Hamiltonian112 was taken from the MS-
MRPT2-mixed SA-CASSCF eigenstates (as has been done
in previous work58).

Figure 7. This figure shows the distribution of group-specific
Brooker basicities generated when the relative basicity dif-
ferences b(A,C) - b(B,C) are shifted onto the same line (see
Figure 6). This yields tightly clustered distributions for each
group A, containing 25 data points each. The distribution for
each A is sharply peaked and, for most cases, is concentrated
within 5000 cm-1 of the peak. This suggests that the excitation
data may be summarized without too much loss of accuracy
using Platt’s model Hamiltonian construction with one median
Brooker basicity parameter assigned to each group.

Table 1. Median Brooker Basicities (cm-1) for Different
Terminal Groups in the Data Set and the Median Absolute
Deviations of the Distributions for Each Terminal Group

group median bA (cm-1) median absolute deviation (cm-1)

PhO- 8342 654
PhOHZ -13658 523
PhOHE -13668 576
ImO- 6288 614
ImOHZ -12165 664
ImOHE -11889 566
ImNH 0 1272

Figure 8. Reconstruction of the excitation energies in the data
set using median Brooker basicity values (rather than the dye-
specific values) does not meaningfully degrade the set. The
calculated and reconstructed excitations (cm-1) for dyes in
the set are plotted against one another and fit to a linear
regression model with parameters displayed. The coefficient
of determination (R2) is close to unity, showing that the data
are strongly correlated. The slope of the regression line is
also very close to unity, as expected. All of the residuals
(vertical distances from the regression line) are less than 1000
cm-1. This is much smaller than the range spanned by the
set (∼10 000 cm-1) and comparable to the best accuracy
expected for correlated quantum chemical excitation energy
estimates. Therefore, the use of group-specific Brooker
basicities summarizes the data set compactly and with no
significant loss of accuracy.
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The small magnitude of the difference angles in Figure
10 broadly supports my argument that the family of methine-
adapted SA-CASSCF solutions corresponds to the resonance
color theory. Interestingly, the correlation between the
diagonal elements of the minimum-norm Hamiltonian and
the one-electron basicity differences was significantly worse
than the correlation of the many-electron and one-electron
basicity differences over the dye set. It seems, therefore, that
Platt’s construction provides a higher fidelity mapping
between one- and many-electron observables than does the
minimum-norm block diagonalization.

Discussion

I have shown that a modified version of the resonance color
theory14,16,18,19 can provide a systematic framework for
understanding protonation-dependent color changes in an
example set of monomethine oxonol dyes. I have done this
in several steps. First, I have shown that there is a family of
SA-CASSCF solutions which has the correct information
structure for defining group basicities as was done in the
theory, that this solution family has transferrability properties
that mirror the Brooker basicity scale, and that the perturbed

excitation energies calculated with this ansatz obey the
Brooker deviation rule.14,18 Second, I have shown that group-
specific basicity indices can be extracted from the excitation
energies of the set. When these are used to construct model
Hamiltonians via Platt’s construction,14 the reconstructed
excitations reproduce the input set to within the accuracy
expected of the calculations themselves.60,75,103–107 Third, I
have demonstrated that these basicity indices are strongly
correlated with an appropriately defined set of one-electron
basicity indices, therefore showing that the representation is
true to this core assertion of the resonance color theory.
Finally, I have compared the Hamiltonians obtained via
Platt’s construction to an ab initio minimum-norm Hamil-
tonian in order to show that it is, in fact, an approximation
to such a Hamiltonian.

Although the results I report here were obtained for a
relatively limited data set, my ongoing studies show that SA-
CASSCF solutions of the form in Figure 2 can be readily
obtained for a broad set of monomethine dyes. If this turns
out to be generally true, then this provides a rigorous
foundation for the resonance color theory in these systems.
It immediately suggests a strategy for making quantitative,
objective inferences using a conceptual framework that
previously yielded only heuristic insights.

Figure 9. Many-electron (Brooker) and one-electron basicity
scales are strongly correlated. This shows that the Brooker
(many-electron) basicity does represent a “basicity” in the
usual (one-electron) sense. Brooker basicities were calculated
using the calculated many-electron excitation energies as
input, while the one-electron basicities were derived from the
diagonal Fock matrix elements of Boys-localized active orbit-
als. The basicities shown are the medians of the distribution
corresponding to each terminal group (see Figure 3). The error
bars show the median absolute deviations of each distribution.
I include a similar figure showing the distributions themselves
in the Supporting Information. Deviation from the regression
line indicates the importance of many-electron correlations to
the basicity values.

Figure 10. The differences between angles that parametrize
the transformations diagonalizing the Platt (θP) and Block-
Diagonalized (θBD) effective Hamiltonians are clustered near
zero. The Block Diagonalized Hamiltonian was generated by
a minimum-norm block diagonalization of the Hamiltonian
defined on the SA-CASSCF states in the Boys localized
representation. The Platt Hamiltonian was constructed from
the excitation energies of asymmetric and symmetric parent
dyes as discussed in the text. The difference in the angle
between the Hamiltonians is small, falling between 0° and
-10° for nearly all dyes in the set. This shows that Platt’s
model Hamiltonian is a synthetic approximation to an ab initio
effective Hamiltonian.
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A formal validation of the resonance theory is important
because the structure of the theory suggests many new
strategies for modeling solvation and excited-state dynamics
in complex environments. There has already been consider-
able work done in the field of nonequilbrium solvation,
which, at least implicitly, invokes the resonance theory
picture.115–117 Similar models for nonlinear optical chro-
mophores have also been proposed.118–120 The “modular”
nature of the relationship between color and group basicity
in the theory is reminiscent of the modular nature of modern
molecular dynamics force fields. This suggests that similar
force fields for excited states may be achievable. This is a
Very interesting prospect, because there are a great many
monomethine dyes which are already being used as probes
of biomolecular structure and dynamics.121–123 A better
understanding of the excited states of these systems would
add value to many results already in the literature, in addition
to stimulating new work.

The data set I employed here includes the canonical proto-
nation states of the GFP chromophoresspecifically, the anion
(PhO-, ImO-) and the phenolic neutral (PhOH, ImO-)sthat
are almost universally assigned to the “A” and “B” absorbance
bands (Boxer’s notation98–100) of GFPs.10,124,125 It also includes
the imidazol-3-ium “cationic” (PhOH, ImNH) and “zwitte-
rionic” (PhO-, ImNH) forms which were once considered
as candidates for assignment to these bands.80,81 Our results
suggest, as did previous ones, that this assignment would
not be unreasonable if the absorption data alone were
considered. Other data are contraindicative.96,126 The set also
includes two protonation states which, as far as I am aware,
have not been assigned to the observed spectra: a dihydroxy
cation (PhOH, ImOH) and an imidazolinol neutral form
(PhO-, ImOH). The results I have obtained with these forms
are interesting. First, I find that the (PhOH, ImOH) form,
like the canonical (PhO-, ImO-) form, is resonant by
Brooker’s definition (small Brooker deviation) and is also
quite red (446 nm). Though novel in this context, this is not
surprising and could easily have been predicted on the basis
of the general tendency of oxonol and hydroxyarylmethine
dyes to develop deep color in acidic and alkaline solution.2

The excitation energy of the (PhOH, PhOH) dye is bluer
than the B bands of some GFP variants but is still comfort-
ably in the range of wavelengths to which the label is
applied.9,127 Possibly, this deserves more attention. I have
also found that the absorbances of the two neutral dyes
(PhOH, ImO-) and (PhO-, ImOH) are very close (340 nm
vs 342 nm) and would likely be spectroscopically indistin-
guishable. This suggests that the assignment of the A band
in GFPs to a phenolic form should not be based on
absorbance data alone. There is no immediate problem here:
since their constituency is identical, the quantum chemical
ground state energies of these forms can be directly
compared. The (PhOHZ, ImO-) form is lower in energy than
the (PhO-, ImOHZ) form by 29 kcal/mol, so there is no a
priori case for reassignment.

Every fluorescent protein chromophore is synthesized
inside the protein to which it is boundsand with which it
interactssfor the entirety of its functional existence.10 In
the theory of open quantum systems, it is well-known that

bipartitioning of a pure state system (having an idempotent
density matrix) will lead to mixed state (nonidempotent)
reduced density matrices for the subsystems, if the sub-
systems are entangled across the boundary.128,129 If one
naively assumes that the protein is described by a pure
quantum state that is an eigenfunction of the proton number,
then one is led, upon partitioning the chromophore from
everything else, to consider that the most realistic assignment
may include ensembles of protonation states. This possibility
has already been suggested as an explanation for the spectra
of positive-mode reversibly photoswitching GFPs.130 The
possibility that electronic and protonic states of the chro-
mophore may be strongly coupled is consistent with the
apparent ultrafast excited-state proton transfer speeds ob-
served in some variants.131 This topic is fit for discussion in
a later publication.

A recent experimental study by Dong et al. of the
solvatochromism of GFP chromophore models has suggested
a high polarizability for the anion.96 This is broadly consistent
with our result that the anion is a resonant system near the
methine limit.3 In their study, Dong et al. fit the spectral
solvatochromic data to a multivariate Kamlet-Taft equa-
tion132 (linear solvatochromic energy relationship) and
obtained interesting results. At pH values consistent with
neutral (most likely (PhOH, ImO-)), the best-fit Kamlet-Taft
coefficients were all negative (increasing solvent polarity,
acidity, and (protic) basicity induced bathochromism). At pH
values consistent with a cation (most likely (PhOH, ImNH)),
all the coefficients were positive (hypsochromism). At pH
values consistent with an anion, a bifurication was observed,
so that increased polarity induced bathochromism while
increases in acidity or basicity induced hypsochromism. The
model compound used was not strictly the same as ours,
differing by two methyl substituents to the imidazolinone.
Methyl groups are weak electron donors, and the relevant
active orbital in our model has amplitude at the points of
their substitution, so one might expect the substitution to
raise the orbital energy and affect a small basicity increase
in the imidazolinone.

The Platt construction can, in principle, describe the
bifurication of solvatochromic trends because it depends on
two independent parameters.14 For a particular case, the
relevant question is how to partition solvation effects into
the EI’s and the b’s. I would argue that nonspecific
interactions whose influence on the rings is anticorrelated
(such as a dipole field component parallel to the long
molecular axis) should manifest in the b’s alone, while ring-
specific hydrogen bonding effects may be partly incorportated
in the EI parameters (as I have done here, taking protonation
as a limit of hydrogen-bond donation). A specific effect that
is localized on one terminal group and independent of the
other can be incorporated into the definition of a new
symmetric parent structure. There is no easy way to “mirror”
interactions that affect the rings in an anticorrelated way. In
the case of a dipole field, the directionality of the field implies
that “mirroring” the field would destroy its dipolar character.
It is possible that higher-order field components would be
preserved (for example certain quadrupolar fields), but most
solvation models consider dipolar fields to be dominant
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contributors.133 Interestingly, this partitioning into dipolar
solvation effects and local (e.g., hydrogen-bonding) effects
is exactly that suggested by the Kamlet-Taft analysis.96 A
bathochromic shift with increasing solvent polarity suggests
a decrease in the absolute value of b(A,B), which would only
be detected if the magnitude of b(A,B) was initially nonzero.
It is possible, therefore, that the results of Dong et al. are
indicative of electronic symmetry breaking in weakly polar
solvents. It is interesting to note that the solvent with the
highest dipolarity/polarizability parameter (π*) studied by
Dong et al. (water) reversed the trend toward increasing
bathochromism. This may be indicative of crossover to a
qualitatively distinct regime, but more data would be required
to confirm or refute this idea. If protonation of the anion is
considered as the extreme limit of hydrogen bond formation,
then our results are consistent with hypsochromic shifts as
the solvent hydrogen bond donation parameter is increased.

The resonance color theory predicts that the Brooker
deviation should increase quadratically in the Brooker
basicity difference. In this context, it is interesting to note
the recent suggestion that a quadratic Stark effect is
responsible for color tuning in red fluorescent proteins
(RFPs).134 RFPs are distinguished by an acylimine substitu-
tion to the imidazolinone ring. On the face of it, this suggests
that the picture that emerges here for GFP chromophores
may also be extended to chromophores from other subfami-
lies of the fluorescent proteins. A SA-CASSCF solution with
the form of Figure 2 can also be obtained for an RFP
chromophore model. In this case, there is one fragment
orbital encompassing both the imidazolinone and acylimine
moieties.

The resonance in the anionic dye (PhO-, ImO-) suggests
high polarizability, as mentioned above. It is tempting to
think that the prevalence of anionic chromophore forms in
GFPs may have arisen because the resonant state allows
greater flexibility for tuning the absorption. There are data
supporting the idea that natural selection pressure drives
emission color changes in these systems.135–138 Not all GFP
homologues are fluorescent, so it is conceivable that similar
pressure drives the tuning of absorbance.

While this paper was in review, Martı́nez, Lamothe and I
demonstrated that Brønsted acid/base chemistry and double
bond photoisomerization chemistry are linked in GFP chro-
mophores through the methine chemistry.139 This suggests
the interesting possibility that the structure-property relations
I have described may also be applied to the photoisomer-
ization reaction, which is considered to be a major decay
channel in these systems.124 The protonation-dependent
basicity differences that I report here are easily larger than
the S0-S1 energy gaps at favorable excited-state twisted
configurations.58,65,74,75,82,139 In fact, they are of similar
magnitude to the excitation energies themselVes. It is possible
that this may be important to understanding why HBDI is
nonfluorescent even in its crystalline solid phase, where large-
amplitude twisting motions are unlikely to occur.140

Conclusion

I have made the case that the resonance theory of Brooker18

dyes provides a sound description for methine dye systems,

if it is expressed in a revised model space that better reflects
its information content. I have demonstrated the effectiveness
of this approach by pointing out that there is a self-consistent
model space for such dyes with the same form and
demonstrated that, when the results obtainable with this
solution are used to parametrize Platt’s model Hamiltonian
construction,14 the set of excitations can be reconstructed
without meaningful loss of accuracy. This provides a firmer
theoretical foundation for the resonance theory and allows
it to be used for quantitative, objective analyses where
previously only heuristic insights could be obtained.

Acknowledgment. This work was supported by the
Australian Research Council under Discovery Project
DP0877875. Computations were done at the National
Computational Infrastructure (NCI) Facility, Canberra, with
time provided under Merit Allocation Scheme (MAS) project
m03. I thank J. R. Reimers, N. S. Hush, and A. N. Tarnovsky
for bringing Brooker’s work to my attention; S. Boxer, S.
Marder, S. Meech, T. Martı́nez, M. Prescott, M. Robb, M.
Olivucci, G. Groenhof, L. Radom, T. Pullerits, T. Smith,
M. Smith, S. Smith, and R. Jansen-Van Vuuren for helpful
discussions; and R. McKenzie for research support, com-
ments, and encouragement. Molecular graphics were gener-
ated using VMD.141

Supporting Information Available: Data pertaining
to one-electron basicity extraction, Cartesian coordinates (Å),
absolute SA-CASSCF and MS-MRPT2 energies (h), MS-
MRPT2 mixing matrices, and SA-CASSCF natural and
localized orbital graphics with state-averaged occupation
numbers. This material is available free of charge via the
Internet at http://pubs.acs.org.

References

(1) Lewis, G. N.; Calvin, M. Chem. ReV. 1939, 25, 273.

(2) Griffiths, J. Colour and Constitution of Organic Molecules;
Academic Press Inc.: London, 1976; pp 2, 241; 248-250;
89-92; 258-259.

(3) Marder, S. R.; Gorman, C. B.; Meyers, F.; Perry, J. W.;
Bourhill, G.; Brédas, J.-L.; Pierce, B. M. Science 1994, 265,
632.

(4) Wu, W.; Hua, J.; Jin, Y.; Zhan, W.; Tian, H. Photochem.
Photobiol. Sci. 2008, 7, 63.

(5) Jain, V.; Rajbongshi, B. K.; Mallajosyula, A. T.; Bhatta-
charjya, G.; Iyer, S. S. K.; Ramanathan, G. Sol. Energy
Mater. Sol. Cells 2008, 92, 1043.

(6) Puyol, M.; Encinas, C.; Rivera, L.; Miltsov, S. Sens.
Actuators 2006, B115, 287.

(7) Heilemann, M.; Margeat, E.; Kasper, R.; Sauer, M.; Tin-
nefeld, P. J. Am. Chem. Soc. 2005, 127, 3801.

(8) Weiss, P. S. ACS Nano 2008, 2, 1977.

(9) Tsien, R. Y. Angew. Chem., Int. Ed. 2009, 48, 5612.

(10) Remington, S. J. Curr. Opin. Struct. Biol. 2006, 16, 714.

(11) Shu, X.; Shaner, N. C.; Yarbrough, C. A.; Tsien, R. Y.;
Remington, S. J. Biochemistry 2006, 45, 9639.

(12) Dahne, S. Science 1978, 199, 1163.

(13) Kuhn, H. J. Chem. Phys. 1949, 17, 1198.

1100 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Olsen



(14) Platt, J. R. J. Chem. Phys. 1956, 25, 80.

(15) Dewar, M. J. Chem. Soc. 1950, 2329.

(16) Moffitt, W. E. Proc. Phys. Soc. 1950, A63, 700.

(17) Brooker, L. G. S.; Keyes, G. H.; Williams, W. W. J. Am.
Chem. Soc. 1942, 64, 199.

(18) Brooker, L. G. S. ReV. Mod. Phys. 1942, 14, 275.

(19) Pauling, L. Proc. Natl. Acad. Sci. U.S.A. 1939, 25, 577.

(20) Fabian, J.; Hartmann, H. Light Absorption of Organic
Colorants; Springer-Verlag: Heidelberg, Germany, 1980; pp
1-245.

(21) Berneth, H. In Ullmann’s Encyclopedia of Industrial
Chemistry; 7th ed.; John Wiley & Sons Inc.: New York,
2009.

(22) Platt, J. R. J. Chem. Phys. 1949, 17, 484.

(23) Herzfeld, K. F.; Sklar, A. L. ReV. Mod. Phys. 1942, 14,
0299.

(24) Reimers, J. R.; Hush, N. S. Chem. Phys. 1989, 134, 323.

(25) Feynman, R. P.; Leighton, R. B.; Sands, M. L. Quantum
Mechanics; Addison-Wesley Publishing Company: Reading,
MA, 1989; Vol. 3, pp 10-12.

(26) Mulliken, R. S. J. Chem. Phys. 1939, 7.

(27) Dewar, M. J. S.; Longuet-Higgins, H. C. Proc. R. Soc.
London 1952, A214, 482.

(28) Hoffmann, R.; Shaik, S.; Hiberty, P. C. Acc. Chem. Res.
2003, 36, 750.

(29) Shaik, S.; Hiberty, P. In ReViews in Computational Chem-
istry; Lipkowitz, K. B., Larter, R., Cundari, T. R., Eds.; John
Wiley & Sons Inc.: New York, 2004; Vol. 20.

(30) Lipkin, H. J. Lie Groups for Pedestrians; Dover Publica-
tions Inc.: Mineola, NY, 2002; pp 16-17.

(31) Tishby, N. Z.; Levine, R. D. Chem. Phys. Lett. 1984, 104,
4.

(32) Shaik, S.; Shurki, A. Angew. Chem., Int. Ed. 1999, 38, 586.

(33) Truhlar, D. G. J. Comput. Chem. 2006, 28, 73.

(34) Hiberty, P. C. THEOCHEM 1998, 451, 237.

(35) Hiberty, P. C.; Shaik, S. J. Comput. Chem. 2007, 28, 137.

(36) Shaik, S. New J. Chem. 2007, 31, 1981.

(37) Hiberty, P. C.; Leforestier, C. J. Am. Chem. Soc. 1978, 100,
2012.

(38) Hirao, K.; Nakano, H.; Nakayama, K.; Dupuis, M. J. Chem.
Phys. 1996, 105, 9227.

(39) Paldus, J.; Sarma, C. R. J. Chem. Phys. 1985, 83, 5135.

(40) Granucci, G.; Cassam-Chenaï, P.; Ellinger, Y. J. Chem.
Phys. 1998, 108, 2538.

(41) Cassam-Chenaı̈, P.; Ellinger, Y.; Berthier, G. Phys. ReV.
1993, A48, 2746.

(42) An exception worth noting is in the case where there are
exactly two electrons in a closed active space. Then, the
complete set of number-conserving operators spans a Lie
algebra and is composed of one- and two- electron operators.

(43) Salem, L. The Molecular Orbital Theory of Conjugated
Systems; W.A. Benjamin Inc.: New York, 1966; pp 36-43.

(44) Docken, K. K.; Hinze, J. J. Chem. Phys. 1972, 57, 4928.

(45) Stålring, J.; Bernhardsson, A.; Lindh, R. Mol. Phys. 2001,
99, 103.

(46) Roos, B. In AdV. Chem. Phys.; Lawley, K. P., Ed.; John
Wiley & Sons Ltd.: New York, 1987; Vol. 69, p 399.

(47) Werner, H.-J.; Meyer, W. J. Chem. Phys. 1981, 74, 5794.

(48) Olsen, S.; McKenzie, R. H. J. Chem. Phys. 2009, 131,
234306.

(49) I have been able to obtain an analogous SA2-CAS(2,3)
solution for the dication formed by removing two electrons
from the GFP chromophore anion. The orbitals at conver-
gence are visually indistinguishable from the four-electron
case.

(50) Foster, J. M.; Boys, S. F. ReV. Mod. Phys. 1960, 32, 300.

(51) Levy, B.; Berthier, G. Int. J. Quantum Chem. 1968, 2, 307.

(52) Finley, J.; Malmqvist, P.; Roos, B.; Serrano-Andrés, L.
Chem. Phys. Lett. 1998, 288, 299.

(53) Celani, P.; Werner, H.-J. J. Chem. Phys. 2003, 119, 5044.

(54) Celani, P.; Werner, H.-J. J. Chem. Phys. 2000, 112, 5546.

(55) Rajput, J.; Rahbek, D. B.; Andersen, L. H.; Rocha-Rinza,
T.; Christiansen, O.; Bravaya, K. B.; Nemukhin, A. V.;
Bochenkova, A. V.; Solntsev, K. M.; Dong, J.; Kowalik, J.;
Tolbert, L. M.; Petersen, M. Å.; Nielsen, M. B. Phys. Chem.
Chem. Phys. 2009, 11, 9996.

(56) Li, X.; Chung, L.; Mizuno, H.; Miyawaki, A.; Morokuma,
K. J. Phys. Chem. B 2010, 114, 1114.

(57) Ma, Y.; Rohlfing, M.; Molteni, C. J. Chem. Theory Comput.
2010, 5, 257.

(58) Olsen, S.; McKenzie, R. H. J. Chem. Phys. 2009, 130,
184302.

(59) Polyakov, I.; Epifanovsky, E.; Grigorenko, B.; Krylov, A. I.;
Nemukhin, A. J. Chem. Theory Comput. 2009, 5, 1907.

(60) Epifanovsky, E.; Polyakov, I.; Grigorenko, B.; Nemukhin,
A.; Krylov, A. J. Chem. Theory Comput. 2009, 5, 1895.

(61) Filippi, C.; Zaccheddu, M.; Buda, F. J. Chem. Theory
Comput. 2009, 5, 2074.

(62) Luin, S.; Voliani, V.; Lanza, G.; Bizzarri, R.; Amat, P.;
Tozzini, V.; Serresi, M.; Beltram, F. J. Am. Chem. Soc.
2009, 131, 96.

(63) Bravaya, K. B.; Bochenkova, A. V.; Granovskii, A. A.;
Nemukhin, A. V. Russ. J. Phys. Chem. 2008, B2, 671.

(64) Vendrell, O.; Gelabert, R.; Moreno, M.; Lluch, J. M.
J. Chem. Theory Comput. 2008, 4, 1138.

(65) Olsen, S.; Smith, S. J. Am. Chem. Soc. 2008, 130, 8677.

(66) Wang, S.; Smith, S. C. Phys. Chem. Chem. Phys. 2007, 9,
452.

(67) Camilloni, C.; Provasi, D.; Tiana, G.; Broglia, R. J. Phys.
Chem. 2007, B111, 10807.

(68) Zhang, L.; Xie, D.; Zeng, J. J. Theory Comput. Chem. 2006,
5, 375.

(69) Wang, S.; Smith, S. J. Phys. Chem. 2006, B110, 5084.

(70) Zhang, R.; Nguyen, M. T.; Ceulemans, A. Chem. Phys. Lett.
2005, 404, 250.

(71) Xie, D.; Zeng, J. J. Comput. Chem. 2005, 26, 1487.

(72) Sinicropi, A.; Andruniow, T.; Ferre, N.; Basosi, R.; Olivucci,
M. J. Am. Chem. Soc. 2005, 127, 11534.

A Modified Resonance-Theoretic Framework J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1101



(73) Vendrell, O.; Gelabert, R.; Moreno, M.; Lluch, J. M. Chem.
Phys. Lett. 2004, 396, 202.

(74) Toniolo, A.; Olsen, S.; Manohar, L.; Martı́nez, T. J. Faraday
Disc. 2004, 127, 149.

(75) Martin, M. E.; Negri, F.; Olivucci, M. J. Am. Chem. Soc.
2004, 126, 5452.

(76) Laino, T.; Nifosı̀, R.; Tozzini, V. Chem. Phys. 2004, 298,
17.

(77) Das, A.; Hasegawa, J.; Miyahara, T.; Ehara, M.; Nakatsuji,
H. J. Comput. Chem. 2003, 24, 1421.

(78) Helms, V. Curr. Opin. Struct. Biol. 2002, 12, 169.

(79) Helms, V.; Winstead, C.; Langhoff, P. THEOCHEM 2000,
506, 179.

(80) Voityuk, A.; Michel-Beyerle, M.; Rösch, N. Chem. Phys.
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Lett. 1997, 272, 162.

(82) Altoe, P.; Bernardi, F.; Garavelli, M.; Orlandi, G. J. Am.
Chem. Soc. 2005, 127, 3952.

(83) Topol, I.; Collins, J.; Polyakov, I.; Grigorenko, B.; Nemukhin,
A. Biophys. Chem. 2009, 145, 1.

(84) Møller, C.; Plesset, M. S. Phys. ReV. 1934, 46, 618.

(85) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.

(86) Bofill, J. M.; Pulay, P. J. Chem. Phys. 1989, 90, 3637.

(87) Pulay, P.; Hamilton, T. P. J. Chem. Phys. 1988, 88, 4926.

(88) Kutzelnigg, W. Int. J. Quantum Chem. 2009, 109, 3858.

(89) Canosa, N.; Rossignoli, R.; Plastino, A.; Miller, H. Phys.
ReV. 1992, C45, 1162.

(90) Malrieu, J.-P.; Heully, J.-L.; Zaitsevskii, A. Theor. Chem.
Acc. 1995, 90, 167.

(91) MOLPRO, version 2009.1, a package of ab initio programs:
Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.;
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Abstract: We have computed stationary points on the potential energy surface for the anti-E2,
syn-E2, and SN2 pathways of the reactions of F- and Cl- with CH3CH2F and CH3CH2Cl with
fully self-consistent fields and Gaussian basis functions. We find large differences from previously
reported [Bento, A. P.; Solà, M.; Bickelhaupt, F. M. J. Chem. Theory Comput. 2008, 4, 929]
calculations with Slater-type orbitals. We revise the findings of the previous study; in particular,
we find average absolute errors in kcal/mol compared to benchmark calculations of 20 stationary
point energies (6 saddle points and 14 minima) of 0.9 for M06-2X, 1.2 for M08-SO, 1.4 for
M06-HF, 2.0 for M06, 2.3 for B3LYP, 2.5 for OLYP, 2.7 for M06-L, and 3.5 kcal/mol for TPSS.
We also compare the predictions of various density functionals for the partial atomic charges at
the transition states.

1. Introduction

Density functional theory1 has become a powerful tool for
predicting and understanding trends in chemical reactivity,
and considerable time has been expended in validating its
predictions.2 A recent article3 in this journal presented
calculations for bimolecular elimination (E2) and bimolecular
nucleophilic substitution (SN2) reactions with a variety of
density functional approximations (DFAs) and compared the
results to benchmark calculations. The article found large
errors in the predictions of most DFAs in the literature; it
found a mean unsigned error for M06-2X of 2.3 kcal/mol,
and it found that the M06-L density functional, although
being among the best functionals in terms of mean unsigned
errors (MUEs) in barrier heights, incorrectly predicted that
the SN2 saddle point for the reaction of F- with CH3CH2F
is lower in energy than that of the anti-E2 saddle point. In
order to study this, we began to repeat some of their

calculations with a different computer program, and we found
surprisingly large differences.

In this article we present our results, compare them to their
results, and update the conclusions about the accuracy of
various density functionals. We also provide tests of the post-
SCF approximation and the density fitting procedure, we test
two additional density functionals that were not included in
ref 3, and we calculate the charge distributions at the
transition states.

2. Methods

We explored several methods where each method is a
combination of a DFA and a basis set. The DFAs4-13

considered here are summarized in Table 1.
We considered several Gaussian basis sets,14-20 which are

specified in Table 2, which gives convenient abbreviations
for use in the rest of the article. The final row of Table 2 is
the Slater-type basis used in the calculations of ref 3, which
were all performed with the ADF program.21 Our calculations
in Tables 3 and 4 were performed with the Gaussian 0322

and MN-GFM programs.23
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For all calculations, we used the default fine grid in
Gaussian 03, which has 75 radial shells and 302 angular
points per shell. We have checked the M06-2X/MG3S
calculations with the ultrafine grid (99 radial shells and 590
angular points per shell), and we found that the relative
energies obtained with the default fine grids agree within
0.05 kcal/mol of those obtained by using ultrafine grids.

The Gaussian 03 program can carry out Kohn-Sham
density functional calculations with or without density
fitting,24 and we used both methods, as will be specified in
the tables. In principle, density fitting is not an approxima-
tion, if the auxiliary basis set used for fitting is converged,
but in practice one should check for basis set incompleteness
or use well validated large auxiliary basis sets.

3. Results

Tables 3 and 4 show the present results for the F- +
CH3CH2F and Cl- + CH3CH2Cl reactions, respectively, and
Tables 5 and 6 present selected results from Bento et al.,3

arranged the same way for ease of comparison. As in ref 3,
we consider the syn- and anti-E2 reactions and the SN2
reaction. All calculations in Tables 3-6 are based on the
OLYP/TZ2P geometries of Bento et al.3 in order to remove
the choice of geometry from the comparison of calculations.
In the tables, the symbol “A@B” is used to denote a post-
SCF calculation, that is, a calculation in which the final
energy is evaluated by method A, but the density is calculated
by method B.

All values in the tables are energies relative to the energy
of the separated reactants. PC denotes a precursor complex
(local minimum of the potential energy occurring at an earlier
stage of the reaction coordinate than the saddle point), SP
denotes the saddle point, SC denotes a successor complex
(local minimum of the potential energy occurring at a later

stage of the reaction coordinate than the saddle point), and
P denotes the product.

4. Discussion

4.1. Comparison of Calculations. In addition to density
functional calculations, Tables 5 and 6 show benchmark
calculations carried out by the coupled cluster method with
single and double excitations and a quasiperturbative treat-
ment of connected triple excitations25 (CCSD(T)), extrapo-
lated3 to the complete basis set (CBS) limit. These bench-
mark calculations are used to compute the mean unsigned
error (MUE) for each row of Tables 3-6, and these MUEs
are given in the last column of each of these tables. The
first observation one makes is that the errors are much bigger
in Tables 5 and 6, based on the Slater-type orbitals (STOs),3

than in Tables 3 and 4, based on the Gaussian-type orbital
calculations (GTO calculations) presented here.

The striking differences in the results must be attributed
to the differences in the calculations: the different basis sets,
the use of post-SCF calculations in some of the STO
calculations, and the use of frozen core approximation in
some of the STO calculations.

The first possible reason for the differences is that we use
Gaussian basis sets and ADF uses Slater-type orbitals.
However, the first three rows of Tables 3 and 4 show that
we get similar results with two different triple-� quality and
one quadruple-� quality basis set, so it does not appear that
basis set incompleteness is significant in our GTO calcula-
tions. Personal communications from Bickelhaupt and van
Gisbergen and their co-workers show that the largest
systematic source of discrepancy between the results of ref
3 and the present results is the choice of STO basis set; in
particular, a large part of the discrepancy can be removed if
one uses larger STO basis sets containing diffuse functions.26,27

It is not our goal to trace down every possible contributor
to the deviations between the results of ref 3 and the present
results but rather to focus on the revised conclusions about
the performances of various density functionals, to present
results for two density functionals (M08-HX and M08-SO)
that were not included in ref 3, and to add a caution about
the post-SCF approximation.

ADF can evaluate the energy for the density functionals
of interest from a charge density obtained with a simpler
density functional; this is called a post-SCF treatment, and
it is provided as a convenience to user who wish to get a
quick impression of the effect of changing the density
functional. In the calculations of Bento et al., all charge
densities were obtained with the OLYP functional. Thus all
their results except OLYP involve the post-SCF approxima-
tion. In contrast, except for a test that we will now report,
our calculations were all performed by achieving a full self-
consistent field for each function employed. Recently Liao
et al.28 indicated that the post-SCF approximation can
produce large errors in calculating noncovalent binding
energies; in contrast, the authors of ref 3 state that in previous
work29 the post-SCF approximation has “been extensively
tested and. .. shown to introduce an error in the computed
energies of only a few tenths of a kcal/mol,” but they did

Table 1. Density Functional Approximationsa

name reference type Xb

OLYP 6, 9 GGA 0
B3LYP 5-9 hybrid GGA 20
TPSS 10 meta-GGA 0
M06-L 4 meta-GGA 0
M06-HF 11 hybrid metac 100
M06 12 hybrid meta 27
M06-2X 12 hybrid meta 54
M08-HX 13 hybrid meta 52.23
M08-SO 13 hybrid meta 56.79

a We sometimes use the conventional language in which an
approximation to the unknown exact exchange-correlation
functional is just called a density functional. b X denotes the
percentage of Hartree-Fock exchange. c hybrid meta is short
notation for hybrid meta-GGA.

Table 2. Basis Sets

basis reference typea (quality) abbreviation

6-311+G(2df,2p) 14, 15 triple-� + diffuse 311+
MG3Sb 16, 17 triple-� + diffuse MG3S
aug-cc-pV(T+d)Z 18 triple-� + diffuse aTZ
aug-cc-pV(Q+d)Z 18, 19 quadruple-� + diffuse aQZ
TZ2P 20 Slater triple-� + diffuse V

a “triple-� quality” is short notation for polarized triple-�. b MG3S
is the same as 6-311+G(2df,2p) for H, C, and F but is improved
for Cl. See ref 17.
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not report tests of these approximations for the reactions
under consideration here. We, therefore, tested the post-SCF
method for these reactions by carrying out calculations for
M06-2X with the OLYP density. These results are given in
row four of Tables 3 and 4. The results differ from straight
M06-2X calculations with the same basis set by 0.2-2.8
kcal/mol, with an average (over 20 cases) of 1.2 kcal/mol.
Clearly the errors are larger than the previous work led the
authors of ref 3 to believe, but the deviations of the present
results from those of ref 3 are even larger than this, so this

does not contradict the conclusion26,27 that the main reason
for the inaccuracy of ref 3 is the choice of basis set.

Our OLYP calculations are also important for another
reason. Since OLYP is the only method for which the results
in ref 3 are full SCF results rather than post-SCF results,
this comparison directly tests whether issues other than the
post-SCF approximation are indeed important. The results
show that they are. Comparing our results with the largest
basis set (aQZ) to the results from ref 3 shows absolute
deviations of 0.1-10.2 kcal/mol, with an average (over 20

Table 3. Results with Gaussian Basis Sets for the Reactions of F- with CH3CH2F

anti-E2 syn-E2 SN2

method PC SP SC P PC SP SC P PC SP MUE

M06-2X/MG3S -15.99 -1.15 -5.49 19.16 -12.07 3.85 -35.12 -29.47 -15.99 3.02 1.34
M06-2X/aTZ -15.10 -0.42 -4.82 18.89 -11.18 4.92 -34.45 -28.95 -15.10 3.65 1.16
M06-2X/aQZ -15.05 -0.25 -4.74 18.72 -11.20 5.17 -33.99 -28.54 -15.05 4.07 1.20
M06-2X@OLYP/aTZ -13.60 2.33 -3.63 18.54 -9.89 6.24 -34.24 -28.74 -13.60 6.26 2.07
M06-2X/311+ -15.99 -1.15 -5.49 19.16 -12.07 3.85 -35.12 -29.47 -15.99 3.02 1.34
OLYP/aTZ -12.51 -0.74 -4.55 12.97 -8.25 4.17 -31.65 -28.15 -12.51 4.16 2.23
OLYP/aQZ -12.21 -0.39 -4.25 12.94 -7.98 4.52 -31.19 -27.80 -12.21 4.58 2.47
OLYP/311+ -14.63 -2.63 -6.39 13.54 -10.16 1.69 -33.45 -29.37 -14.63 1.35 1.45
B3LYP/311+ -15.98 -2.65 -6.78 16.38 -11.59 2.31 -34.82 -29.98 -15.98 -1.08 1.58
TPSS/311+ -17.54 -1.75 -4.78 20.24 -12.73 0.65 -32.06 -26.98 -17.54 -6.26 3.40
M06/311+ -16.25 -1.76 -5.84 18.49 -12.22 2.86 -31.70 -26.58 -16.25 -1.02 2.14
M06-L/311+ -17.07 -1.95 -5.41 19.32 -12.66 1.69 -31.04 -25.92 -17.07 -4.05 3.05
M06-L/311+a -17.06 -1.95 -5.41 19.32 -12.65 1.70 -31.04 -25.93 -17.06 -4.03 3.04
M08-HX/311+ -16.56 -1.96 -6.47 18.58 -12.64 3.90 -34.38 -28.67 -16.56 1.26 1.44
M08-SO/311+ -15.87 -2.44 -6.13 18.21 -12.22 4.83 -33.35 -27.77 -15.87 0.89 1.40
M06-HF/311+ -15.80 -0.79 -4.98 19.75 -11.76 4.48 -38.51 -32.77 -15.80 2.92 1.56

a This calculation was carried out with density fitting; all other calculations in this table were carried out without this additional
approximation.

Table 4. Results with Gaussian Basis Sets for the Reactions of Cl- with CH3CH2Cl

anti-E2 syn-E2 SN2

method PC SP SC P PC SP SC P PC SP MUE

M06-2X/MG3S -11.15 17.64 11.56 23.26 -11.15 29.76 -4.54 -1.69 -11.15 5.79 0.54
M06-2X/aTZ -11.06 17.71 11.56 23.32 -11.06 29.76 -4.47 -1.60 -11.06 5.95 0.53
M06-2X/aQZ -10.91 18.10 11.83 23.39 -10.91 30.24 -4.08 -1.26 -10.91 6.49 0.61
M06-2X@OLYP/aTZ -10.38 20.08 12.10 22.94 -10.38 31.80 -4.02 -1.17 -10.38 7.81 1.10
M06-2X/311+ -11.34 17.51 11.71 23.72 -11.34 29.61 -4.83 -1.80 -11.34 5.63 0.69
OLYP/aTZ -8.03 13.48 9.42 16.65 -8.03 22.62 -8.32 -6.46 -8.03 6.87 3.76
OLYP/aQZ -7.91 13.79 9.74 16.88 -7.91 22.93 -7.97 -6.11 -7.91 7.24 3.64
OLYP/311+ -8.18 13.12 9.52 17.20 -8.18 22.32 -8.73 -6.84 -8.18 6.45 3.75
B3LYP/311+ -9.89 13.19 8.65 19.08 -9.89 23.64 -7.81 -5.59 -9.89 2.50 3.05
TPSS/311+ -10.42 10.62 10.53 21.95 -10.42 19.61 -7.56 -4.99 -10.42 -1.73 3.56
M06/311+ -11.37 15.97 12.08 24.21 -11.37 25.59 -4.01 -0.87 -11.37 2.25 1.77
M06-L/311+ -11.11 13.33 11.37 23.39 -11.11 22.41 -5.07 -2.01 -11.11 0.05 2.29
M06-L/311+a -11.11 13.32 11.35 23.37 -11.11 22.40 -5.10 -2.04 -11.11 0.03 2.29
M08-HX/311+ -11.64 18.21 10.77 23.65 -11.64 31.36 -2.89 0.30 -11.64 6.37 0.89
M08-SO/311+ -11.64 17.21 10.36 23.37 -11.64 29.91 -3.33 -0.11 -11.64 4.37 0.98
M06-HF/311+ -11.25 19.31 12.43 24.16 -11.25 34.28 -3.59 -0.39 -11.25 6.40 1.26

a This calculation was carried out with density fitting; all other calculations in this table were carried out without this additional
approximation.

Table 5. Results with Slater-type Basis Sets for the Reactions of F- with CH3CH2F

anti-E2 syn-E2 SN2

method PC SP SC P PC SP SC P PC SP MUE

CCSD(T)/CBS -14.89 -1.27 -6.35 15.77 -11.00 5.68 -37.39 -28.60 -14.89 2.20
B3LYP@OLYP/V -19.30 -5.38 -10.66 15.90 -14.50 -2.00 -40.32 -35.34 -19.30 -4.01 4.44
M06@OLYP/V -18.21 -2.21 -7.47 17.88 -13.96 1.14 -35.19 -30.59 -18.21 -0.35 2.51
M06-2X@OLYP/V -15.67 1.49 -5.62 18.37 -11.47 4.03 -37.77 -32.90 -15.67 5.82 1.81
TPSS@OLYP/V -21.38 -5.26 -8.94 19.81 -16.28 -4.16 -37.83 -32.52 -21.38 -10.03 5.53
M06-L@OLYP/V -20.04 -1.23 -5.44 20.54 -15.33 1.68 -32.57 -27.78 -20.04 -2.95 3.51
OLYP/V -20.01 -7.95 -12.49 -12.85 -15.20 -4.93 -41.40 -36.41 -20.01 -4.16 8.47
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cases) of 5.0 kcal/mol. We note for completeness that the
OLYP calculations of ref 3 were carried with a frozen-core
approximation, whereas all other calculations in ref 3 were
all-electron calculations; our calculations are all of the latter
type.

ADF evaluates the matrix elements of the exchange-
correlation potential and the Coulomb potential using an
auxiliary function representation of the electronic density;
this is called density fitting. Gaussian can carry out calcula-
tions with or without this additional approximation. When
density fitting is employed, it is important to know the
adequacy of auxiliary basis sets used for density fitting,
Tables 3 and 4 show M06-L calculations with and without
this approximation, using the Gaussian 03 default choice for
the auxiliary basis, and the agreement is quite good, with an
average deviation of only 0.01 kcal/mol. This is consistent
with conclusions we drew in tests of this method on other
reactions.2f We did not test the auxiliary basis sets used in
ADF, but the sets of auxiliary functions in ADF are rather
extensive, and tests of this feature by the developers of ADF
show that density fitting errors are quite small (smaller than
basis set effects).21

4.2. Revised Conclusions about the Accuracy of
Density Functional Approximations. The mean unsigned
error in the present M06-2X results is 0.9 kcal/mol, as
compared to 2.3 kcal/mol in the calculations of ref 3. The
average error in the M06-L relative energetics (average over
20 cases) is 2.7 kcal/mol, which is lower than the 3.3 kcal/
mol average error found in ref 3. We conclude that the
bigger-than-expected errors reported in ref 3 appear to be
artifacts of the calculations, especially the basis sets, and
not deficiencies of the density functionals applied.

We still find that the M06-L density functional predicts
an anomalously low barrier height for the F- + CH3CH2F
SN2 reaction, and in fact, it also predicts a significantly too
low barrier for the Cl- + CH3CH2Cl SN2 reaction. Since
functionals with no Hartree-Fock exchange sometimes
overestimate the amount of charge transfer,31 one possible
reason for the large error in M06-L in the F- case is an
overestimate of the amount of charge transfer. To examine
this possibility, we computed the partial atomic charges at
transition states by Hirshfeld population analysis.32,33 The
partial atomic charges on the halogen atom are in Table 7,
which shows reasonably similar partial atomic charges for
various density functionals. Furthermore, the SN2 reaction
has neither the largest nor the smallest partial charges on
the halogens. Thus we cannot attribute the poor performance
of SN2 to spurious charge transfer. M06-L is a meta-GGA.

The only other meta-GGA in this paper is TPSS; TPSS has
an even larger error than M06-L for this difficult case.

The average error in the M06-L relative energetics
(average over 20 cases) is 2.7 kcal/mol, which is lower than
our calculated mean errors for other functionals with no
Hartree-Fock exchange: 3.1 and 3.5 kcal/mol for OLYP and
TPSS, respectively. Adding Hartree-Fock exchange can
reduce the error to 0.9 (M06-2X), 1.2 (M08-HX and M08-
SO), 1.4 (M06-HF), or 2.0 kcal/mol (M06), whereas the
popular B3LYP functional has a mean unsigned error of 2.3
kcal/mol.

Excluding one saddle point (that for the SN2 reaction of
F- with CH3CH2F), reduces the mean absolute errors for of
M06-2X and M06-L from respectively 0.89 and 2.67 kcal/
mol for 20 cases to 0.85 and 2.48 kcal/mol for 19 cases.

5. Concluding Remarks

The density functional results obtained here agree much
better than those in ref 3 with benchmark calculations. The
final trends in the errors for barrier heights in the present
paper are not significantly out of line with what might have
been expected on the basis of previous tests,2e,2f although
the errors reported in ref 3 are larger than would have been
expected for the Minnesota functionals (which was the
motivation for our opening the problem for re-examination).
The errors in the calculations with the more accurate density
functionals could probably be reduced by using consistently
optimized geometries rather than OLYP geometries, but that
is not the goal of the present article, which is instead designed
to reveal differences in the calculated results due to
algorithmic choices in ref 3.
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the discrepancies between the present calculations and those

Table 6. Results with Slater-type Basis Sets for the Reactions of Cl- with CH3CH2Cl

anti-E2 syn-E2 SN2

method PC SP SC P PC SP SC P PC SP MUE

CCSD(T)/CBS -11.07 18.18 9.77 22.16 -11.07 30.92 -4.85 -1.42 -11.07 5.81
B3LYP@OLYP/V -10.60 11.00 7.03 17.83 -10.60 21.22 -10.78 -8.53 -10.60 0.92 4.33
M06@OLYP/V -12.68 17.33 6.17 22.96 -12.68 23.67 -6.49 -2.92 -12.68 3.36 2.29
M06-2X@OLYP/V -12.49 10.65 14.98 22.49 -12.49 30.29 -5.85 -4.74 -12.49 10.73 2.72
TPSS@OLYP/V -10.99 9.34 8.95 20.88 -10.99 17.58 -9.89 -7.01 -10.99 -3.22 4.42
M06-L@OLYP/V -14.02 12.92 8.99 25.92 -14.02 22.77 -4.73 -2.25 -14.02 2.63 3.09
OLYP/V -9.66 10.68 7.45 16.33 -9.66 19.58 -11.81 -9.28 -9.66 4.04 4.78

Table 7. Hirshfeld Partial Atomic Charges on F and Cl at
the anti-E2 and SN2 Transition Statesa

anti-E2 SN2b

method
leaving

F
incoming

F
leaving

Cl
incoming

Cl F Cl

M06-L -0.74 -0.29 -0.73 -0.39 -0.51 -0.58
M06-2X -0.80 -0.29 -0.77 -0.38 -0.53 -0.59
M06-HF -0.82 -0.29 -0.78 -0.36 -0.55 -0.59
OLYP -0.72 -0.28 -0.70 -0.38 -0.49 -0.55
TPSS -0.73 -0.28 -0.71 -0.38 -0.49 -0.56
HF -0.84 -0.31 -0.81 -0.39 -0.60 -0.65

a All calculations in this table employed the 311+ basis set.
b The incoming and leaving halogen atoms have the same partial
charges for the SN2 reactions.
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Abstract: Building on the SVPE (surface and volume polarization for electrostatics) model for

electrostatic contributions to the free energy of solvation with explicit consideration of both surface

and volume polarization effects, on the SMx approach to including first-solvation-shell contribu-

tions, and on the linear relationship between the electric field and short-range electrostatic

contributions found by Chipman, we have developed a new method for computing absolute

aqueous solvation free energies by combining the SVPE method with semiempirical terms that

account for effects beyond bulk electrostatics. The new method is called SMVLE, and the

elements it contains are denoted by SVPE-CDSL, where SVPE denotes accounting for bulk

electrostatic interactions between solute and solvent with both surface and volume contributions,

CDS denotes the inclusion of solvent cavitation, changes in dispersion energy, and possible

changes in local solvent structure by a semiempirical term utilizing geometry-dependent atomic

surface tensions as implemented in SMx models, and L represents the local electrostatic effect

derived from the outward-directed normal electric field on the cavity surface. The semiempirical

CDS and L terms together represent the deviation of short-range contributions to the free energy

of solvation from those accounted for by the SVPE term based on the bulk solvent dielectric

constant. A solute training set containing a broad range of molecules used previously in the

development of SM6 is used here for SMVLE model calibration. The aqueous solvation free

energies predicted by the parametrized SMVLE model correlate exceedingly well with

experimental values. The square of the correlation coefficient is 0.9949 and the slope is 1.0079.

Comparison of the final SMVLE model against the earlier SMx solvation model shows that the

parametrized SMVLE model not only yields good accuracy for neutrals but also significantly

increases the accuracy for ions, making it the best implicit solvation model to date for aqueous

solvation free energies of ions. The semiempirical terms associated with the outward-directed

electric field account in a physical way for the improvement in the predictive accuracy for ions.

The SMVLE method greatly decreases the need to include explicit water molecules for accurate

modeling of solvation free energies of ions.
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Introduction

Dielectric continuum solvation models1,2 have been widely
and successfully used for estimating solvation free energies.
Such models are also called implicit solvation models
because the solvent is not atomistically explicit but rather is
implicit in the dielectric medium. In the self-consistent
versions of such models, the solvent is considered to be a
continuous dielectric medium that is polarized by the solute,
leading to a reaction field that in turn polarizes the solute,
which changes the solvent polarization, leading ultimately
to a self-consistent reaction field (SCRF). A dielectric
continuum solvation model accurately describes the long-
range permanent-multipole-moment and inductive interac-
tions between solute and bulk solvent; in the language
conventionally used in the continuum solvation model
literature, both permanent-multipole-moment and induction
effects are labeled as electrostatic, and we will follow that
convention in the rest of this article. SCRF methods require
less computational effort than explicit-solvent approaches
involving the same quality treatment of the solute, and this
makes them appealing for the study of complex chemical,
materials, and biochemical processes and for the rapid
screening of many solutes in, for example, molecular docking
studies. When the bulk-solvent model is augmented with
additional terms to account for the deviation of short-range
solute-solvent interactions from the bulk electrostatic model,
useful accuracy can be obtained.3

One popular way to implement the SCRF approach is to
describe the solvent polarization in terms of the electrostatic
potential that it introduces inside the solute cavity under the
assumption that all solute charge density resides inside the
cavity; this is often called the polarized continuum model
(PCM).1,2 However, unconstrained quantum mechanical
calculations of solute electronic structure always lead to a
tail of the wave function penetrating outside the cavity,
thereby causing an additional polarization effect called
volume polarization.4 It has been demonstrated5 that neglect-
ing charge penetration (also called outlying charge) leads to
inconsistencies in the course of solving Poisson’s equation.
Such inconsistencies render many SCRF implementations
sensitive to cavity size6 and prone to overestimating solvent
shifts of energy barriers in aqueous solution.7,8 In previous
studies,5-7,9,10 a general model called surface and volume
polarization for electrostatic interaction (SVPE), or the fully
polarizable continuum model (FPCM),11-18 was developed.
This model, implemented for irregularly shaped solute
cavities, fully accounts for both surface and volume polariza-
tion effects in solute-solvent electrostatic interactions.
Therefore, the SVPE solvation model provides a theoretically
well justified continuum methodology for studying long-
range electrostatic interactions. It has also been useful in a
practical sense, having been applied successfully to study

mechanisms for various chemical reactions and to make pKa

predictions.7,8,19,20

One must bear in mind that absolute solvation free energies
result not only from long-range electrostatic interactions
between solute and bulk solvent but also from significant
short-range contributions, such as short-range and nonbulk
electrostatics, as well as cavitation, exchange repulsion,
dispersion, and disruption or formation of the nearby solvent
structure. (Note that the short-range, nonbulk electrostatic
effect may be considered to be a solvent structure effect.)
These interactions are not treated satisfactorily within the
framework of a pure dielectric continuum model. Previously,
the difference between solvation free energies calculated by
dielectric continuum solvation methods and experimental
solvation free energies has been labeled in an SVPE context
as the nondielectric or short-range contribution21,22 and in
other contexts3 as a cavity-dispersion-solvent-structure (CDS)
effect. Such short-range contributions are often7,8 (but not
always23) neglected in estimating energy barriers by implicit
solvation methods, but for systems with strong hydrophobic
effects or hydrogen bonding between solute and solvent
molecules, the short-range contributions to the energy barriers
may be very significant or even decisive. Furthermore,
accounting for the short-range contributions is essential for
calculating reliable absolute solvation free energies of neutral
solutes.3

In a supermolecular approach, the nearby solvent mol-
ecules are represented explicitly as components of a cluster
continuing the solute. It has been reported that, by employing
a combined supermolecule-continuum approach,15,18,24-27

involving both explicit and implicit solvent, the SVPE
method can account for short-range contributions between
solute and solvent and hence more accurately predict the
absolute solvation free energies for a series of charged
chemical species, including H+, Li+, OH-, e- (the hydrated
electron), and F-.15,18,24,27 The supermolecule-continuum
approach explicitly treats a portion of the solvent surrounding
the solute at a high quantum mechanical level. The compu-
tational efficiency depends heavily on solute size and larger
solutes require more solvent water molecules to be explicitly
considered, thus in practice limiting the application to smaller
solutes. Even more significantly, the proper application of
the supermolecule-continuum method requires statistical
mechanical averaging over the various possible sites and
orientations of the explicit solvent molecules, and this
become impractical for even a small number (for example,
two or three) of explicit solvent molecules. Finally, one
should note that the interaction of solvent molecules in the
supersolute (cluster) with the continuum must be treated
accurately, for example, through recourse to very high levels
of electronic structure theory.

For these reasons, much effort has been made to augment
the dielectric continuum model with short-range contribu-
tions.1,2,28 For example, the SMx series of solvation models
(with x being 1-6, 8, 8AD, or D)29-46 augment and correct
the bulk electrostatic portion, obtained by the generalized
Born (GB) approximation29,47 (for x ) 1-6, 8, or 8AD) or
the PCM approximation2 (for x ) 5C or D), with a
semiempirical term that accounts for short-range contribu-

* Corresponding authors: e-mail cramer@umn.edu (C.J.C.);
truhlar@umn.edu (D.G.T.); zhan@uky.edu (C.-G.Z.).

† Central China Normal University.
‡ University of Kentucky.
§ University of Minnesota.
| Transylvania University.

1110 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Liu et al.



tions. By employing a training data set containing a broad
range of solutes, atomic radii used for defining the cavity in
electrostatic calculations (such radii are called intrinsic
Coulomb radii) were calibrated to calculate the bulk elec-
trostatic interactions, and a set of atomic surface tension
parameters was optimized to calculate the short-range
contributions. It has been shown3,43,44 that the accuracy of
SMx models for predicting absolute aqueous solvation free
energies is quite good, about ∼0.5 kcal/mol for neutral
solutes. Although SMx models, like all other solvation
models, have larger absolute errors for predicting aqueous
solvation free energies of ions, which are much larger than
those of neutral solutes, SMx still outperforms other con-
tinuum models for ionic solvation free energies.3,48 While
the SMx models, by implicitly including local electrostatic
effects as part of the semiempirical CDS terms, provide
significant improvement over PCM models in predicting
absolute solvation free energies,43-45 it is worthwhile to
consider more explicit ways to include local electrostatic
effects.

The long-range electrostatic contribution, which is a
function only of the solvent’s bulk dielectric constant, is
included in the bulk electrostatic term, but the bulk electro-
static term also includes a somewhat arbitrary approximation
to the short-range electrostatic effect, because the solute-
solvent boundary that surrounds the solute cavity is located
within the region occupied by the first solvation shell, but
this shell does not behave like a bulk dielectric. The deviation
of short-range electrostatics from bulk electrostatics (this is
called the nonbulk electrostatic contribution or the local
electrostatic contribution) has previously been included in
SMx models as a solvent-structure contribution to the CDS
term. Here we incorporate a new function, denoted by L for
local electrostatics, that treats the nonbulk electrostatic
contribution explicitly.

The motivation for the new function is the observation
that the short-range electrostatic contribution is linearly
correlated with the maximum or minimum outward-directed
normal electric field on the solute-solvent boundary
surface.21,22 Therefore we make the contribution beyond the
bulk part calculated with SVPE dependent not only on the
solvent-accessible atomic surface area of the solute, as in
the CDS terms, but also on the outward-directed normal
electric field on the cavity surface; the combination of the
new local electrostatic terms (L) with the atomic surface
tension terms (CDS) is denoted CDSL. Replacing the CDS
terms by CDSL terms and replacing the generalized Born
approximation (of SM1-SM8 or SM8AD)3,29-39,41-45 or
the PCM approximation (of SM5C and SMD)40,46 by the
SVPE treatment is the essence of the present attempt to make
the solvation model more physical. As we have just
explained, a long abbreviation for the new method is SVPE-
CDSL. It will, however, be more convenient to simply call
the new method SMVLE, which denotes solvation model
with volume and local electrostatics, since the explicit
accounting for volume polarization and local electrostatics
are the new elements beyond those included in previous SMx
solvation models.

The same training set that was used to calibrate parameters
for SM643 is used here for optimizing the parameters of
SMVLE. The absolute aqueous solvation free energies
obtained by the parametrized SMVLE model are compared
with experimentally measured aqueous solvation free ener-
gies to calculate the mean unsigned error (MUE), which
measures the predictive accuracy of the solvation model. The
accuracy of the SMVLE model is compared with SM643 and
the recent SM844 and SMD46 solvation models, and the role
of the new kind of semiempirical term, called GL, is
discussed.

Methods

Description of the SMVLE Model. As explained in the
Introduction, the free energy of solvation is a sum of three
terms:

Here ∆GS* is the fixed-concentration absolute solvation free
energy,49 ∆GSVPE is the bulk electrostatic portion calculated
by the SVPE method, GCDS is the semiempirical term based
on atomic surface tensions, and GL is the semiempirical
electric-field-dependent term, whose form is motivated by
Chipman’s work on ions21,22 where two semiempirical terms
were generated for anions and cations, respectively. If the
standard-state solvation free energy, ∆GS°, with a concentra-
tion corresponding to a solute partial pressure of 1 atm in
the gas phase and a solute concentration of 1 M in the liquid
phase, is desired instead of ∆GS*, then another term, Gconc° )
1.89 kcal/mol, must be added to account for the change in
concentration.50 This value of Gconc° and all other free energies
considered in this paper correspond to a temperature of 298
K. ∆GSVPE can be expressed as

where Ψ is the solute wave function, H0 is the solute
Hamiltonian in vacuum, and V is the energy operator
associated with the reaction field. The factor of 1/2 in eq 2
stems from assuming a linear response of the surrounding
medium to the solute’s charge distribution so that half of
the induced favorable solute-solvent interaction is canceled
by the cost of reorganizing the solvent.51 The superscripts
(0) and (1) refer to the gas-phase isolated molecule and the
liquid-phase solution, respectively.

The GCDS term includes free energy changes associated
with solvent cavitation, changes in dispersion energy, and
possible changes in local solvent structure. It is calculated
according to29,43

where Ak is the solvent-accessible surface area52,53 of atom
k, which depends on the solute geometry, atomic van der
Waals radius, and solvent radius, and σk is the atomic surface
tension of atom k. The physical basis for eq 3 is that
deviations from bulk electrostatics, as well as cavitation,

∆GS* ) ∆GSVPE + GCDS + GL (1)

∆GSVPE ) 〈Ψ(1)|H0 + 1/2V|Ψ(1)〉 - 〈Ψ(0)|H0|Ψ(0)〉
(2)

GCDS ) ∑
atoms k

σkAk (3)
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dispersion, and solvent-structural contributions, are all
concentrated in the first solvation shell, and Ak is basically
a continuous measure of the amount of solvent in the first
solvation shell of atom k.29,52,54 The atomic surface tensions
are sensitive to local environment, and therefore they are
computed according to

where σ̃Zk
and σ̃ZkZk′ are the semiempirical surface tension

coefficients for atom k and atom pair kk′, and Tkk′ is a
geometry-dependent switching function called a cutoff tanh
(referred to as a COT).34 In most cases the sum over m has
only one term, and when m ) 1, the superscript is omitted.
For k, k′ ) 7, 6, we have M ) 3.

The remaining term GL is motivated by the work of
Chipman, who found that more accurate solvation energies
could be obtained for ions by adding the following terms to
the bulk-electrostatic term:21,22

where GL(for anions) and GL(for cations) are “local” (or
short-range) electrostatic contributions for anions and cations,
respectively; Emin and Emax are the minimum and maximum
outward-directed normal electric field on the cavity surface,
respectively; and Wanion, E0

min, Wcation, and E0
max are fitting

parameters. One may interpret these terms as corrections for
local electrostatics. Equations 5 and 6 reveal a linear
relationship between the local electrostatic contribution and
the minimum or the maximum outward-directed normal
electric field on the cavity surface for anions and cations,
respectively, and the existence of this relationship indicates
that a local (short-range) electrostatic interaction between
solute and solvent can physically be modeled in term of the
outward-directed normal electric field. However, it is not
straightforward to generalize the above linear relationships
into a formula valid for all solutes, including neutrals and
ions with either sign of the charge. For example, one cannot
simply combine eqs 5 and 6 because that ignores the local
electrostatic effects for neutrals and zwitterions, and therefore
the solvation free energy would not vary smoothly along a
reaction coordinate where charge is developed or neutralized.
The quantities Emin and Emax are also not adequate to represent
the local electrostatic effects for dianions or dications with
separated charge centers where both the minimum/maximum
and the second minimum/maximum normal electric field
should be considered. Furthermore, Emin and Emax do not
necessarily vary smoothly during geometry optimization.
Therefore, a more complicated functional form that does not
have these disadvantages is required. We obtain such a
function by summing over terms involving the normal
electric fields on each surface node and by taking advantage
of the properties of the COT function. In particular, we
postulate that

where Em is the outward-directed normal electric field at node
m on the cavity surface; wm is the surface area of node m; M
is the total number of surface nodes used (M ) 1202 in the
present study); I is an integer that represents the highest
power of Em; tanh is the hyperbolic tangent; and Bi, Ai, and
xi are semiempirical parameters.

In eq 7, the summation over all surface elements means
that we consider the local electrostatic contribution not only
for ions but also for neutral solutes and zwitterions, and all
normal electric fields, instead of only one minimum or one
maximum normal electric field for singly charged ions, are
considered for all kinds of uncharged and charged systems.
In addition, the high powers of Em allow significant nonlin-
earity in the relationship. The functional form of eq 7 varies
smoothly along a reaction coordinate.

Computational Details. The optimized geometries and
the corresponding experimental aqueous solvation free ener-
gies were obtained from the data set used to calibrate the
parameters in the development of SM6,43 with two excep-
tions. One exception is that one neutral molecule (O-ethyl
O′-4-bromo-2-chlorophenyl S-propyl phosphorothioate or
profenofos) in the SM6 training set could not be treated by
the SVPE program because of its irregular molecular shape.
Thus the SM6 data set has 273 neutral solutes and 143 ions
(416 data), and the SMVLE training set has 272 neutral
solutes and 143 ions (415 data). All of these molecules and
their experimental aqueous solvation free energies are
provided as Supporting Information. The second exception
concerns the data used for the solvation energies of the ions.
Most experimental aqueous solvation free energies are
calculated on the basis of thermodynamic cycles, in which
the solvation free energies are based on the absolute aqueous
solvation free energy of the proton, denoted by ∆GS(H+).55

The parametrization of SM6 was based on the ∆GS(H+) value
of Zhan and Dixon18 of -264.3 kcal/mol, whereas the later
SM8,44 SM8AD,45 and SMD46 were based on the ∆Gsol(H+)
value of Tissandier et al.56 of -265.9 kcal/mol. We used
the value of Tissandier et al. for the present work.

All the solvation calculations with the SMVLE model were
carried out at the HF/6-31+G* electronic structure method.

We previously43 concluded that the partial charges in some
ions are so large that they should be treated by a supermol-
ecule-continuum approach. Therefore, we developed a
procedure based on the criterion that if any atom of the ion
has partial atomic charge greater than or equal to the partial
atomic charge on oxygen in a water molecule, then the ion
should be treated as a supermolecule consisting a cluster of
a bare ion and one solvent molecule. The ionic data set
started with 112 bare ions, and by this criterion, 31 of them
should be clustered (so the unclustered instances of these
31 ions are called improperly unclustered). This gives three

σk ) σ̃Zk
+ ∑

atoms k′
∑
m)1

M

σ̃ZkZk′

(m) Tkk′
(m) (4)

GL (for anions) ≈ Wanion(E
min - E0

min) (5)

GL (for cations) ≈ Wcation(E
max - E0

max) (6)

GL ) ∑
i)1

I {Bi[ ∑
m)1

M

T(Ai, xi,-Em)Em
iwm] +

Bi+I[ ∑
m)1

M

T(Ai, xi, Em)Em
iwm]} (7)

T(Ai, xi, Em) )
1 + tanh [Ai(Em - xi)]

2
(8)
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sets of ions to consider: 81 properly unclustered (PU) ions,
31 improperly unclustered (IU) ions, and 31 monohydrated
(MH) ions. The collection of 81 PU and 31 MH ions (total
112 ions) is called the selectively clustered (SC) set; the
collection of 81 PU and 31 IU ions (total 112 ions) is called
the unclustered (UC) set; and the collection of 81 PU, 31
IU, and 31 MH ions (total 143 ions) is called “all ions”. We
used all 143 ions set for parametrization, but we give
statistics for various subsets for discussion purposes.

The bulk electrostatics were calculated by the SVPE
method by using a local version10 of Gaussian03.57 The
SVPE results depend only on the level and basis set of the
quantum mechanical calculation and the isodensity contour
value that defines the solute cavity. All the solvation
calculations with the SMVLE model were carried out at the
HF/6-31+G* level of theory. Previous studies have shown
that contour values in the range of 0.0005-0.002 atomic unit
lead to a satisfactory description of the electrostatic contribu-
tions to the solvation energies for many neutral6,9 and
ionic21,22 solutes. For this reason, we chose 0.001 atomic
unit as the contour value to determine the dielectric cavity.
Cavity surface interactions were calculated from a set of 1202
Lebedev grid points and weights that are expected to yield
precision of 0.1 kcal/mol or less for SVPE contributions to
solvation free energies of all the solutes examined. Surface
areas for the CDS term of eq 3 were calculated by the ASA
algorithm58 with the values of Bondi59 for the atomic radii.

The molecules studied here are generally rigid, except for
methyl rotors, whose conformation does not have a large
effect on solvation free energies, and consequently no attempt
was made to account for relaxation of geometry, change of
conformation, or change in vibrational frequencies upon
solvation. For solvation free energy calculations, we adopt
the Ben-Naim convention49 that the solute is transferred from
a fixed position in the gas phase to a fixed position in solvent
(this is called the fixed-concentration solvation free energy
above). A value of 78.5 for the dielectric constant value of
water is used in all our solvation calculations, which
nominally corresponds to 298 K.

Calibration. After the bulk electrostatic interactions
between solute and solvent were accurately determined for
each molecule with the SVPE method, a set of target short-
range contributions were obtained from the difference
between bulk electrostatic interactions and experimental
aqueous solvation free energies. All the CDSL parameters
were then subjected to a fitting routine. First the atomic
surface tension coefficients were optimized to minimize the
root-mean-square error (RMSE) over the 272 neutral solutes.
Then the semiempirical parameters in eq 7 were optimized
against all 415 molecules (272 neutral solutes and 143 ions)
with the atomic surface tension coefficients frozen. The
optimization of Ai and xi was carried out in steps:

(1) First I was set temporarily to 1, and values from 0.001
to 2 were tried for x1; for each x1, values from 0.1 to 2000
were tried for A1. The values of x1 and A1 that produced the
smallest value of the weighted root-mean-square deviation
(WRMSD) for the 415 solvation energies in the multiple
linear regression fitting process were selected for the next
step. In computing the WRMSD in this step and all

subsequent steps, the neutral solutes and the ions had relative
weights of W:1 where W is an integer parameter of the
optimization scheme.

(2) I was increased by 1. The values of Ai and xi already
obtained were fixed and the values of AI and xI were
optimized in the same way as in step 1.

(3) Step 2 was repeated until an arbitrary maximum value
of I was reached. In this way, a first-round set of values of
Ai and xi (i ) 1, 2, ..., I) was obtained.

(4) Now with I fixed at its maximum value, each Ai and
xi was reoptimized with the remaining parameters fixed. For
example, A1 and x1 were reoptimized with other Ai and xi (i
) 2, 3, ..., I) obtained from previous steps fixed; then the
reoptimized values of A1 and x1 along with the values of
other Ai and xi (i ) 3, ..., I) were fixed in the reoptimization
of A2 and x2; and so forth.

(5) Step 4 was repeated until the values of Ai and xi (i )
1, 2, ..., I) did not change.

(6) Steps 1-5 were repeated for several maximal values
of I. The final value of I was chosen to be 3 as discussed in
the next section.

Results and Discussion

We tested the SMVLE method by examining the errors
obtained with various maximal values of I in the range from
1 to 5. We found that the mean errors for ions decreased
when I was increased from 1 to 3; however, when I was
increased further, the mean errors for the anions improved
but those for cations increased. Therefore, we set I ) 3.

Because solvation free energies of ions are about an order
of magnitude larger than those for neutrals, the predictions
would have larger errors for ions even if the relative errors
were similar. Furthermore, the experimental data for ions
usually have larger absolute uncertainties. Another consid-
eration is that our training set contains more neutral data
than ionic data. Thus it is a matter of subjective judgment
what value to choose for the parametrization weight W to

Table 1. SMVLE Surface Tension Coefficients

k σ (cal/Å2) k, k′ σ (cal/Å2)

H 57.88 H, C -75.22
C 114.49 C, C -70.59
N -30.82 H, O 110.62
O -84.28 O, C 187.69
F 46.48 O, O 98.59
Cl 14.69 C, N 30.94
Br 12.56 N, C -52.83
P -31.35 N, C (2)a -261.62
S -4.13 N, C (3)a 97.52

O, N 256.52
O, P 79.30

a Number in parentheses is m when m is not 1.

Table 2. Parameters for Local Electrostatic Terms

i ) 1 i ) 2 i ) 3

Ai 1984.0 1528.0 1488.0
xi 0.07 0.037 0.057
Bi -2.679 -23.413 453.544
Bi+3 1.454 -5.64 -139.35

Computing Absolute Aqueous Solvation Free Energies J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1113



balance the relative accuracies and desired accuracies for
neutrals and for ions; we chose W ) 3.

The calibrated parameters, namely, the surface tension
parameters and the semiempirical GL parameters, are given
in Tables 1 and 2, respectively. The calculated absolute
aqueous solvation free energies are obtained by the SMVLE
method with these calibrated parameters. They are plotted
in Figure 1 along with the experimental values. The predicted
aqueous solvation free energies by the parametrized SMVLE
are in excellent agreement with the experimental values. The
square of the correlation coefficient between calculated and
experimental aqueous solvation free energies is 0.9945.
Moreover, the slope (0.9847) of the correlation equation is
basically 1 and the corresponding constant (0.1039) is nearly
0, showing that the predicted solvation energies by the
parametrized SMVLE method are in very good agreement
with experimental values.

The mean unsigned errors for each solute class obtained
from SMVLE were calculated to compare with those from
SM6, SM8, SM8AD, and SMD. For the present study we
recalculated the previously reported SM6 and SM8 errors
using the reference solvation free energies for water-cluster
data (data for ionic clusters and the water dimer) corrected
by +2.38 kcal/mol to account for a recently discovered error
due to a missing concentration correction term (see ref 46
for more detail) and to convert the SM6 error analysis to
the scale based on the proton solvation energy of Tissandier
et al.,56 as discussed above. Note also that although SM8,
SM8AD, and SMD were parametrized with 274 data for
neutral solutes in water (the 272 data used here plus
profenofos and tetramethylsilane), all mean errors given in
the present article have been calculated for the 272 neutral
data used here. The mean errors for the new SMVLE model
and the previous SM6, SM8, SM8AD, and SMD models are
shown in Table 3.

The error of the SMVLE model for neutrals is 0.55 kcal/
mol and it is close to or better than that of the SMx methods,
for which mean unsigned errors range between 0.47 (SM6/
mPW1PW/6-31G*) and 1.31 (SMD/HF/6-31+G*) kcal/mol
(Table 3). The SMVLE method not only retains good

accuracy for neutrals but also significantly improves the
accuracy for ions. The SMVLE mean unsigned errors for
the set of all 143 ions (3.25 kcal/mol) and for the set of 112
UC ions (3.07 kcal/mol) are smaller than the corresponding
errors obtained with any other method tested in the present
work (and we have shown previously3,44 that the methods
tested here are better than other available methods). The error
of the SMVLE model for the set of 112 SC ions is 2.92
kcal/mol, which is close to or better that of the SMx methods,
for which the MUE ranges between 2.80 (SM8AD/M06-
2X/6-31G*) and 4.53 (SMD/mPW1PW/6-31G*) kcal/mol.

The local solvent environment is critical for ions, and it
is difficult to simulate with implicit solvent. It was noticed
in a previous study43 that the overall error for aqueous ions
decreased when one explicitly bound solvent molecule was
introduced. The data for the two subsets of 31 ions (IU and
MH) listed in Table 3 show that, in contrast to previous
models, explicitly including one solvent water molecule with
the ion just slightly increases the predictive accuracy for ions
within the SMVLE method. The SMVLE error over 31 tested
ions decreases from 4.45 kcal/mol (31 IU ions) to 3.88 kcal/
mol (31 MH ions). The difference of ∼0.57 kcal/mol in
SMVLE is much less than the ∼4 kcal/mol difference found
on average with the non-SMVLE models tested in the present
study (Table 3). The almost identical accuracies obtained
with or without the addition of one explicit solvent molecule
suggests that SMVLE is capable of successfully modeling
the strong local electrostatic interactions between ionic
solutes and solvent, and the addition of an explicit solvent
molecule is unnecessary for SMVLE.

In an attempt to assess the reason for the success of
SMVLE in modeling unclustered ions, we removed the
electric field semiempirical term, GL, in eq 1 and we
recalculated the errors. The MUE for neutrals changes only
about 4%, whereas the MUE for ions increases from ∼5 to
∼12 kcal/mol. This implies that the improvement in the
predictive accuracy for ions can be attributed to the newly
introduced GL term. The values of the outward-directed
normal electric fields are acting as indicators of the local
solvent environment such that solute-solvent interactions
stronger than would be anticipated from the bulk dielectric
constant are associated with large values of the outward-
directed normal electric field. As a special case, a hydrogen
bond between solute and solvent may often be located by
the direction of strongest outward-directed normal electric
field, and the strength of the hydrogen bond might be
represented by the magnitude of the strongest outward-
directed normal electric field.21,22

SMVLE does not involve the optimization of intrinsic
Coulomb radii for each atomic number, as in previous SMx
models, or for atoms with various bonding types, as in some
more empirical models. It is especially encouraging that
SMVLE yields good results for ions despite not requiring
this. In addition, this is of practical importance because it
means SMVLE should be easier to extend to additional
atomic numbers, if desired.

Although SMVLE provides significant improvement over
all previous SMx models for ions, the improvement over
SMD is particularly large and especially important. The

Figure 1. Correlation between the experimental and predicted
aqueous solvation free energies.
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reason it is especially important is that SMVLE and SMD
do not require accurate partial atomic charges, which can
sometimes be difficult to obtain for arbitrary levels of theory,
extended basis sets, and complex systems. Thus SMVLE and
SMD are more generally applicable. We also note that the
present test of SMVLE includes diffuse functions (denoted
by the “+” in 6-31+G*), and Table 3 shows that in previous
methods the use of diffuse functions often decreases ac-
curacy, which we interpreted as due to less stable partial
atomic charges in SM6 and SM8 and to outlying charge in
SMD. The good performance of SMVLE with a basis set
containing diffuse functions is therefore particularly en-
couraging.

Concerning the computational complexity of the SMVLE
method, the ratio of computing time spent for each SCRF
cycle of the SMVLE calculation to that for each SCF cycle
of the corresponding gas-phase calculation ranges from 1.2
to 1.6 when the number of basis functions used for the solute
is larger than ∼200.

Concluding Remarks

We have developed a new method, called SMVLE, for
predicting absolute aqueous free energies of solvation by
combining (1) the SVPE method, (2) semiempirical atomic
surface tensions as used in the SM6 model, and (3) a new
functional form, developed in the present study, that
explicitly accounts for the local electrostatic effect. The
SVPE term accounts for bulk electrostatics; the atomic
surface tensions account for solvent cavitation, changes
in dispersion energy, and possible changes in local solvent
structure; and the final contribution accounts explicitly
for nonbulk electrostatics in terms of the local electric
field at the solute-solvent boundary. The parameters for
SMVLE have been calibrated against a broad range of
solutes, including 272 neutrals and 143 ions. The predicted

aqueous solvation free energies by the parametrized
SMVLE method correlate very well with experiment and
have a value of the square of the correlation coefficient
equal to 0.9945 and a slope of 0.9847. Comparisons with
previous SMx solvation models show that the SMVLE
model not only has comparable accuracy for neutrals but
also impressively increases the predictive accuracy for
ions. The semiempirical terms (GL) derived from the
electric field are found to be primarily responsible for the
increase in predictive accuracy for ions. The outward-
directed normal electric fields that make the most impor-
tant contributions account for strong interactions between
the ionic solute and the nearby solvent, which makes the
addition of explicit water molecules unnecessary. These
encouraging results demonstrate that the parametrized
SMVLE is accurate and effective in predicting absolute
solvation free energies not only for neutral molecules but
also for ions exhibiting strong solute-solvent interactions.
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Table 3. Mean Unsigned Errors in Aqueous Solvation Free Energies Calculated by SMVLE and Older SMx Methodsa

mean unsigned errors (kcal/mol)

ESM
272

neutrals
81 PU
ions

31 IU
ions

31 MH
ions

143 all
ions

415 all
solutes

60 SC
anions

52 SC
cations

112 SC
ions

112 UC
ions

384 proper
solutesb

SMVLE
HF/6-31+G* 0.55 2.55 4.45 3.88 3.25 1.48 3.17 2.63 2.92 3.07 1.24

SM6
mPW1PW/6-31G* 0.47 2.55 8.57 4.34 4.24 1.77 3.45 2.58 3.05 4.22 1.22
mPW1PW/6-31+G* 0.55 2.90 8.52 4.29 4.42 1.89 3.00 3.61 3.28 4.46 1.35

SM8
mPW1PW/6-31G* 0.56 2.51 8.41 4.16 4.15 1.80 3.44 2.42 2.97 4.14 1.26
mPW1PW/6-31+G* 0.63 2.59 8.46 4.03 4.17 1.85 2.96 3.03 2.99 4.21 1.32
M05-2X/6-31G* 0.59 2.54 8.41 4.18 4.17 1.83 3.49 2.42 2.99 4.16 1.29

SM8AD
mPW1PW/6-31G* 0.60 2.94 6.25 2.64 3.59 1.63 2.86 2.85 2.86 3.86 1.26
M05-2X/6-31G* 0.52 3.06 6.25 2.68 3.67 1.61 2.95 2.96 2.95 3.94 1.23
M06-2X/6-31G* 0.61 2.88 6.05 2.59 3.50 1.61 2.78 2.82 2.80 3.76 1.25

SMD
HF/6-31G* 0.91 3.28 8.10 3.63 4.40 2.12 3.86 2.82 3.38 4.61 1.63
HF/6-31+G* 1.31 3.59 8.93 3.60 4.75 2.50 4.53 2.50 3.59 5.07 1.98
mPW1PW/6-31G* 0.62 4.50 9.64 4.63 5.64 2.35 5.61 3.29 4.53 5.92 1.76
M05-2X/6-31G* 0.59 4.08 9.11 4.24 5.21 2.18 5.01 3.09 4.12 5.47 1.62
M06-2X/6-31G* 0.62 4.39 9.35 4.44 5.48 2.30 5.45 3.19 4.40 5.76 1.73

a ESM ) electronic structure method, PU ) properly unclustered, IU ) improperly unclustered, MH ) monohydrated, SC ) selectively
clustered, UC ) unclustered. See text for detailed description of the subsets (Computational Details). b All solutes except IU ions.
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Supporting Information Available: Three tables for
all molecules involved in this study, including 272 neutral
solutes, 112 unclustered ions, and 31 clustered monohydrated
ions, and their experimental aqueous solvation free energies.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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Abstract: As compared to classical organic aromatic compounds, the evaluation of aromaticity
in all-metal and semimetal clusters is much more complex. For a series of these clusters, it is
frequently found that different methods used to discuss aromaticity lead to divergent conclusions.
For this reason, there is a need to evaluate the reliability of the different descriptors of aromaticity
to provide correct trends in all-metal and semimetal aromatic clusters. This work represents the
first attempt to assess the performance of aromaticity descriptors in all-metal clusters. To this
end, we introduce the series of all-metal and semimetal clusters [XnY4-n]q( (X, Y ) Al, Ga, Si,
and Ge; n ) 0-4) and [XnY5-n]4-n (X ) P and Y ) S and Se; n ) 0-5) with predictable aromaticity
trends. Aromaticity, in these series, is quantified by means of nucleus-independent chemical
shifts (NICS) and electronic multicenter indices (MCI). Results show that the expected trends
are generally better reproduced by MCI than by NICS. It is found that NICS(0)π is the kind of
NICS that performs better among the different NICS indices analyzed.

1. Introduction

The discovery of aromaticity in Al4
2-,1 an all-metal inorganic

cluster, in 2001 by Boldyrev, Wang, and co-workers fuelled
the interest for the study of all-metal and semimetal inorganic
clusters with aromatic properties (for three recent reviews
see ref 2). At variance with the classical aromatic organic
molecules that possess only π-electron delocalization, the
aromaticity in inorganic clusters is more complex due to the
peculiarities of chemical bonding in metal systems. These
metal compounds present σ-, π-, and δ-3 or even φ-4electron
delocalization, thus, giving rise to the so-called multifold
aromaticity/antiaromaticity2,5 as well as cases of conflicting
aromaticity.2a,6

Most of the methods to quantify aromaticity have been
developed for the classical aromatic organic molecules, and
they cannot be applied to inorganic clusters without further
reinvestigation. This is the case, among others, of the
harmonic oscillator model of aromaticity (HOMA)7 or the
aromatic fluctuation (FLU)8 indicators of aromaticity that
take benzene, the paradigmatic aromatic molecule, or other
aromatic organic molecules as a reference in their definitions.
Likewise, resonance energies (RE) or aromatic stabilization
energies (ASE)9 are very difficult to compute accurately in
all-metal clusters because of the lack of appropriate reference
systems.5c,10 For the moment, the most widely used methods
to discuss aromaticity in all-metal clusters have been the
simple electron counting based on the 4n + 2 Hückel’s rule11

and the calculation of the nucleus-independent chemical
shifts (NICS).12 Less common is the use of electronic
multicenter indices (MCI),13 for which few examples can
be found in the literature.14
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Although the 4n + 2 rule affords the simple test of
aromaticity, electron counting alone does not provide always
direct evidence of aromaticity/antiaromaticity.2c,15 For in-
stance, Al4

2- contains one pair of delocalized π-electrons
and two pairs of σ-electrons that contribute to the overall
aromaticity of this species.1,6a,16 The two π-electrons obey
the 4n + 2 Hückel’s rule for monocyclic’s π-systems.
Although this is not the case for the four σ-electrons, it was
found that the two pairs of delocalized σ electrons belong
to molecular orbitals (MOs) that follow orthogonal radial
and tangential directions, which makes them totally inde-
pendent,17 thus, separately following the 4n + 2 rule. This
is a clear example that simple total electronic counts
sometimes lead to erroneous conclusions.2c,15 Similarly, in
planar polycyclic boron clusters, it has been found that the
aromaticity is not related to the total number of π-electrons.18

Probably the most widely employed method to analyze
the aromaticity of all-metal species is the NICS index. This
descriptor, proposed by Schleyer and co-workers12 as a
magnetic index of aromaticity, is a valuable indicator of
aromaticity that is used by many researchers. It is defined
as the negative value of the absolute shielding computed at
a ring center or at some other interesting point of the system,
usually 1 Å above the ring center. Rings with large negative
NICS values are considered aromatic. The more negative
the NICS values, the more aromatic the rings are. Nonaro-
matic species have NICS values close to zero, and positive
NICS values are indicative of antiaromaticity. Recently,
dissected NICS techniques based on the analysis of individual
canonical MOs contributions to NICS19 have been success-
fully applied to analyze multifold and conflicting aromaticity/
antiaromaticity in all-metal clusters.20

In a recent work, some of us reported that NICS profiles
calculated in the perpendicular direction of each ring are
useful to classify all-metal and semimetal clusters into three
groups according to their aromatic, nonaromatic, or antiaro-
matic character.21 In addition, Tsipis has recently demon-
strated that the NICSzz-scan patterns, along with symmetry-
basedselectionrules,canunequivocallyprobetheantiaromaticity
in a wide range of antiaromatic organic and inorganic rings/
cages.22 We also showed21 that single-point NICS calcula-
tions fail to provide correct trends for some particular
systems. For example, we found unexpectedly that C2v

GeAl3
- is more aromatic than D4h Al4

2-, according to
NICS(0) values.21 In another work, we discovered that the
NICS and MCI predicted changes of aromaticity in Mg3

2-

when coordinated to alkalimetal cations follow opposite
trends.14c Similar results were reported by Chattaraj et al.
for the metal complexation of Al4

2-.14b The reason for the
divergence between NICS and MCI is unclear in some cases.
The connection between these indicators is not obvious
because NICS values are computed as a response to an
external magnetic field, and virtual orbitals are involved in
the calculation, while in the computation of electron sharing
indices (ESI), such as MCI, only occupied orbitals are used.
In fact, it is well-known that a delocalized system is a
necessary but not a sufficient condition to have a ring
current.14a,23

In a subsequent work,24 we introduced a series of 15
aromaticity tests that can be used to analyze the advantages
and the drawbacks of a group of aromaticity descriptors.
Based on the results obtained for a set of 10 indicators of
aromaticity, including NICS and MCI, we concluded that
MCI were the most accurate among all indices examined in
that work.24 In addition, the fact that the π-component of
the four center-electron index in Al4

2- is almost the same as
that of C4H4

2+ seems to indicate an apparent good behavior
of MCI for all-metal clusters.14a The 15 tests of aromaticity
proposed in the previous work24 involved only classical
aromatic molecules, having expected aromaticity trends based
on accumulated chemical experience. In the present work,
we introduce a new test containing several inorganic all-
metal clusters with two main aims: first, to investigate the
performance of NICS and MCI to provide expected aroma-
ticity trends in all-metal clusters; and second, to analyze
whether, among different NICS definitions, there is a
particular NICS index that performs consistently better than
the rest.

To this end, we have chosen the four-membered ring (4-
MR) series of valence isoelectronic inorganic species
[XnY4-n]q( (X, Y ) Al, Ga, Si, and Ge; n ) 0-4) that have
a predictable trend of aromaticity. Thus, one can predict a
steep decrease in aromaticity when going from Al4

2- to, for
instance, GeAl3

- due to the reduction of symmetry and to
the substitution of one Al atom by a more electronegative
Ge atom. A smooth reduction of aromaticity when going
from Al3Ge- to Al2Ge2 is also likely, although more arguable.
And the same should occur from Ge4

2+ to Al2Ge2. Therefore,
for instance, the expected order of aromaticity in one (X )
Al and Y ) Ge) of the six series chosen is Al4

2- > Al3Ge-

g Al2Ge2 e AlGe3
+ < Ge4

2+. A similar behavior is likely to
be present in a series where X and Y come from different
groups of the Periodic Table. In the series with X ) Al and
Ga and Y ) Si and Ge, the electronegativity of X and Y is
significantly different and, consequently, large changes in
bond distances and angles are observed. On the other hand,
when X and Y belong to the same group (for instance, X )
Al and Y ) Ga), electronegativity and geometrical param-
eters remain almost unchanged. This fact leads to small
changes in the aromaticity and, thus, the expected trend
becomes Al4

2- g Al3Ga2- ∼ Al2Ga2
2- ∼ AlGa3

2- e Ga4
2-.

Finally, apart from these series, we have included two
[XnY5-n]4-n (X ) P and Y ) S and Se; n ) 0-5) series of
5-MRs. It is worth noting that the electronic, molecular
structure, and aromaticity of some of the systems studied here
have been analyzed in previous theoretical and experimental
works (Al42-,1,5c,6a,10,14a,b,15a,16,17,23,25 Ga4

2-,10,25a,26 Al3Si-,27

Al2Si2,
5f,25a,28 AlSi3

+,28b Si4
2+,5d,28b Al3Ge-,27a Al2Ge2,

5f,28a

AlGe3
+,28b Ge4

2+,28b Ga3Si-,29 Ga2Si2,
5f,25a,28 GaSi3

+,28b

Ga3Ge-,29 Ga2Ge2,
5f,28a GaGe3

+,28b Si2Ge2
2+,28b and

P5
- 5e,30). It has been found that the elements of the

[XnY4-n]q( series present σ- and π-aromaticity, while
[XnY5-n]4-n compounds are only π-aromatic. The present
study complements the available experimental and theoretical
data, which is scarce or missing for some clusters, and
enables a systematic analysis of aromaticity trends along the
eight clusters series [XnY4-n]q( (X, Y ) Al, Ga, Si, and Ge;
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n ) 0-4) and [XnY5-n]4-n (X ) P and Y ) S and Se; n )
0-5), all obtained with the same methodology.

2. Computational Details

All calculations in this work were performed by means of
the Gaussian0331 computational package. The gas-phase
optimized geometries reported here were calculated in the
framework of density functional theory (DFT) using the
B3LYP functional,32 which combines the three-parameter
Becke’s exchange33 and Lee-Yang-Parr’s correlation34

nonlocal functionals. The 6-311+G(d) basis set35 was used
for all calculations.

In the present work, we report results for two unstable
dianions such as Al4

2- and Ga4
2-. In a recent work,

Lambrecht et al.36 have shown that Al4
2- is unstable as

compared to Al4
- + free e- and, consequently, its properties

change significantly when increasing the number of diffuse
functions in the basis set. Indeed, after inclusion of certain
number of diffuse functions, the Al4

2- evolves to Al4
- +

free e-. In this sense, Lambrecht and co-workers36 warned
about the validity of calculations carried out for such unstable
dianions. In a recent comment37 (see also the rebuttal in ref
38) on the work by Lambrecht et al.,36 Zubarev and Boldyrev
argued against this point of view and considered that the
bound state of the individual Al4

2- is an adequate model of
Al4

2- in a stabilizing environment, such as in NaAl4
- or

Na2Al4. They also considered that calculations for isolated
Al4

2- species using a 6-311+G(d) basis provide an accurate
model for the Al4

2- unit embedded in a stabilizing environ-
ment. Following the Zubarev and Boldyrev arguments,37 we
will discuss the properties of the bound state in these two
metastable dianions by employing the 6-311+G(d) basis set.

NICS values were computed also with the B3LYP/6-
311+G(d) method through the gauge-including atomic orbital
method (GIAO)39 implemented in Gaussian03. The magnetic
shielding tensor was calculated for the ghost atoms located
at the ring centers (NICS(0)) determined by the nonweighted
mean of the heavy atom coordinates and also for the ring
critical point (RCP), the point of lowest density in the ring
plane,40 as suggested by Cossı́o et al.,41 to yield NICS(0)rcp

values. In some high-symmetry molecules both points, the
ring center and the RCP, coincide. In addition, NICS has
been also calculated at 1 Å above the molecular plane of
the ring (NICS(1) and NICS(1)rcp).42 NICS(1) is considered
to better reflect the π-electron effects than that of NICS(0).
The out-of-plane tensor component of NICS (NICS(0)zz,
NICS(0)zz

rcp, NICS(1)zz
rcp, and NICS(1)zz) have also been

collected. This latter quantity gives probably the best measure
of aromaticity among the different NICS-related definitions
in organic molecules.24,43 Moreover, NICS(0)π, NICS(0)π

rcp,
NICS(0)σ, and NICS(0)σ

rcp have been obtained from the
decomposition of NICS into its MO components using the
NBO 5.0 program.44 For these calculations, only the con-
tributions of valence orbitals have been taken into account.
The dissected NICS methods have already been widely
applied to analyze multifold aromaticity in all-metal clus-
ters.20

For the aromaticity analysis, we have also applied the
MCI.13b,c MCI is a particular extension of the Iring index:13a

ni is the occupancy of MO i and Sij(A) is the overlap between
MOs i and j within the molecular space assigned to atom A.
Summing up all the Iring values resulting from the permuta-
tions of indices A1, A2, ..., AN, the mentioned MCI index13c

is defined as

where P(A) stands for a permutation operator which inter-
changes the atomic labels A1, A2, ..., AN to generate up to
the N! permutations of the elements in the string A.13b,45

MCI and Iring give an idea of the electron sharing between
all atoms in the ring. The more positive the MCI values,13c,46

the more aromatic the rings. For planar species, as those
treated in the present work, Sσπ(A) ) 0 and both MCI and
Iring can be exactly split into the σ- and π-contributions. This
feature is especially interesting to evaluate multifold aro-
maticity in all-metal clusters. Finally, although several atomic
partitions may be used for the calculations of the overlap
between MOs i and j within the molecular space assigned
to atom A,14a,47 we have chosen in the present work the
partition carried out in the framework of the quantum theory
of atoms-in-molecules (QTAIM) of Bader,40,48 by which
atoms are defined from the condition of zero-flux gradient
in the one-electron density, F(r). Calculation of atomic
overlap matrices (AOM) and computation of MCI have been
performed with the AIMPAC49 and ESI-3D50 collection of
programs.51 Since MCI and Iring yield very similar results,
in this work, we report only MCI values.

3. Results and Discussion

In this section, we first discuss the series [AlnGe4-n]2-n (n
) 0-4) in detail. Then the results for the rest of the
[XnY4-n]q( series are briefly analyzed. Finally, the molecular
structure and aromaticity of the [XnY5-n]4-n (X ) P and Y
) S and Se; n ) 0-5) clusters are presented.

Table 1 contains the molecular structure and the MCI and
NICS results obtained for the series [AlnGe4-n]2-n (n ) 0-4).
The number of valence electrons is 14 for all members of
the series. The molecular structure of the ground state of
Al4

2- and Ge4
2+ clusters is D4h square planar.28b The

geometry of the ground state of Al3Ge- 27a and AlGe3
+ 28b

clusters is a planar distorted rhombus of C2V symmetry. It is
worth noting that in the case of heteroatoms having
substantially different electronegativities, as in Al3C-, the
most stable molecular structure becomes the C3V

pyramidal.27a This can be likely attributed to the loss of
aromaticity due to higher electronegativity differences. For
Al2Ge2, there are two possible planar structures correspond-
ing to the cis and trans configurations.5f,28a According to
previous studies, the Al2Ge2 cluster is more stable in the trans
configuration,5f,28b while the cis is the most stable config-
uration for Ga2Ge2,

5f,28b Al2Si2,
5f,25a,28b and Ga2Si2.

5f,28b In
order to make comparisons between different series easier,

Iring(A) ) ∑
i1,i2, ...,iN

ni1
, ..., niN

Si1i2
(A1)Si2i3

(A2), ..., SiNi1
(AN)

(1)

MCI(A) ) 1
2N ∑

P(A)

Iring(A) (2)
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in all cases, we have taken the cis configuration for the
X2Y2

q( species, despite, in some cases, the trans configu-
ration is the most stable. Aromatic ring current shielding
(ARCS) results from Jusélius et al. indicate that the aroma-
ticity of the cis and trans configurations is similar in
Al2Si2.

25a

The MCI and MCIπ values obtained for Al4
2- are 0.356

and 0.187 e, respectively, not far from the values, 0.341 and
0.161 e, reported by Mandado et al.14a with the same QTAIM
partition of the molecular space and with the same B3LYP/
6-311+G(d) methodology.52 The value of the MCIπ can be
easily and analytically obtained for any ring X4 of D4h

symmetry with only two π-electrons occupying the same
orbital, such as in Al4

2-. Following the procedure that we
applied to get analytical delocalization indices for two
π-electron cyclic systems,53 in Al4

2- there is a single
π-orbital involved in the sum of eq 1, and the self-overlap
of this π-orbital in a given basin is by construction Sππ(A)
) 1/4. Application of eq 2 yields a MCI value of 3/16 )
0.1875 e, which is independent of the basis set used for the
calculation (it can differ only if correlated wave functions
are used).47a On the other hand, Mandado et al.14a and Roy
et al.14b reported total MCI values of 0.335 and 0.313 e,
respectively, both calculated with the same methodology used
in the present work but using Mulliken instead of QTAIM
partition. This shows that the effect of using different
partitions for the calculation of MCI is minor in the case of
Al4

2-. Our results also point out that the π delocalization in
the Al4

2- species is slightly larger than that of the σ (0.187
vs 0.169 e). This is in line with previous dissected NICS
results,14a showing that NICS(0)π is somewhat more negative
than NICS(0)σ and also showing the result from the electronic
localization function indicating higher π- than σ-aromaticity
in Al4

2-,25b but in contrast with the fact that the ring current
in Al4

2- has a negligible contribution from the two π-electron

system.16,23 For symmetry reasons, the MCIπ values of D4h

Al4
2- and Ge4

2+ clusters with two π-electrons are exactly
the same, 0.187 e. Total MCI and absolute NICS values are
somewhat larger for Ge4

2+, but this is, in part, the result of
shorter Ge-Ge bond lengths. For comparison purposes, let
us add here that the MCI and NICS(0) values for D4h C4H4

2+,

Figure 1. Variation of MCI, MCIπ, and MCIσ (in electrons)
along the series Al42-, Al3Ge-, Al2Ge2, AlGe3

+, and Ge4
2+.

Figure 2. Comparison between NICS (ppm) indices calcu-
lated at the ring center and at the RCP (dotted line) along the
series Al42-, Al3Ge-, Al2Ge2, AlGe3

+, and Ge4
2+.

Table 1. Molecular Structure and Values of the MCI, MCIπ, and MCIσ (in electrons) and the NICS (in ppm) Indicesa

a Calculated at the ring center and at the ring critical point (RCP) for the series Al42-, Al3Ge-, Al2Ge2, AlGe3
+, and Ge4

2+ at the B3LYP/
6-311+G(d) level of theory.
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the organic molecule being most comparable to Al4
2- or

Ge4
2+, are 0.185 e and -15.62 ppm, respectively.

Figures 1 and 2 depict the trends observed along the series
Al4

2- to Ge4
2+ for the MCI and NICS indices, respectively.

Interestingly, both total MCI and MCIπ curves have a clear
concave ∪ shape providing the expected order of aromaticity,
i.e., Al4

2- > Al3Ge- g Al2Ge2 e AlGe3
+ < Ge4

2+. As to the
NICS values, NICS(0) fails showing a steady increase of
aromaticity along the Al4

2- to Ge4
2+ series. Remarkably,

NICS(0)rcp yields the anticipated order of aromaticity,

indicating that the point selected to compute the NICS value
in inorganic clusters may have a relevant influence in the
aromaticity trends obtained. The distance between the
geometrical ring center and the RCP is 0.19, 0.28, and 0.39
Å in Al3Ge-, Al2Ge2, and AlGe3

+, respectively, showing
significant differences of -2.58, -4.99, and -6.28 ppm
between the NICS(0) and NICS(0)rcp. Clearly, the RCP yields
better results than the geometrical center of the ring for
NICS(0). Minor changes in the out-of-plane component of
the NICS(0) and NICS(0)zz, computed in the ring center or
in the RCP, were found. In both cases, NICS(0)zz and
NICS(0)zz

rcp, the shape of the curve is close to the expected
one with the only exception of the aromaticity of Al3Ge-,
that is found to be slightly lower than that of Al2Ge2.
Moreover, NICS(1), NICS(1)rcp, NICS(1)zz, and NICS(1)zz

rcp

curves show the expected ∪ behavior. These results oppose
to previous claims asserting that NICS(0) is better suited than
NICS(1) for the evaluation of aromaticity in all-metal
clusters.5f

Finally, dissected NICS calculations have been performed
in order to study the trends of π- and σ-aromaticity (see
Figures 3 and 4). Interestingly, NICS(0)π and NICS(0)σ

calculated at the ring center show opposite trends. The first
reproduces the predicted concave shape, while the latter
exhibits a smooth increase of aromaticity from Al4

2- to

Figure 3. Comparison between dissected NICS (ppm) indices
calculated at the ring center and at the RCP (dotted line) along
the series Al42-, Al3Ge-, Al2Ge2, AlGe3

+, and Ge4
2+.

Figure 4. Canonical molecular orbital contribution to NICS(0)rcp (ppm) for the series Al42-, Al3Ge-, Al2Ge2, AlGe3
+, and

Ge4
2+.
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Ge4
2+. This last behavior has been previously observed for

NICS(0). Therefore, in this series, the σ contribution is
responsible for the NICS(0) failing. On the other hand, as
previously seen, NICS(0)σ

rcp provides the expected order,
indicating that NICS(0)σ is more sensitive than NICS(0)π at
the point where the NICS is computed. Figures 2 and 3 show
the differences between the NICS measured at the ring center
and at the RCP. In all cases, the latter reproduces properly
the expected ∪ shape. Consequently, here after, only the
NICS indices calculated at the RCP will be taken into
account. Moreover, in the next series, only the figures with
selected MCI and NICS curves will be presented (see
Supporting Information for tables with the complete set of
results). Figure 4 depicts the valence orbitals with its
individual contribution to NICS. Interestingly, the radial
σ-orbital (HOMO-2 in Al4

2-) reproduces the predicted
concave shape, as does the total NICSσ

rcp, while the tangential
σ-orbital (HOMO-1 in Al4

2-) presents a different behavior.
In the rest of this work, the individual contributions will only
be used to explain the cases where NICSσ or NICSπ fail.

Next, the remaining series where X and Y belong to
different groups of the Periodic Table are briefly analyzed.
The molecular structure, the MCI and NICS curves obtained
for the 4-MR valence isoelectronic series [AlnSi4-n]2-n (n )
0-4) are depicted in Figure 5. Whereas MCI indicates
somewhat larger aromaticity for Al4

2-, all NICS indices give
Si4

2+ as the most aromatic cluster. The trend obtained when
going from Al4

2- to Si4
2+ for all the studied indicators of

total (σ + π) aromaticity is the same and corresponds to the
expected one, except for NICS(0)rcp and MCI that yield
AlSi3

+ slightly less aromatic than Al2Si2. When the σ-π
separation is applied to the MCI and NICS(0)rcp indices, it
is found that MCIπ and NICS(0)π

rcp show the expected ∪
shape, while MCIσ and NICS(0)σ

rcp constantly decrease when
going from Al4

2- to AlSi3
+. Then the σ-aromaticity abruptly

increases from AlSi3
+ to the full symmetric Si4

2+. As it will
be seen in the next series, MCIσ and the absolute value of
NICS(0)σ

rcp tend to decrease when group 13 atoms (Al, Ga)
are substituted by group 14 atoms (Si, Ge), except when the
D4h structure is reached. In contrast to the previous series,
the contribution of the radial σ-orbital to NICS increases
when going from X2Y2 to XY3

+ (see Figure 6). This fact
leads to a slightly lower σ aromaticity in XY3

+ than X2Y2.
However, this effect is, in most cases, canceled out by the π
contribution when total MCI and NICS indices are analyzed,
and consequently, the expected concave shape is observed.

After that we consider the two valence isoelectronic series
[XnY4-n]2-n (X ) Ga and Y ) Si and Ge; n ) 0-4). Figures
7 and 8 depict the most relevant MCI and NICS curves
obtained. Interestingly, almost all indices coincide in giving
a similar aromaticity to Ga4

2- and Ge4
2+ clusters, while MCI

differs from NICS in giving somewhat larger aromaticity to
Ga4

2- than to Si4
2+. In addition, all indices provide the

expected ∪ shape, except NICS(0)rcp, NICS(0)σ
rcp, and MCIσ

for the series [GanSi4-n]2-n (n ) 0-4) that, as before, yield
GaSi3

+, slightly less aromatic than Ga2Si2. In the case of
MCI, the decrease of σ-aromaticity in GaSi3

+ is counteracted
by MCIπ. In general, small differences between X2Y2 and
XY3

+ species are observed. For such cases, one cannot rule
out the possibility that a change of method or basis set may
lead to a different order of aromaticity.

Figure 9 collects the molecular structure, the MCI and
the NICS values obtained for the valence isoelectronic
series [AlnGa4-n]2- (n ) 0-4). In comparison with the
previous series, changes in bond distances and angles are
now smaller due to successive substitution of Al by Ga.
The B3LYP/6-311+G(d) Ga-Ga bond distance of 2.568
Å found is not far from the 2.618 Å obtained at the
CCSD(T)/6-311+G(d) level of theory26b and from the 2.47
Å found in an organometallic compound synthesized by

Figure 5. Variation of MCI, MCIπ, and MCIσ (in electrons) and NICS (ppm) indices calculated at the RCP (dotted line) along the
series Al42-, Al3Si-, Al2Si2, AlSi3+, and Si42+.
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Twamley and Power26a that contains the Ga4
2- unit

coordinated to two K+ and bound diagonally to two phenyl
carbons. Likewise, changes in aromaticity along the Al4

2-

to Ga4
2- series according to MCI and NICS results are

relatively small. This is not unexpected taking into account
that Ga and Al belong to group 13 and that the differences

Figure 6. Canonical molecular orbital contribution to NICS(0)rcp (ppm) for the series Al42-, Al3Si-, Al2Si2, AlSi3+, and Si42+.

Figure 7. Variation of MCI, MCIπ, and MCIσ (in electrons) and NICS (ppm) indices calculated at the RCP (dotted line) along the
series Ga4

2-, Ga3Si-, Ga2Si2, GaSi3+, and Ga4
2+.
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of electronegativity between them are lower than those
between Al and Ge or Si. MCI yields Al4

2- slightly less
aromatic than Ga4

2- in disagreement with a crude evalu-
ation of the resonance energy of Na2Al4 and Na2Ga4 by
Boldyrev and Kuznetsov.10 These authors reported that
the resonance energy of Na2Al4 compound is higher than
that of the Na2Ga4 cluster by about 10 kcal ·mol-1.
Correspondingly, NICS results predict higher aromaticity

for Ga4
2-, except in the case of NICS(0)zz

rcp. The trends
of NICS(0)rcp, NICS(1)rcp, NICS(1)zz

rcp, and NICS(0)π
rcp

in Figure 9 show a steady increase of aromaticity from
Al4

2- to Ga4
2-. MCIπ curve has a clear ∪ shape, although

it is less pronounced than in the previous series, providing
the expected order of aromaticity, i.e., Al4

2- g Al3Ga2-

∼ Al2Ga2
2- ∼ AlGa3

2- e Ga4
2-. Finally, MCI and

NICS(0)zz
rcp yield the correct trend except for Al2Ga2

2-

Figure 8. Variation of MCI, MCIπ, and MCIσ (in electrons), and NICS (ppm) indices calculated at the RCP (dotted line) along the
series Ga4

2-, Ga3Ge-, Ga2Ge2, GaGe3
+, and Ge4

2+.

Figure 9. Variation of MCI, MCIπ, and MCIσ (in electrons) and NICS (ppm) indices calculated at the RCP (dotted line) along the
series Al42-, Al3Ga2-, Al2Ga2

2-, AlGa3
2-, and Ga4

2-.
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that is found to be slightly more aromatic than Al3Ga2-

(MCI) or AlGa3
2- (NICS(0)zz

rcp).
For the valence isoelectronic series [SinGe4-n]2+ (n )

0-4), we have a similar situation as in the series Al4
2- to

Ga4
2-. Thus, changes in bond distances and angles are

small by successive substitution of Si by Ge atoms (see
Figure 10). Likewise, changes in aromaticity along the
Si4

2+ to Ge4
2+ series according to MCI and NICS results

are generally minor. This is attributed again to the fact
that Si and Ge belong to the same group 14 and that the
electronegativities of Si and Ge are almost the same. All
methods predict a slightly higher aromaticity for Ge4

2+

as compared to Si4
2+, except in the case of NICS(0)zz

rcp

and NICS(0)π
rcp. As to the trends shown in Figure 10, only

for MCIπ and NICS(1)zz
rcp, the curves have a clear concave

shape providing the expected order of aromaticity, i.e.,
Si4

2+ g Si3Ge2+ ∼ Si2Ge2
2+ ∼ SiGe3

2+ e Ge4
2+. MCI

indicates a steady increase of aromaticity along the Si4
2+

to Ge4
2+ series, while NICS(0)zz

rcp gives exactly the
opposite trend. Finally, NICS(0)rcp, NICS(1)rcp, and
NICS(0)σ

rcp show a tendency to increase from Si4
2+ to

Ge4
2+ but present some oscillatory behavior. Results show

that it is more difficult to observe a clear trend of
aromaticity in the series with elements that belong to the

Figure 10. Variation of MCI, MCIπ, and MCIσ (in electrons) and NICS (ppm) indices calculated at the RCP (dotted line) along
the series Si42+, Si3Ge2+, Si2Ge2

2+, SiGe3
2+, and Ge4

2+.

Figure 11. Variation of MCI, MCIπ, and MCIσ (in electrons) and NICS (ppm) indices calculated at the RCP (dotted line) along
the series P5

-, P4S, P3S2
+, P2S3

2+, PS4
3+, and S5

4+.
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same group of the Periodic Table. In these series,
aromaticity remains basically unchanged by successive
substitution. Due to the lack of a well-defined trend, these
last two series should not be used as possible tests to
evaluate the performance of aromaticity indices in all-
metal clusters. Still, results indicate presumably, that the
MCIπ index performs better than the rest for these two
series.

Finally, we discuss the [XnY5-n]4-n (X ) P and Y ) S
and Se; n ) 0-5) series of 5-MR clusters. Figures 11 and
12 list the molecular structure, MCI, and NICS curves for
these valence isoelectronic clusters. Since the D5h rings of
P5

-, S5
4+, and Se5

4+ have six π-electrons, it is not possible
to derive the MCIπ value using simple algebra without
computation. Among these series, P5

- is the only inorganic
cluster that has been studied previously with quantum
mechanical methods.5e,30 These works show that D5h P5

-

possess six π-electrons in three π molecular orbitals, resulting
in π-aromaticity according to the 4n + 2 Hückel’s rule. In
line with this view, the MCI and MCIπ values of P5

- differ
by only 0.001 e, indicating that the contribution of the
σ-electrons to the total MCI value is irrelevant. The same is
true for all the members of these two series. MCI values
yield more aromatic S5

4+ and Se5
4+ clusters than P5

-, while
all NICS indices predict the opposite behavior. From the
trends depicted in Figures 11 and 12, it is found that both

MCI and MCIπ curves present the expected ∪ shape (MCIπ

is not represented in Figures 11 and 12 because it coincides
almost exactly with MCI). However, all NICS values yield
a continuous reduction of aromaticity along the series P5

-

to S5
4+ and to Se5

4+. Remarkably, NICS(0)π
rcp differs from

the rest of NICS indices, showing the same behavior of MCI
and MCIπ. NICS(0)π

rcp values yield more aromatic S5
4+ and

Se5
4+ clusters than P5

- and provide a clear ∪ shape, with
the only exception of P4Se being a little less aromatic than
P3Se2

+. On the other hand, σ-orbitals are responsible for the
reduction of aromaticity that is shown by the rest of NICS
indices along the series. For comparison purposes, the MCI
and NICS(0) values for D5h C5H5

-, the most similar organic
molecule to P5

-, are 0.0704 e and -15.63 ppm, respectively.

4. Concluding Remarks

The summary of the results obtained for six of the series
analyzed can be found in Table 2. In this table, we write
“yes” when a certain index follows the expected trend in
aromaticity for a given series, “no” otherwise, and “unclear”
when the failure of the index is minor (for instance, the index
falls short only for the ordering of one species in a given
series). The series analyzed constitute a new test to evaluate
the performance of descriptors of aromaticity in the exciting
field of all-metal clusters.

Figure 12. Variation of MCI, MCIπ, and MCIσ (in electrons) and NICS (ppm) indices calculated at the RCP (dotted line) along
the series P5

-, P4Se, P3Se2
+, P2Se3

2+, PSe4
3+, and Se5

4+.

Table 2. Summary of the Results Obtained at the B3LYP/6-311+G(d) Level for the Six Series Studied with Seven
Descriptors of Aromaticity Analyzed

series MCI MCIπ NICS(0)rcp NICS(1)rcp NICS(0)zz
rcp NICS(1)zz

rcp NICS(0)π
rcp

Al/Ge yes yes yes yes uncleara yes yes
Al/Si uncleara yes uncleara yes yes yes yes
Ga/Si yes yes uncleara uncleara yes yes yes
Ga/Ge yes yes yes yes yes yes yes
P/S yes yes no no no no yes
P/Se yes yes no no no no uncleara

a Fails only in ordering one molecule (see text).

Performance of Aromaticity Descriptors J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1127



Results in Table 2 indicate that the multicenter indices
perform generally better than NICS, especially the MCIπ.
Our results reinforce the superior behavior of NICS(0)π

rcp

as compared to NICS(0)rcp, NICS(1)rcp and their correspond-
ing out-of-plane components. Indeed, NICS(0)π

rcp gives the
correct trends for all studied species, except for the relative
aromaticity of P4Se in comparison with P3Se2

+, and for the
valence isoelectronic series [AlnGa4-n]2- and [SinGe4-n]2+

(n ) 0-4). These two latter series, for which only the MCIπ

index yields the correct trend, have not been included in
Table 2 because aromaticity results show that there is not a
well-defined trend along these series. The fact that
NICS(0)π

rcp performs better than NICS(0)rcp, NICS(1)rcp, or
their corresponding out-of-plane components for the
[XnY4-n]q( (X, Y ) Al, Ga, Si, and Ge; n ) 0-4) clusters
is somewhat disturbing given the fact that these molecules
display both σ- and π-aromaticity. The reason must be found
in the NICS(0)σ

rcp component that fails to account for the
expected order of aromaticity. Remarkably, NICS values in
inorganic aromatic clusters strongly depend on the point
where they are calculated. Thus, while NICS(0)rcp provides
the expected trend, NICS(0) fails predicting a steady increase
when going from Al4

2- to Ge4
2+.

NICS and MCI are indices of aromaticity that do not
require reference values and, consequently, they are likely
the most useful indicators of aromaticity for all-metal and
semimetal clusters. The present study indicates that if one
wants to order a series of inorganic compounds according
to their aromaticity, it is recommendable to use multicenter
electronic indices or NICS(0)π

rcp values. However, for this
purpose neither NICS(0) nor NICS(1) are reliable. On the
other hand, if one only wants to discuss whether a given
cluster is aromatic or not, then both MCI and NICS, and
particularly NICS-scan, do a good job to classify all-metal
and semimetal clusters into aromatic, nonaromatic, and
antiaromatic.21

Finally, the performance of NICS and MCI has been
validated for the light atoms of Periodic Table, but still
remain to be assessed for more complicated transition metals
having δ- or φ-electron delocalization. More research is
underway in our laboratory concerning this particular issue.
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111, 6521–6525.
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M.; Duran, M.; Salvador, P. J. Phys. Chem. A 2005, 109,
9904–9910. (c) Ponec, R.; Cooper, D. J. Mol. Struct.
(Theochem) 2005, 727, 133–138.

(48) (a) Bader, R. F. W. Acc. Chem. Res. 1985, 18, 9–15. (b)
Bader, R. F. W. Chem. ReV. 1991, 91, 893–928.

(49) Biegler-König, F. W.; Bader, R. F. W.; Tang, T.-H. J. Com-
put. Chem. 1982, 3, 317–328. (http://www.chemistry.mcmaster.
ca/aimpac/).

(50) Matito, E. ESI-3D: Electron Sharing Indexes Program for
3D Molecular Space Partitioning; Institute of Computational

Performance of Aromaticity Descriptors J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1129



Chemistry, University of Girona: Catalonia, Spain, 2006;
http://iqc.udg.es/∼eduard/ESI.

(51) The numerical accuracy of the QTAIM calculations has been
assessed using two criteria: (i) The integration of the Laplacian
of the electron density (32F(r)) within an atomic basin must
be close to zero; and (ii) The number of electrons in a
molecule must be equal to the sum of all the electron
populations of the molecule. For all atomic calculations,
integrated absolute values of 32F(r) were always less than
0.001 au. For all molecules, errors in the calculated number
of electrons were always below 0.01 au. It is important to
mention that the default maximum distance from the nucleus
used to integrate the atomic region has to be increased when
diffuse functions are employed in the presence of metal atoms.
In the AIMPAC program, the default integration maximum

distance is 9.0 au. However, we have found that this distance
should be increased to 12.0 au for the proper integration of
Al and Ge atoms, and to 17.0 au for Ga. If this value is not
increased, the sum of all electron populations will not be equal
to the number of electrons in a molecule. Consequently, these
integration distances have to be changed in the input file.

(52) The reason for the differences found is not totally clear to us,
although it may be the result of using the default maximum
distance (9 au) for the integration of the atomic regions in
the AIMPAC program instead of our recommended value of
12 au for Al.

(53) Feixas, F.; Matito, E.; Solà, M.; Poater, J. J. Phys. Chem. A
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Abstract: In this work, we used the induced magnetic field (Bind) to study the degree of
aromaticity of the planar (HF)3 ring. The induced magnetic field analysis shows that the degree
of electron delocalization in the hydrogen-bonded cyclic trimer of HF is very low. This result is
in agreement with those obtained using GIMIC and is opposite to the Rehaman’s suggestion.
Our results demonstrate a clear limitation of the NICS index when a strong anisotropy is exhibited
and suggest that the NICS values should be used carefully to discuss aromaticity in systems
without an important pz-orbital overlap that produces the π clouds. In view of the fact that the
NICS index is extensively used by computationally and theoretically oriented experimental
chemists, this is an important warning.

Introduction

The IUPAC defines aromaticity as “The concept of spatial
and electronic structure of cyclic molecular systems display-
ing the effects of cyclic electron delocalization which proVide
for their enhanced thermodynamic stability (relatiVe to
acyclic structural analogues) and tendency to retain the
structural type in the course of chemical transformations”.1

Nevertheless, it is enough to check the last two Chem. ReV.
issues dedicated to aromaticity2 and electron delocalization3

to realize that this definition is still controversial. In general,
a quantitative and/or qualitative assessment of the degree of
aromaticity is given by the chemical behavior (lower
reactivity), structural features (planarity and equal bond
length tendencies),4,5 energy (stability), and spectroscopic
properties (UV, proton chemical shifts, and magnetic sus-
ceptibility exaltation). Recently several magnetic indices of
aromaticity have been introduced and discussed. They
include the famous nucleus-independent chemical shift
(NICS) and related indexes,6,7 aromatic ring-current shielding
(ARCS),8 and plotted ring-current densities.9,10 Particularly,

the concept of a ring current, introduced by Pople, has been
used widely to interpret the magnetic properties of aromatic
molecules.11,12

Even though that aromaticity is not well-defined and was
originally developed within the organic chemistry scheme,
this concept has been extended to inorganic systems.
Interestingly, all-metal clusters and inorganic compounds13-17

have not only the conventional π-(anti)aromaticity but also
the σ-,18-22 δ-23-25 or even �-(anti)aromaticity,26 i.e., a
multifold aromaticity.27-30

In 2005 Rehaman et al. suggested that the planar hydrogen-
bonded cyclic (HF)3 (see Scheme 1) is aromatic.31 They
claimed that the existence of aromaticity in such hydrogen-
bond complexes is apparent from the NICS values (in ppm)
of -2.94, -1.98, and -1.89 for (HF)3, (HCl)3, and (HBr)3,
respectively. Similar results were also reported for water
clusters (H2O)n.

32 Recently, one of us has studied the
interplay between aromaticity and hydrogen bonding in
1,3-dihydroxyaryl-2-aldehydes.33,34 In that case, the quasi-
ring partially adopts the role of a typical aromatic ring,
favoring phenomena like for proton transfer reactions,
contrary to the (HF)3 complex.

Of course, the existence of “ hydrogen-bonded aromatic-
ity” involving strong ring currents across hydrogen bonds is
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very attractive. However, Lin and Sundholm reported the
nuclear magnetic shieldings and magnetically induced ring
currents for the planar ring-shaped hydrogen fluoride trimer
(HF)3,

35 and using the gauge-including magnetically induced
current (GIMIC) method36 showed that, contrary to the
Rehaman et al. suggestion,31 (HF)3 has a very small ring-
current susceptibility of 0.37 nA/T. Thus, only a weak net
current is passing across the H · · ·F hydrogen bond.

A magnetic field perpendicular to any plane can induce a
current density in and parallel to the selected plane. This
current density induces a counter field. In this sense, the
induced magnetic fields and induced current densities are
complementary to each other. Induced current densities are
usually given in one selected plane parallel to the molecular
ring, while the induced magnetic field contains information
of the overall current density distribution. Having both
analyses available is, therefore, advantageous. In other words,
the induced magnetic field reveals important information on
electron delocalization and, furthermore, of its origin.37

Recently, we have studied the induced magnetic field of
several systems.38-44 In agreement with current density
maps,10 the response of aromatic, antiaromatic, and nonaro-
matic examples show different features.

In this work, we used the induced magnetic field (Bind) to
study the degree of aromaticity of the planar (HF)3 ring.
Similar to the GIMIC results, our calculations show that the
mentioned complex is not an aromatic system. Frequently,
NICS is related to the strength of the induced ring current.
However, in this case, NICS contains contributions from the
in-plane components, which can be regarded sometimes as
spurious for evaluating aromaticity.

Computational Details

The geometry optimizations were performed with the
B3LYP45,46 functional, as implemented in the Gaussian 03
program,47 in conjunction with the def2-TZVPP basis set.
At variance with the HF dimer,48,49 the optimized molecular
structure of the trimer is not significantly affected by the
basis set superposition error (BSSE) and, therefore, we have
not considered the BSSE correction in the HF trimer
optimization. The induced magnetic field (Bind) calculations
were performed by using the PW91 density functional50 in
conjunction with the IGLO-III basis set. The shielding tensors
were computed using the IGLO method.51 The deMon
program was used to compute the molecular orbitals52 and
the deMon-NMR package for the shielding tensors.53 Induced

magnetic fields of the external field applied perpendicularly
to the molecular plane were computed in ppm. Assuming
an external magnetic field of |Bext| ) 1.0 T, the unit of Bind

is 1.0 µT, which is equivalent to 1.0 ppm of the shielding
tensor. In order to render the induced magnetic fields, the
molecules were oriented so that the center of mass was
located at the origin of the coordinate system; the z-axis is
parallel to the highest order symmetry axis of the molecule.
The external field was applied perpendicular to the (HF)3

plane. VU was employed for the visualization of molecular
fields.54

Results and Discussion

Figure 1 depicts the contour lines and isosurfaces of both
the z-component of the induced magnetic field, Bind

z and the
NICS for the (HF)3 complex. It is important to remark that
the Bind

z for an external field perpendicular to the ring is
equivalent to the NICSzz index. In a typical aromatic
molecule, like benzene, no paratropic contributions to the
Bind are observed inside the ring, and only a strong shielding
region to the carbons inside the ring is obtained. In contrast,
the hydrogen complex shows a strong but short-range
paratropic response inside the ring (Figure 1A). Interestingly,
the shielding cones above and below the (HF)3 complex are
comparable in shape and intensity to those of a nonaromatic
system.37 Note that each HF moiety is diatropic, but the
deshielding regions are further outside (given in red), and
there is not an effective overlap of the HF diatropic zones
close to the plane ring.

NICS, defined as the negative total isotropic shielding
(average shielding), can be computed at any point in space.
Isolines and the isosurface of NICS, that is, the effect on
the isotropic shielding, caused by external magnetic fields
from all directions, are depicted in Figure 1B. The average
virtual shielding (3.7 ppm) evaluated at the center of mass
corresponds to a NICS index of -3.7, according to the
definition proposed by Schleyer et al. (cf. with the value of
-2.9 as reported by Rehaman et al.).31 It must be remarked
that the large anisotropies of the shielding tensors of the
(HF)3 complex lead to a notable change between both Bind

z

and NICS scalar fields: (i) The isotropic shielding is smaller
in magnitude than that caused only by an external field in
the z-direction and (ii) Close to the ring center, the NICS
values are negative showing a low aromatic character.
Generally, the NICS tensor is strongly anisotropic, i.e., values
of σxx and σyy components differ strongly from the σzz

contribution; however, in most cases, like in benzene, the
absolute value of the (σxx + σyy) term is smaller than that of
the σzz one, therefore, the Bind

z and NICS have the same sign.
In this case, at the ring center the σxx ) σyy ) 11.5 ppm and
the σzz ) -13.3 ppm, giving a big difference between both
aromaticity indexes.

Formally, the pure pz lone pairs of the fluorine atoms
become three π orbitals of the planar (HF)3 complex, so the
system could be considered a Hückel aromatic complex.
However, there is not a remarkable overlap of pz orbitals
that produces the π clouds and, thus, there is not an important
electron delocalization in that complex. As our method allows
the separation into core σ and π orbitals, we can discuss the

Scheme 1
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role of each orbital contribution as shown in Figure 2. The
core electrons do not contribute to Bind, except in the very
close vicinity of nuclei. The σ orbital contributions to Bind

z

have quite a similar shape and magnitude to the total Bind
z.

As σ electrons are strongly localized, their local diamagnetic
contributions generate a short-range response and a paratropic
(deshielding) region at the ring center (Figure 2A). In the
same way, the π electrons are quite localized at the fluorine
atoms, and only a short-range diamagnetic response is
observed. In contrast, the NICSσ still includes the current
effects induced by magnetic fields parallel to the ring, which
are not negligible and have an impact in the shape of the

shielding cones. The σ component is responsible for the
negative value observed at the ring center. Lazzeretti pointed
out that serious interpretation errors can be done by confusing
the averaged trace and the out-of-plane component.10 Our
results are in agreement with that comment.

Finally, let us estimate the contribution of each H-F
fragment to both the induced magnetic field and NICS. Of
course, this approximation is only valid for weak interactions.
For instance, Poater and co-workers showed that the apparent
increase of local aromaticity in superimposed aromatic rings
indicated by NICS is not real, but rather the result of the
magnetic field generated in one ring due to the electron

Figure 1. (A) Isosurfaces of the z-component of the induced magnetic field Bind
z and (B) NICS. |Bind

z| and |NICS(r)| ) 4.0 µT,
and Bext ) 1.0 T perpendicular to the molecular plane. Blue and red colors indicate shielding and deshielding areas, respectively.

Figure 2. Induced magnetic field and NICS of the (HF)3 complex. (A) The Bind
z, shielding (diatropic, blue) or enforcing (paratropic,

red) the external field, shown in the same planes as for the field lines. (B) Contour lines of NICS(r) (equivalent to the negative
shielding density) are shown in the same planes as the field lines.
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current density of the other ring placed above it.55 In our
case, Figure 3 shows the profiles along the z-axis for both
scalar fields (Bind

z and NICS); r ) 0 corresponds to the ring
center. Interestingly, at r ) 0 the contribution of each
fragment to Bind

z is 3.75 ppm, i.e., the sum of three fragments
is 1.0 ppm lower than in the complex (12.2 ppm). In this
sense, our results provide evidence that the noninteracting
trimer is more diatropic (aromatic) than the planar bonded
(HF)3 complex. A similar conclusion can be emerged from
the NICS analysis.

Conclusion

We have shown that the electron delocalization degree in
the planar hydrogen-bonded HF cyclic trimer is very low.
This result is in agreement with that obtained using GIMIC36

and is opposite to the Rehaman et al. suggestion.31 Our
results show a clear limitation of the NICS index when a
strong anisotropy is exhibited and suggest that the NICS
values should be used carefully to discuss aromaticity in
systems without an important overlap of pz orbitals that
produces the π clouds. In view of the fact that the NICS
index is extensively used by computationally and theoreti-
cally oriented experimental chemists, this is an important
warning. Our results are also in line with the Lazzeretti
comments,10 who mentioned that the analyses based on
average values imply a loss of information, and thus criteria
for diatropicity and aromaticity should be established in terms
of the out-of-plane component of magnetic tensors. Our
conclusion to be cautious regarding an interpretation of the
NICS index is also supported by the work of Pierrefixe et
al.5 They showed that the symmetric geometry in benzene-
type aromatic species (which is originating the small highest-
occupied and lowest-unoccupied molecular orbitals,
HOMO-LUMO, gap of the π system and thus contributes
to the ring current) is caused by the tendency of the σ system,
not the π system, which is still often (erroneously) held
responsible.
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43.

(34) Palusiak, M.; Simon, S.; Solà, M. J. Org. Chem. 2009, 74,
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Abstract: To determine transition state (TS) and, thus, to predict chemical activity has been a
challenging topic in theoretical simulations of chemical reactions. In particular, with the difficulty
to compute the second derivative of energy (Hessian) in modern quantum mechanics packages
with a non-Gaussian basis set, the location usually involves a high demand in computational
power and lacks stability in the algorithm, especially for complex reaction systems with many
degrees of freedom. Here, an efficient TS searching method is developed by combining the
constrained Broyden minimization algorithm with the dimer method that was first proposed by
Henkelman and Jónsson. In the new method, the rotation of the dimer needs only one energy
and gradient calculation for determining a rotation angle; the translation of the dimer is continually
carried out until a termination criterion is met, and the translational force parallel to the dimer
direction is damped to optimize the searching trajectory. Based on our results of the Baker
reaction system and of a heterogeneous catalytic reaction, our method is shown to increase
the efficiency significantly and is also more stable in finding TSs.

1. Introduction

Transition-state theory (TST) plays a central role in chemical
kinetics. To determine TS and, thus, to predict chemical
activity based on TST is a major theme in modern theoretical
simulation of chemical reactions. The algorithms for locating
TS can be generally divided into two classes, namely, (i)
chain-of-states and (ii) surface-walking methods. The former
class simultaneously optimizes a few connected images on
the potential energy surface (PES) to identify the minimum
energy path (MEP). The representative methods include the
nudge elastic band (NEB),1–5 the doubly nudge elastic band
(DNEB),6–9 and the string methods.10,11 The later class
optimizes only one structural image on the PES by using
the local information, such as the gradient (force) or the
second derivative (Hessian) of PES. As a result, these
methods are much less demanding in computational power.
Belonging to this category are the methods, such as the
partitioned rational function optimizer (P-RFO),12–15 the

hybrid eigenvector following,16,17 the dimer,18–21 and the
bond-length constrained minimization methods.22,23

Among all the methods in searching for TS, the Hessian
involved methods, such as the P-RFO approach, are perhaps
the most efficient when the (analytic) Hessian is cheaply
available.15 By modifying and following the eigenvalue of
Hessian, these methods can maximize energy in one degree
of freedom, while minimizing energy in all the others. To
reduce the computational cost in calculating Hessian, the
quasi-Newton-based methods have been utilized to update
the Hessian, such as the Powell symmetric Broyden (PSB),
the symmetric rank 1 (Murtagh-Sargent, MS)24–28 and the
hybrid approach developed by Bofill.29–34 In practice, a
constraint on the step length is often implemented to deal
with the overstepping problem.35 A comprehensive survey
for methods in this category has been reviewed by Schlegel.36

Different from the P-RFO approach, the dimer method,
proposed by Henkelman and Jónsson18 initially and devel-
oped by several other groups19–21 later, can locate the TS
without the need of Hessian. This is particularly advanta-* Email address: zpliu@fudan.edu.cn.
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geous for the cases: (i) when the Hessian is not cheaply
available, as in modern quantum mechanics packages with
non-Gaussian basis sets and (ii) where a large reaction system
with many degrees of freedom is interested.20,21 The dimer
method involves two structural images (defined as a dimer)
on the PES, the linkage between which creates a unit vector
N̂ separated by a prefixed distance 2∆R (e.g., ∆R ) 0.005
Å). The whole algorithm of the dimer method is constituted
by two independent parts, namely rotation and translation.
The dimer first rotates to identify the local curvature (C),
which is equivalent to determine a relevant normal mode of
Hessian numerically. The curvature C is calculated using eq
1, where the vectors F2 and F1 are the forces acting on each
image of the dimer. Then the dimer translates toward the
TS. The force for the dimer rotation (∆F⊥) and the translation
(Ftran) are described by eqs 2 and 3, respectively. In eq 3, F0

is the total force acting on the middle point of the dimer.
The parallel force F|| (F|| ≡ (F0 • N̂) · N̂) is defined as the
force component parallel to the dimer direction N̂, and the
vertical force F⊥ is defined by F⊥ ≡ F0 - F||.

In the first version of the dimer method, four energy
and gradient calculations are required to determine a
rotation angle.18 To reach a converged curvature, the dimer
usually needs to rotate 5-10 times, each with a determined
rotation angle. The rotation of the dimer is, therefore, the
most time demanding part in TS searching. To improve
the efficiency, Olsen et al.19 suggested that the force on
the image 2(F2) can be approximated as F2 ) 2F0 -
F1, which can save two energy and gradient calculations

in the determination of a rotation angle. Heyden et al.
reported a new method to calculate the rotation angle by
expanding the rotation angle using the Fourier series.20

Based on Heyden’s approach, Kästner and Sherwood
suggested that the rotational force could be extrapolated
to save one more energy and gradient calculation, which,
however, may hamper the convergence of the rotation.21

They also reported that by replacing the conjugate gradient
(CG)algorithmwiththeBroyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm in the rotation and translation
optimizations, the efficiency of the dimer method could
be improved.

Recently, we developed a constrained Broyden minimiza-
tion (CBM) method to locate TS,23 where the distance of a
chemical bond is fixed and autoupdated by the quasi-Newton
Broyden method during the TS searching. The method also
does not require Hessian as input. Compared to the dimer
method, we found that the CBM method eliminates com-
pletely the rotation steps as the reaction coordinate is
predefined, simply as a bonding pair, and that the CBM
carries out the geometry relaxation with multiple Broyden

steps at each fixed bond distance, while the dimer method
has only one move (e.g., e0.2 Å) at each translation step.
These two features make the CBM method efficient in
finding simple bond-making/breaking reactions on complex
substrates, for example, those often involved in heteroge-
neous catalysis.23 However, the CBM method has its own
limitation due to the lack of the curvature information; it
meets great difficulties in finding complex TS where the
reaction coordinate is not so intuitive.

In this work, we aim to develop a better approach by
combining the advantages of the dimer and CBM methods
to improve the efficiency and the stability in searching for
the TS of complex reactions. Indeed, we find that it is
possible to integrate the Broyden algorithm in both the
rotation and the translation parts of the dimer method.
Specifically, our new approach can achieve the following:
(i) only one energy and gradient calculation for determining
a rotation angle in the dimer rotation; (ii) multiple optimiza-
tion steps in the dimer translation, similar to the CBM
method; and (iii) optimized TS searching trajectory with
enhanced stability. By applying to the example reactions,
we show that the new algorithm is much more efficient and
stable than that of the existing dimer method.

2. Methods

Following the terminology of the dimer method, we also
describe our algorithm in two sections, namely, the rotation
and the translation.

2.1. Rotation. The rotation of a dimer can be considered
as moving image one (R1) on a spherical surface, and the
center of the sphere is the middle point of the dimer (R0)
with the radius being half of the length of the dimer (∆R).
The rotation direction was suggested as eq 4, according to
Fourier series expansion.20 To determine the rotation angle
φmin, one needs first make a trial rotation of angle φ1 to obtain
the value of |∆Fφ1

⊥ |. In total, two energy and gradient
calculations (∆F⊥ and ∆Fφ1

⊥ ) are thus essential for one
rotation (rotate a φmin). Equation 4 may be modified slightly
by utilizing the projected |∆Fφ1

⊥ | expressed as (∆Fφ1
⊥ • ∆F⊥)/

|∆F⊥ |, instead of |∆Fφ1
⊥ |.37 The rotation of the dimer is

terminated only if the ∆F⊥ is below a preset criterion (e.g.,
rms force (|F|) < 0.05 eV/Å), which typically requires more
than five rotations (i.e., ten energy and gradient calculations).

We note that by merely minimizing the rotational force
∆F⊥ in the rotational step, the determined curvature of the
dimer may not necessarily be the lowest eigenvalue (normal
mode) of Hessian, since ∆F⊥ is diminished at any eigenvalue
of Hessian. Heyden et al.,20 using the P-RFO method with
the computed Hessian, showed that the TS searching by
always following the lowest curvature could be unstable, i.e.,
either converge to the wrong TS or fail to converge.
Therefore, an algorithm that can most efficiently reduce the
rotational force ∆F⊥ (i.e., finding the local curvature) is
perhaps the most appropriate for the dimer method, provided
that a reasonably guessed initial curvature is available.

C )
(F1 - F2)•N̂

2∆R
(1)

∆F⊥ ) (F1 - F2) - [(F1 - F2)•N̂]·N̂ (2)

Ftran ) {-F| ) -(F0•N̂)·N̂ (C > 0)

F⊥ - F|| ) F0 - 2(F0•N̂)·N̂ (C < 0)
(3)

�min ) 1
2

arctan( sin(2�1)·|∆F⊥|

|∆F⊥|·cos(2�1) - |∆F�1

⊥ |) (4)
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Following the CBM method, in this work, we utilized the
quasi-Newton Broyden method to minimize the rotational
force of the dimer. This is addressed in eq 5, where x is
chosen as the middle point of the dimer R0 and R1, and the
residual R is the rotation force ∆F⊥. It might be mentioned
that the Broyden method has been widely used in electronic
structure calculations for both charge density mixing and
structural optimization.23,38 The Broyden method38–41 itera-
tively updates its Jacobian (J) matrix (approximate Hessian)
or the inverse Jacobian (G) based on the iteration history,
the equations of which have been derived based on the least-
squares minimization of an error function, eq 6. The formula
for the modified Broyden method as derived by Johnson41

is summarized in eqs 7-11. The modified Broyden method
has no requirement to store the full (3N × 3N) Hessian
matrix.41,42

It is noted that because ∆F⊥ is normal to the dimer N, a
direct act of ∆F⊥ on the dimer will drive the image R1 away
from the spherical surface of the rotation. To restore the
dimer length, we utilize eq 12 to constrain R1 back to the
sphere of rotation along the new dimer direction, where R1′
and R1

new are the images before and after the constraint,
respectively, and ∆R′ is the length between R1′ and R0 (∆R′
) |R1′ - R0|).

2.2. Translation. Strictly speaking, the translation direc-
tion of the dimer, as guided by the curvature from the
rotation, is only meaningful locally, i.e., in a small region
defined by ∼∆R length on the PES. However, the magnitude
of even one translational move has to be very large in practice
(e.g., 0.2 Å, 40 times larger than ∆R). This would imply
that the traditional framework of the dimer method: one-
rotation plus one-translation is not necessarily the safest and
the most efficient approach. In principle, it would be desirable
to achieve continuous translational moves, i.e., one rotation
plus multiple translation, especially with quasi-Newton
methods (e.g., BFGS, Broyden) that rely on iteration history
to approximate Hessian. With such a framework, the

computational cost may be much reduced, since the rotation
of the dimer dominates the computational efforts (in doing
energy and gradient calculations). The multiple translation
steps with an approximate normal mode can, indeed, be used
to locate the TS, as already demonstrated in the CBM method
in our recent work,23 where a bond distance is fixed during
geometry relaxation. The key challenge is, therefore, to
identify a valid criterion for the termination of multiple
translation steps.

2.2.1. Testing in a Two-Dimensional PES. To find a
suitable criterion, we first investigated a simple two-
dimensional (2D) PES defined as E ) x4 + 4x2y2 - 2x2 +
2y2, as shown in Figure 1, where the initial state (IS), the
TS, and the final state (FS) are labeled. In the figure, the red
region contains one negative mode, and the other areas are
all positive-curvature regions. The inflection point is located
at the edge of the red region. In the insertion, we show that,
going from the IS/FS to the TS along MEP, the parallel force
F| has always a maximum in absolute value, which occurs
at the inflection point. This means that one should minimize
the parallel force at the negative-curvature region but
maximize the parallel force at the positive-curvature region.
Based on this, we have utilized the following criterion for
the termination of the translational move:

where Fi
| is the F| of the current step and Fi-1

| is the F| of
the last step. This criterion is designed to prevent the dimer
from going down hill to the IS/FS or from trapping around
the inflection point and, thus, enable multiple geometry
relaxation steps. The idea behind this can be described as
follows: When the dimer is between an IS (or FS) and an
inflection point where the curvature is positive, the dimer

xi+1 ) xi - J-1Ri (5)

E ) w0
2|G(m+1) - G(m)|+ ∑

n)1

m

wn
2||∆x(n)〉 + G(m+1)|∆R(n)〉|2

(6)

G(m+1) ) G(1) - ∑
k)1

m

|Zk
(m)〉〈∆R(k)| (7)

|Zk
(m)〉 ) ∑

n)1

m

�kn|u(n)〉 + w0
2 ∑

n)1

m-1

�kn|Zn
(m-1)〉 (8)

|u(n)〉 ) G(1)|∆R(n)〉 + |∆x(n)〉 (9)

�kn ) (w0
2I + a)kn

-1 (10)

aij ) wiwj|∆R(j)〉〈∆R(i)| (11)

R1
new )

R1′ - R0

∆R′ × ∆R (12)

Figure 1. TS-searching trajectories on a 2D PES defined by
E ) x4 + 4x2y2 - 2x2 + 2y2. The red region is with one
negative curvature (mode), and the inflection point locates at
the edge of the red region. The insertion at the bottom of the
figure shows how |F|| varies from the IS to the FS along MEP,
as labeled by the dotted arrow. The dotted color curves
represent the trajectories with different λ values as shown in
eq 14.

{|Fi
|| > |Fi-1

| | (C < 0)

|Fi
|| < |Fi-1

| | (C > 0)
(13)
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will translate toward the inflection point to maximize the
parallel force. As the dimer passes through the inflection
point, the parallel force drops, and the translation is stopped
due to eq 13. After the inflection point, the recalculated
curvature is negative, and the dimer will translate toward a
TS to minimize the parallel force according to eq 13. In the
case of systems with multiple inflection points along the reaction
coordinate, the algorithm works similarly, as the parallel force
has the local maximum or minimum at the inflection points. A
translation step will be stopped similarly whenever an inflection
point is passed. This will gradually lead the dimer away from
the inflection points until the TS is located. To avoid the trapping
at the shoulder point in a flat PES, it is essential to ensure the
curvature of the located TS to be negative enough.

Furthermore, we found that the TS-searching trajectory
(translation trajectory) could also be optimized by modifying
the translational force. For illustration purposes, we dem-
onstrated the TS-searching method on the simple PES
mentioned above with the following program:

(i) Rotate dimer to identify the local curvature (in fact
this can be done analytically in the 2D PES).

(ii) Perform the translational moves with the force ac-
cording to eq 14, where a factor λ (between 0 and 1)
on F|| is introduced. The choice of the value of λ in
real systems will be discussed in the next subsection.
Obviously, when λ equals to 1, eq 14 is the same as
eq 3 for C < 0.

(iii) Terminate the translation if the condition of eq 13 is
reached or if |F⊥| < 10-5. For the λ)0 case, one
additional move with the force being -0.1F|| is
carried out.

(iv) Repeat i-iii until |F| < 10-5.
(v) Check the final result by calculating the curvature of

the converged state. If the curvature is close to zero,
then it implies that the search may converge to a
“shoulder state”. In such a case, we need to guess a
better initial condition and to restart the search.

The effect of λ on the TS-searching trajectory can be seen
clearly by comparing the dotted color curves in Figure 1.
The red curve represents the condition of λ ) 1. The blue
one represents a trajectory with λ ) 0. Although both the
red and the blue curves can finally converge to the TS, they
appear to be two extremes from the optimum searching path,
the black line in the figure. If we adjust the value of λ in
between (0 and 1) in eq 14, we can obtain trajectories
between the blue and the red curves, such as the orange (λ
) 0.25), the magenta (λ ) 0.1), and the green (λ ) 0.05).
Obviously, the magenta curve is the optimum path among
the five curves.

We would like to address further the meaning of λ from
two aspects. Mathematically, the implementation of λ ef-
fectively projects out a fraction of the forces at the direction
defined by the dimer N̂. By doing this, the minimization of
the other degrees of freedom is of higher priority compared
to that of the N̂ direction. As shown in the Figure 1 blue
curve (λ ) 0), the searching trajectory is toward and along

MEP. From a practical point of view, the identified dimer N̂
direction is local, but the translation along -F|| (λ ) 1) is
typically at a long step size (e.g., 0.2 Å). As a result, the
translation with λ ) 1 on a corrugated PES could be unstable,
since the walk against the force may lead to the divergence.
Therefore, the scaling of F|| is desirable for safety.

2.2.2. Implementation in Real Molecular Systems. In a real
system of 3N degrees of freedom, eq 14 can be applied
similarly for the C < 0 regions. The value of λ can be
conveniently chosen as a set of values, as shown in eq 15,
according to the rms value of F|| (|F|||) at the beginning of
each translation (λ is unchanged in one translation). It should
be mentioned that by applying λ values in between 0 and 1,
the TS searching is actually constrained, and the algorithm
becomes more stable because the trajectory is closer to MEP.
This will be demonstrated in Section 3.

For a similar reason, we also introduce a prefactor 0.5 to
the F⊥ or F|| to optimize the searching trajectory in the C >
0 regions, as expressed in eq 16. Equation 16 is designed to
reduce the vertical force, preferentially when the force is
too large (e.g., |F⊥| > 2 eV/Å), which drags the image toward
MEP and to maximize the parallel force when the force is
small enough (|F⊥| < 2), which drags the image toward the
TS. In our work, the vertical force is always applied in the
positive-curvature region (c.f., eq 3) to relax the structure to
MEP. Accordingly, a criterion as eq 17 is utilized for the
termination of translational move. Equation 17 ensures the
minimization of the vertical force together with the maxi-
mization of the parallel force during the dimer translation
in the C > 0 regions.

2.2.3. Performance of Boyden Algorithm at the
NegatiVe-CurVature Region. While the Broyden technique
proved to be applicable for minimization problems when the
actual Hessian is positive definite, we here utilized the
Broyden technique to locate TS, where the actual or the real
Hessian matrix has one negative eigenvalue. To enable the
Broyden technique to locate the TS as required, the key is
to reverse F|| as -F||, which effectively changes the curvature
at this degree of freedom to be positive. According to eq 1,
where C ) -dF||/dx, it is clear that the sign of the C
associated with the parallel force is changed by inverting
F||. Such transformed forces fed into Broyden enables the
update of the Jacobian matrix, according to the modified

Ftran ) F⊥ - λF| (14)

Ftran ) F⊥ - λF|| (C < 0); λ )

{0.1 |F|| ∈ [2,+∞)
0.25 |F|| ∈ [1, 2)
0.5 |F|| ∈ [0.5, 1)
1.0 |F|| ∈ [0, 0.5)

(eV/Å) (15)

Ftran ) {0.5·F⊥ - F|| (|F⊥|<2)

F⊥ - 0.5·F|| (|F⊥|>2)
(eV/Å) (C > 0)

(16)

{|Fi
|| > |Fi-1

| | (C < 0)

|Fi
|| < |Fi-1

| | or |Fi
⊥| > |Fi-1

⊥ | (C > 0)
(17)
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Broyden algorithm, to be positive definite. In our imple-
mentation of the multiple translation steps at C < 0 region,
once the Jacobian matrix becomes nonpositive definite, which
is an indication that the reversed F|| does not fully quench
the negative mode, the translation should always be termi-
nated, and a new iteration to rotate the dimer will start. We
would like to emphasize that both CG and L-BFGS methods
have been utilized in the previous versions of the dimer
method,18–21 which demonstrated that it is, in principle,
possible to utilize the minimization techniques to locate the
TS with the reversed parallel force.

To illustrate this more clearly, we show the searching for
the minimum point and the saddle point with the modified
Broyden algorithm on a simple five dimension PES E )
∑i)1

5 Ei, where Ei ) sin(xi). From Table 1, we can see that
when the initial xi are given as (-0.1,-0.2,-0.3,-0.4,and
-0.5), the Broyden can locate the minimum (- π/2, - π/2,
- π/2, - π/2, and - π/2), as expected in five steps where
E ) -5. Next, we changed the initial xi to (-0.1,-0.2,-0.3,
-0.4, and 0.5) where the last dimension is close to the
maximum (the Hessian has one negative eigenvalue). By
reversing the force at this dimension only (-F5) but keeping
the right force at the other dimensions, the Broyden can
locate both the maximum in this dimension and the minima
in the other dimensions, (- π/2, - π/2, - π/2, - π/2, and
π/2). The efficiency is the same as the location of the minima,
and the Jacobian matrix from Broyden has been verified to
be positive definite.

3. Results and Discussion

To test the efficiency of our approach, we first chose the
Baker reaction system43 as the testing examples, which
contains 25 different chemical reactions as listed in Table
2. The same system has been utilized to test the modified
dimer method, according to the reference.20,21 In this work,
four different algorithms, denoted as (00), (01), (10), and
(11), were implemented to test the individual efficiency of
the rotation and translation parts. The algorithms (00): the
CG dimer method, as reported in refs 20 and 37; (01): the
same as (00) except that the translation uses our Broyden

translation algorithm; (10): the same as (00) except that the
rotation uses the constrained Broyden rotation algorithm; and
(11): our new method.

For all the reactions studied, we started from the same
guess structure (RGS), as suggested by Baker.43 The initial
mode for the dimer was set as N̂ini ) RGS - RIS, except for
reaction 10 (s-tetrazine f 2HCN + N2), where N̂ini ) RFS

- RIS was used. All calculations were performed using the
SIESTA package44 with numerical double-�-polarization
basis set45,46 at the density functional theory level, in which
the GGA-PBE exchange-correlation functional was uti-
lized.47 The rotation stops if the |∆F⊥| is lower than 0.1 eV/
Å. The translation is terminated by the condition of eq 17.
The TS searching is converged if the maximum force on
each freedom (max |F|) is below 0.1 eV/Å. All the deter-
mined TSs have been checked with the literature structure43

to ensure that the correct TS is identified. In Table 2, our
results on the total calculation steps (the number of energy
and gradient calculations) are shown. The “###” sign in the
table represents that the corresponding method either pro-
duces the wrong TS or diverges after 400 steps.

From Table 2, we found that the average number of steps
by using (00) method is 91.7 for the 21 reactions with located
correct TS, and the method fails in three reactions 10, 11,
and 15. In the (11) method, the average number of steps is
reduced to 35.3, which is about 40% of the (00) method (the
results of reactions 10, 11, and 15 are not included for
comparison between methods here after). Importantly, while
the (00) method fails in three reactions, all the desired TSs
have been located using the (11) method. By comparing the
four methods, we can see that our algorithms on both the
rotation and the translation can help to increase the efficiency.
Specifically, the modification to the rotation and the transla-
tion only can reduce the step numbers by 23 and 51%,
respectively. These will be elaborated further in the following.

3.1. Efficiency of Rotation. Table 3 compares the ef-
ficiency of the rotation between the (00) and (10) methods.
We can see that the total iteration numbers of the two
methods are nearly identical (one iteration contains all energy
and gradient calculation steps between two consecutive
rotations, including those for both rotation and translation).
However, the average energy and gradient calculation steps
in each rotation are reduced in the (10) method, where the
Broyden method is utilized for the dimer rotation. On
average, the (00) method needs 5.0 energy and gradient
calculation steps per rotation, and the (10) method needs 3.5
energy and gradient calculations per rotation, which means
that the Broyden rotation algorithm can save about 30%
computational load. Compared with the extrapolation method
proposed by Kästner and Sherwood,21 that can save about
11% computational load in rotation, the constrained Broyden
rotation shows the better performance.

One additional feature of Broyden rotation is that it tends
to find a local normal mode by minimizing the rotational
force and, thus, is more sensitive to the initial mode provided
as the input, which is most naturally determined from the
guess initial structure as N̂ini ) RGS - RIS, or from the final
state as N̂ini ) RFS - RIS in complex PES reactions. This
appears to be advantageous in Baker reactions. By utilizing

Table 1. Illustration of the Modified Broyden Algorithm in
Finding the Minimum Point (IS) and the Saddle Point (TS)
on a Simple Five Dimension PES Systema

iteration |xb| x1 x2 x3 x4 x5

IS
0 2.8591 -0.1000 -0.2000 -0.3000 -0.4000 -0.5000
1 0.7604 -1.0950 -1.1801 -1.2553 -1.3211 -1.3776
2 0.3432 -1.7772 -1.7473 -1.7174 -1.6891 -1.6635
3 0.0134 -1.5612 -1.5641 -1.5660 -1.5674 -1.5683
4 0.0041 -1.5742 -1.5727 -1.5718 -1.5714 -1.5711
5 0.0000 -1.5708 -1.5708 -1.5708 -1.5708 -1.5708

TS
0 2.8591 -0.1000 -0.2000 -0.3000 -0.4000 0.5000
1 0.7604 -1.0950 -1.1801 -1.2553 -1.3211 1.3776
2 0.3432 -1.7772 -1.7473 -1.7174 -1.6891 1.6635
3 0.0134 -1.5612 -1.5641 -1.5660 -1.5674 1.5683
4 0.0041 -1.5742 -1.5727 -1.5718 -1.5714 1.5711
5 0.0000 -1.5708 -1.5708 -1.5708 -1.5708 1.5708

a The |xb| measures the difference of the current position with
respect to the converged position.
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the constrained Broyden rotation algorithm, the (10) method,
we show that all the 25 reactions can converge to the correct
TS, while the (00) method fails in three reactions.

3.2. Efficiency of Translation. Table 4 compares the
efficiency of the translation between the (00) and (01)
methods. We see that our translation algorithm can decrease
the total iteration number greatly, where the iteration number
in (01) is only 20% of that in (00). This is largely because
the current translation algorithm carries out multiple trans-
lational moves along a better trajectory and can move much
longer in distance per iteration compared to that of the (00)
method. The higher efficiency in translation, in turn, reduces

effectively the number of rotation needed. As the rotation
steps involve heavily the energy and gradient calculations,
the reduction in the rotation number can save about 63%
computational load, as seen from Table 4. Besides, the
translation part can also save 27% computational load, which
can be attributed to the application of constrained Broyden
algorithm.

In order to see more clearly how the multiple translation
works, we have generated a three-dimensional (3D) diagram
to trace the searching trajectory, as shown in Figure 2, where
the x-axis is along IS-FS vector by setting IS at (0,0,0) and
FS at (1,0,0), the y-axis is determined by the TS at (xTS,1,0)

Table 2. The Energy and Gradient Calculation Steps from Four Different Methods in the TS Location of Baker Reactionsa

(00) (10) (01) (11)

system steps steps radio steps radio steps radio

1 HCN f HNC 71 60 85% 66 93% 32 45%
2 HCCH f CCH2 93 67 72% 52 56% 40 43%
3 H2CO f H2+CO 62 46 74% 39 63% 31 50%
4 CH3O f CH2OH 68 51 75% 37 54% 29 43%
5 ring-opening cyclopropyl 88 73 83% 41 47% 32 36%
6 bicyclo110 butane TS1 96 80 83% 36 38% 40 42%
7 bicyclo110 butane TS2 144 101 70% 56 39% 46 32%
8 �-(formyloxy) ethyl 88 67 76% 24 27% 19 22%
9 parent Diels-Alder 132 122 92% 73 55% 52 39%

10 s-tetrazine f 2HCN + N2 ### 101 - ### - 59 -
11 rotational TS in butadiene ### 119 - 51 - 29 -
12 H3CCH3 f H2CCH2 + H2 77 63 82% 41 53% 32 42%
13 H3CCH2F f H2CCH2 + HF 89 64 72% 49 55% 41 46%
14 H2CCHOH f H3CCHO 141 116 82% 104 74% 101 72%
15 HCOCl f HCl + CO ### 96 - 151 - 109 -
16 H2O + PO3

- f H2PO4 181 84 46% 45 25% 35 19%
17 Claisen rearrangement 127 92 72% 44 35% 37 29%
18 silylene insertion 70 58 83% 29 41% 26 37%
19 HNCCS f HNC + CS 47 36 77% 28 60% 25 53%
20 HCONH3

+ f NH4
+ + CO 113 80 71% 46 41% 35 31%

21 rotational TS in acrolein 67 58 87% 22 33% 17 25%
22 HCONHOH f HCOHNHO 63 46 73% 32 51% 25 40%
23 HNC + H2 f H2CNH 59 50 85% 30 51% 25 42%
24 H2CNH f HCNH2 109 86 79% 46 42% 40 37%
25 HCNH2 f HCN + H2 32 27 84% 16 50% 17 53%

average 91.7 69.4 77% 43.5 49% 35.3 40%

a The ratio is the step number with the method referred divided by that with (00) method. The average values listed do not count the
reactions 10, 11, and 15, where the (00) or (01) method fails to locate the TS.

Table 3. Comparison Between (00) and (10) Methods for TS Location of Baker Reactions (Numbered from 1 to 25, as in
Table 2)a

method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 av

iter (00) 9 11 8 9 14 18 24 12 19 ### ### 12 13 20 ### 12 16 13 7 18 13 9 8 17 5 13.0
(10) 8 12 8 9 14 17 24 12 22 21 27 12 11 19 15 13 16 13 7 14 15 8 8 17 5 12.9

av. rot (00) 6 6 6 6 4 3 4 5 5 ### ### 4 5 5 ### 13 6 3 4 5 3 5 5 4 4 5.0
(10) 6 4 4 3 3 3 2 4 4 5 2 3 4 4 4 4 4 2 3 4 2 4 4 3 3 3.5

a Listed are the average rotation steps (av. rot) per iteration and the total iteration number (iter). The average values (av) listed do not
count the reactions 10, 11, and 15, where the (00) method fails to locate TS.

Table 4. Comparison between (00) and (01) Method for TS location of Baker Reactions (Numbered from 1 to 25, as in
Table 2)a

method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 av

iter (00) 9 11 8 9 14 18 24 12 19 ### ### 12 13 20 ### 12 16 13 7 18 13 9 8 17 5 13.0
(01) 6 4 3 3 2 2 3 1 3 ### 4 3 3 6 11 3 2 1 1 2 1 2 2 3 1 2.6

trans (00) 18 22 16 16 28 36 48 24 38 ### ### 24 26 40 ### 24 32 26 14 36 26 18 16 34 10 26.0
(01) 18 18 13 18 22 18 25 12 31 ### 31 17 21 62 43 15 35 13 12 20 8 12 10 14 6 19.1

rot (00) 55 69 46 53 60 62 96 64 88 ### ### 53 67 103 ### 155 95 44 27 85 37 47 43 75 22 65.7
(01) 48 34 26 19 19 18 31 12 42 ### 20 24 28 42 108 30 9 16 16 26 14 20 20 32 10 24.4

a Listed are the total iteration number (iter) and the total number of energy and gradient calculations in translation (trans) and in rotation
(rot). The average values (av) listed do not count the reactions 10, 11, and 15, where the (00) or (01) method fails to locate the TS.
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where xTS is the projection of TS on the IS-FS vector, and
the z-axis is the direction perpendicular to the IS-TS-FS
plane. A large z value of a structure would imply that the
structure is far away from the reaction plane (e.g., high in
energy) and, thus, is not desirable in TS searching.

Using Claisen rearrangement (CH2CHCH2CH2CHO f
CH2CHOCH2CHCH2) (Figure 2a and b) reaction as the
example, we can see two distinct trajectories by using (00)
and (11), as shown by the blue and the red curve, respec-
tively. In the 3D figure, the x-axis is along IS-FS vector by
setting IS at (0,0,0) and FS at (1,0,0); the y-axis is determined
by the TS at (xTS,1,0), where xTS is the projection of TS on
the IS-FS vector; and the z-axis is the direction perpen-
dicular to the IS-TS-FS plane. The unit vector X̂ and Ŷand
the z value of an image R(zR) are defined in eqs 18-20.

Peters et al.48 and Branduardi et al.49 have suggested
methods to measure the distance of a structural image along
the reaction coordinate and the displacement from the MEP.
These methods need the information of the whole MEP,
which is, however, not known practically from the dimer
approach. The 3D plot in Figure 2a is, thus, utilized for the
comparison of the length of different searching trajectories.
Figure 2a shows that there is a turning point in the red curve
where the translation of the first iteration meets the termina-
tion criterion and where the rotation in the second iteration
starts. It appears that the first rotation guides the dimer toward
the reaction plane, and the second rotation leads to the exact

TS. The red trajectory is shorter than the blue one. The length
of the trajectory is 0.99 and 1.40 Å for the red and blue
curves, respectively. The red trajectory is close to the straight
line distance between A and B (|RA - RB|), 0.70 Å. With
only two rotations and 37 steps, the (11) method identifies
the TS, whereas there are 16 rotations and 127 steps with
the (00) method, as compared clearly in Figure 2b, where
the maximum force on each freedom in the system is traced
during the TS searching. It shows that an efficient transla-
tional move can indeed be realized with the approximate
mode. The termination criterion for the dimer translation is
the key to achieve high efficiency for TS location.

Finally, we would like to address the effect of λ in Ftran

on the TS-searching trajectory. Using the reaction HCOCl
f HCl + CO (Figure 3) as the example, we have plotted
three trajectories: the blue curve with (00) method, the red
curve with (11) method, and the green curve with (11)
method but with λ ) 1. Only the red curve finds the TS. In
the blue and green curves (λ being 1, i.e., by acting -F|

Figure 2. (a): 3D trajectory of TS searching in Claisen rearrangement reaction. The x-axis is along IS-FS vector by setting IS
at (0,0,0) and FS at (1,0,0); the y-axis is determined by the TS at (xTS,1,0) where xTS is the projection of TS on the IS-FS vector;
and the z-axis is the direction perpendicular to the IS-TS-FS plane. The meaning of the labels are as follows: A is the initial
point (guess structure), and B is the end point (located TS). (b): The plot showing the maximum force on each freedom (max |F|)
in the system during the TS searching.

X̂ ) RFS - RIS

|RFS - RIS|
(18)

Ŷ ) (RTS - RIS) - [(RTS - RIS)•X̂]·X̂
|(RTS - RIS) - [(RTS - RIS)•X̂]·X̂|

(19)

zR ) |(R - RIS) - [(R - RIS)•X̂]·X̂ - [(R - RIS)•Ŷ]·Ŷ|
(20)

Figure 3. 3D trajectory of TS searching in HCOCl f HCl +
CO reaction. The meaning of axis and labels are the same
as those in Figure 2a.
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directly), the structure goes quickly away from the reaction
plane due to the too large stretching against the force at the
parallel dimer N̂ direction. The trajectory can not be directed
back toward the reaction plane because the rotation of the
dimer later is localized to the wrong mode. Following such
a wrong mode, the TS searching will diverge or lead to
undesired TS. Therefore, it can be concluded that with an
optimized λ factor to F|, the structure during optimization
may leave the unfavorable high-energy region rapidly, and
the algorithm is, thus, more stable and efficient.

3.3. Application in a Large Heterogeneous Catalytic
System. For its no need of the Hessian, the dimer method is
well suited for complex reactions occurring in a metallic
system, which is not ideal to treat with Gaussian basis sets.
Here, we further illustrate our methods in finding a TS
involved in the CO oxidation on a Au/γ-Al2O3 model
catalyst, where a two-layer Au strip is deposited on the (100)
surface of γ-Al2O3. The CO oxidation on Au supported on
oxides has been studied recently,50,51 where a bimolecular
pathway CO + O2fOCOO occurring at the Au and the
oxide interface was identified. The OCOO can further
decompose into CO2 and adsorbed O. For the OCOO
intermediate at the Au/oxide interface, it has two isomeric
structures which are connected by the rotation of OO that is
beneath CO. A TS of the rotation can be identified, as shown
in the Figure 4, together with the IS and the FS. In the
system, 90 degrees of freedom are relaxed, including those
of the Au and the top layer γ-Al2O3 atoms. It should be
mentioned that the substrate during the reaction is not rigid
with a large displacement from IS to TS, as indicated by the
coordinate of the Au atom labeled in Figure 4. The rotation
TS is just the kind of TS that is difficult to locate using the
CBM method by fixing a certain bond distance.

The above four methods have been applied to locate the
TS and the required energy and gradient calculations steps
are 511, 353, 197, and 95 for the (00), (10), (01) and (11)
methods, respectively. We see that, in such a large system,
the (11) method can also achieve the highest performance,
where about 80% CPU time is saved compared to that of
the original (00) method. The result demonstrates that the
dimer rotation and the translation by utilizing the Broyden
approach scales well to the large system with many degrees
of freedom. For such a large system, the computation of exact
Hessian becomes extremely demanding if a numerical
algorithm via finite difference method is utilized.

It is noticed that even with the current improvement on
efficiency, the average step number of TS location in the
Baker system, in this work, is still two times more than that

reported in the original Baker paper, where the P-RFO
method (Powell scheme for Hessian update based on an
initial analytic Hessian) is utilized. Nevertheless, we would
like to emphasize that the dimer method could be the better
choice especially when the system is large and when the
second derivatives are not available cheaply. This has been
addressed previously, as demonstrated by Heyden et al.20

and Kästner et al.,21 the original dimer method is already
preferable to P-RFO when the Hessian is not cheaply
available. We, therefore, believe that the method reported
here could be the best choice for locating TSs of large
complex reaction systems. Finally, it should be mentioned
that compared with the chain-of-states methods, the surface-
walking methods, including the dimer method, generally have
the so-called “dead-end valley” problem to miss TS off. The
dimer method, therefore, also requires a reasonably guessed
initial structure in order to locate successfully the desired
TS in complex reaction systems. To overcome the problem,
Peters et al. has developed a method, which can “teach”
saddle search algorithms to locate multiple reaction path-
ways.48

4. Conclusion

This work combines the constrained Broyden minimization
method with the dimer method for locating TS without the
need of Hessian. New algorithms are designed with the aim
to maximally cut the rotation steps and to increase the length
of translational move. Our method was implemented and
tested in the Baker reaction system and also in a large
heterogeneous catalytic system, which shows the enhanced
stability and the higher efficiency. We demonstrate that the
atomic force parallel to the dimer direction can be damped
to increase the stability of the TS searching and to shorten
the searching trajectory.
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Abstract: The catalytic mechanism of Burkholderia cepacia lipase (BCL), which catalyzes the
enantioselective hydrolysis of racemic esters of primary alcohols, was investigated by modeling
the first stage of the enzymatic hydrolysis of (S/R)-2-methyl-3-phenyl-propanol (MPP) acetate,
using molecular dynamics simulations in a mixed quantum mechanical/molecular mechanical
(QM/MM) framework. The free energy surface of the enzyme acylation reaction was computed
for both enantiomers. The simulations predict the existence of different reaction free energies
that favor the (S)-enantiomer over the (R)-enantiomer by 5 kcal/mol. Analysis of the structural
and dynamical aspects of the simulated reactions reveals an unforeseen reorganization of the
catalytic triad in the (R)-MPP ester, driven by steric hindrance and involving the residues Asp264
and Glu289. Exploiting the different catalytic role of the above-mentioned acidic residues, we
suggest a way to regulate the enantioselectivity of BCL by means of a few judicious point
mutations that prevent the formation of the second catalytic triad used in the reaction with the
(R)-enantiomer.

1. Introduction

Serine hydrolases are one of the largest and most diverse
families of enzymes in higher eukaryotes. They comprise
approximately 1% of the genes in the human genome, and
because of their extensive usage in organic synthesis, they
are the most investigated enzymes in pharmaceutical research.

Well-known members of this enzyme family include serine
proteases such as R-chymotrypsin,1,2 one of the first proteases
to be revealed using X-ray crystallography,3 esterases such
as the acetylcholinesterase enzyme4(AChE), which plays an
important role in Alzheimer’s disease,5,6 and last but not
least, lipases,7 which are widely used for biotechnological
applications.8–12

Although the natural function of lipases is to catalyze the
hydrolysis of triacylglycerols, they also show high catalytic
activity and unusual enantioselectivity toward a wide range
of unnatural substrates.13,14 These enzymes are widely used
to separate racemic mixtures of chiral esters through hy-
drolysis or transesterification reactions, so that enantiomeric
discrimination by lipases represents one of the most efficient
biocatalytic strategies for producing enantiomerically pure
pharmaceutical building blocks.15–18

Lipases share a characteristic catalytic mechanism with
the remainder of serine hydrolases, involving the so-called
catalytic triad consisting of the amino acids serine, histidine,
and aspartic (or glutamic) acid. In addition to the catalytic
triad, another important component of the active center of
lipases is the oxyanion hole, a structural feature composed
of hydrogen bond donors in the vicinity of the catalytic
serine.1,7,19,20

Lipases work through a general mechanism peculiar to
serine proteases,1,7,20 known as the bi-bi ping-pong mecha-
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nism20 and outlined by two consecutive stages: an enzyme
acylation and a subsequent deacylation. The steps of acyla-
tion are summarized in Figure 1 for the case of Burkholderia
cepacia lipase (BCL). A nucleophilic attack by the catalytic
serine (Ser87) on the carbonyl carbon of an ester molecule
leads to the formation of an acyl-enzyme adduct. Concur-
rently, the alcohol moiety is released via a negatively charged
tetrahedral intermediate (THI)1,7 involving the substrate.

Two transition states mark the two steps of the acylation
reaction (see Figure 1): TS1, regulated by the nucleophilic
attack by Ser87 and by the ability of a nitrogen atom (Nε)
of the catalytic histidine (His286) to accept the proton from
the serine. TS2, in which the proton is transferred from
His286 to the substrate, with the formation of the acyl-
enzyme.

Although the catalytic roles of serine and histidine residues
are unanimously accepted, a wide variety of mechanisms
have been proposed to explain the role of the acidic catalytic
residues (Asp264 in the case of BCL) such as the single
proton-transfer mechanism,21–23 also supported by theoretical
studies,24,25 the double proton-transfer, also known as the
“charge-relay” mechanism,26,27 and the “low-barrier hydro-
gen bond”28 and “short ionic hydrogen bond” mechanisms.29

A fundamental role in the formation and stabilization of
THI is played by the oxyanion hole (formed by Gln88 and
Leu17 in the case of BCL), which stabilizes the negatively
charged species through hydrogen bonds. It is interesting to
note that, while the THI often cannot be detected with the
usual substrates,1,30 recent studies have unambiguously

shown that it is a shallow local minimum, not exceeding 3
kcal/mol in most cases.31,32

The deacylation stage of the catalytic reaction, not
considered in this study, proceeds via the nucleophilic
addition of a lytic species (water or alcohol) to the carbonyl
carbon of the acyl-enzyme. A subsequent proton transfer
from the lytic species to the histidine residue33 leads to the
formation of the final product and restores the catalytic
activity of the lipase.

Although all lipases exhibit enantioselectivity toward esters
of secondary alcohols, Burkholderia cepacia lipase (BCL),
formerly known as Pseudomonas cepacia lipase (PCL), is
also able to react enantioselectively with several esters of
primary alcohols.14,34,35 In particular, BCL catalyzes the
enantioselective hydrolysis of some esters of 2-methyl-3-
phenyl-propanol (MPP), which is an important precursor in
pharmaceutical synthesis (see Figure 2 and Table 1).17,18 The
experimental data shown in Table 1 underline that in these
reactions BCL favors the (S)-enantiomers with varying
enantioselectivity (E) values.35–38

The experimental data reported in Table 1 reveal that BCL
enantioselectivity toward MPP esters is mainly determined
by the chirality of the substrates’ alcohol moiety: (S)-
enantiomers are hydrolyzed faster than (R)-enantiomers. The
acyl chain length comes into play as a modulating parameter,
which strongly influences the measured kinetic values.

In the case of acetate, for instance, the enantioselectivity
value is unambiguously due to the difference between the
KM constants for the (S)- and (R)-enantiomers. This suggests
small differences in binding strength are at the origin of the
pristine enzyme enantioselectivity for short acyl chain
lenghts.

For the heptanoate case, the similar KM values entail that
there are no major differences in the binding strength,
therefore pinpointing the enantioselectivity of BCL for this
substrate to the large difference in the kcat values.

In the case of butanoate, finally, there is a substantial lack
of kinetic data. However, the E value, similar in magnitude

Figure 1. Proposed scheme for the acylation mechanism of
Burkholderia cepacia lipase by acetic esters of primary
alcohols. Only the main elements of the catalytic triad (Ser87,
His286, Asp264), the oxyanion hole (NH of main chain Leu17
and Gln88), and the (R/S)-2-methyl-3-phenylpropyl (MPP)
acetate ester are shown.

Figure 2. Hydrolysis reaction of (S)-MPP acetate catalyzed
by Burkholderia cepacia lipase.

Table 1. Enantioselectivity (E) and Available Kinetic
Constants for BCL-Catalyzed Hydrolysis of (R)- and
(S)-MPP Esters

substrate Ea kcat (min -1) KM (mM)

(S)-MPP acetate37 16 ( n.d 4.7 ( 2.1 28 ( 1
(R)-MPP acetate 3.2 ( 0.4 300 ( 140
(S)-MPP butanoate35 130 ( 30
(R)-MPP butanoate
(S)-MPP heptanoate38 g190 ( 30 0.4 ( 0.1 4 ( 1
(R)-MPP heptanoate 0.004 ( 0.001 3 ( 1

a Enantioselectivity E ) (kcat/KM)S/(kcat/KM)R.
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to the one of the heptanoate ester, endorses the conjecture
that the butanoate kinetic data might show a similar trend to
that of the heptanoate data.

Because of the industrial relevance of MPP, numerous
experimental and theoretical studies have been performed
to explain and improve the enantioselectivity of BCL toward
racemic esters of this substrate.34–44

In particular, Mezzetti et al.38 have recently resolved the
X-ray structures of two phosphonate transition-state analogs
of MPP heptanoate (hexylphosphonic acid (R/S)-2-methyl-
3-phenylpropyl ester) bound to BCL, which contain the (R)-
and (S)-enantiomers of the alcohol. In the two structures,
the analogs bound to BCL in a similar manner, with the
phenyl group of the alcohol pointing toward the solvent. The
enantiomers adopt a so-called “mirror-image orientation” in
which the methyl substituent (-CH3), the large substituent
(Phe-CH2-) at the alcohol stereocenter, and the oxygen
atom of the alcohol moiety (-O1-) are accommodated in
“a similar position” in their respective complexes. As a
consequence of this accommodation, due to stereochemistry
requirements, the only hydrogen at the stereocenter has to
“point in opposite directions”.38 In the discussion of their
data,38 Mezzetti et al. first remark that the relative orientations
of the enantiomers in the X-ray structures differ significantly
from all the predictions by previous modeling studies,
focused on the simulation of enantiomer recognition.37,39,41,43

Afterward, they try to rationalize what they call “an incon-
sistence”: the existence of almost superposable bound
phosphonate structures, mimicking the (R)- and (S)-
tetrahedral intermediates having “a similar KM value [...] but
100-fold different kcat values” in favor of the (S)-enantiomer.
Mezzetti et al. hypothesize, that BCL enantioselectivity,
instead of stemming from a discrimination in the transition
state, might rely on the possibility of the slow (R)-enantiomer
binding to the enzyme in both a productiVe and a nonpro-
ductiVe way. Only productive binding would lead to catalysis.
The fast (S)-enantiomer, on the other hand, is supposed to
bind only in a productive way. However, while the authors
propose this explanation for the enantioselectivity of BCL,
they also notice that other possibilities, such as the lack of
key interactions of the (R)-enantiomer within the active site
of the enzyme, cannot be excluded a priori as possible
explanations for the different observed enantioselectivity.
Mezzetti et al. conclude their discussion stating that “given
the subtlety of the interactions, it may be difficult to rationally
predict substrate modifications or lipase mutations that would
increase the enantioselectivity”.

According to the insights from all the above-mentioned
studies, the detailed mechanism and dynamics of the enan-
tioselective biocatalysis by BCL is still an open question.
Assessing the relative importance of chirality and acyl chain
length in determining the experimental differences shown
in Table 1 would certainly be an outstanding goal. Nonethe-
less, the complexity of the catalytic data is such that only a
systematic study may result in a clear rationalization of kcat

and KM values. Recently, it has been underlined that attempts
to estimate small KM differences with state of the art
molecular dynamics based approaches might be unsuccess-
ful,45 consistent with the previous molecular modeling studies

that failed in determining the relative orientations of enan-
tiomers into the BCL active site.37,39,41,43 Instead, molecular
dynamics simulations have proven to be successful in many
cases of kcat prediction/rationalization.45

Driven by these motivations, it seemed critical to us facing
the investigation of the catalytic mechanism of BCL toward
primary alcohols, keeping the effect of the acyl chain length
on enantioselectivity out. Accordingly, we simulated the
acylation reaction of BCL on both enantiomers of MPP
acetate by performing molecular dynamics (MD) simulations
using a mixed quantum mechanical/molecular mechanical
(QM/MM) approach. In particular, the free energy surfaces
of the acylation reaction were reconstructed for both enan-
tiomers using the metadynamics method,46,47 allowing
simultaneous analysis of the dynamical and structural aspects
of the catalytic process during the 90 ps of MD performed
for each enantiomer.

In this study, we observed that the reaction for (S)-MPP
acetate proceeds in the expected way (see Figure 1), whereas
the (R)-MPP substrate undergoes the reaction through a
peculiar rearrangement of the active site: due to steric
hindrance, the (R)-enantiomer induces a conformational
change in the catalytic site, reorganizing a new triad (Ser87,
His286, Glu289) instead of the native one (Ser87, His286,
Asp264). As a consequence of the different reaction mech-
anisms, the two enantiomers show similar activation free
energies (∆GS

† ) 20.5 ( 2 kcal/mol for (S)-MPP and ∆GR
†

) 17.3 ( 2 kcal/mol for (R)-MPP) and consequently similar
kcat values. The MPP acetate enantiomers are therefore
discriminated only at the level of the binding strength, since
both enantiomers can then find similar energetically favorable
reaction pathways.

On the contrary, a comparative analysis of our results with
the experimental X-ray investigations on transition state
analogs of heptanoate suggests that both enantiomers of that
substrate have to follow an identical reaction pathway. The
bulky acyl chain of heptanoate is expected to prevent the
Val266 movement necessary for the His286 flip rotation.
Without histidine reorganization, the enzyme is forced to
work in the native form, destabilizing the acylation reaction
for the (R)-enantiomer. This destabilization, due to steric
hindrance, might be the source of the large difference
between the kinetic constants kcat for (R)- and (S)-MPP
heptanoate.

2. Methods and Computational Details

2.1. System Setup. System setup and classical MD were
performed with the NAMD (v.2.6)48 and VMD (v.1.8.6)49

software packages. The standard AMBER50 forcefield was
used for the protein, ligands, and counterions. The water was
modeled using the TIP3P51 forcefield. Atom types as well
as bonded and nonbonded parameters were assigned to atoms
by analogy or through interpolation from those already
present in the forcefield. To calculate partial atomic charges,
an “elongate” conformation of (S)-MPP acetate was opti-
mized using the ab initio quantum chemistry program
GAMESS52 at the HF/6-31G* level of theory. Consequently,
a set of atom-centered charges were obtained by applying
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the ESP methodology as implemented in the ELPOT and
PDC modules of GAMESS. Charges on equivalent atoms
were equalized by averaging. The same charge values were
used for the (R)-MPP acetate.

The initial substrate conformations were derived from the
phosphonate inhibitor (hexylphosphonic acid (R/S)-2-methyl-
3-phenylpropyl) of the BCL X-ray structure deposited in the
Protein Data Bank (PDB) with accession code 1YS1 and
1YS2 for the (R)-MPP and the (S)-MPP enantiomers,
respectively. The substrates were then superimposed on the
isomorphous crystal structure of the activated form of the
BCL53 (PDB code 3LIP). The hexyl chain of the phosphonate
esters was replaced by a methyl group, and the phosphorus
atom was replaced by a carbon atom. Hydrogen atoms were
added to the system using the VMD tools. Histidines were
uncharged and protonated according the most plausible
hydrogen-bonding pattern in the structure. Aspartic and
glutamic acids were negatively charged, and arginines and
lysines were positively charged. A geometry relaxation of
the substrate molecules and catalytic residues with the rest
of protein heavy atoms fixed to the crystallographic positions
and without water was performed with 5000 steps of
conjugate gradient geometry optimization through a NAMD
minimization tool.

Each complex was then surrounded by a periodic box of
TIP3P51 water molecules, and 4 Na+ ions were added using
the VMD tools,49 to guarantee neutrality. The same spatial
arrangement of ions was adopted for both systems, placing
the ions at a distance greater than 25 Å from the catalytic
serine to minimize the charge effect. The total number of
water molecules was 7094 in an initial rectangular box with
dimensions of 63 × 70 × 62 Å.

The simulations were conducted using periodic boundary
conditions and the long-range part of the electrostatics was
treated with the Particle-Mesh-Ewald (PME) method,54 with
a grid size of 64 × 70 × 62. The cutoff distance for
nonbonded interactions was set to 11 Å, and a switch
function was applied to smooth interactions between 10 and
11 Å. The scaling factor used in NAMD for 1-4 intramo-
lecular Coulomb interactions was set to 0.8333, which is the
inverse of the standard scaling factor value used in the input
AMBER file (SCEE ) 1.2). The r-RESPA multiple time step
method55 was employed with 1 fs for bonded, 2 fs for the
short-range part of the nonbonded, and 4 fs for the long-
range part of the electrostatic forces.48

All simulations were conducted in the NPT ensemble. The
temperature was set to 300 K and controlled via Langevin
thermostat.56 The pressure was set to 1 atm and controlled
via isotropic Langevin piston manostat.57

The systems were submitted to 600 ps of MD simulation.
During the first 200 ps, the proteins’ heavy atoms and Na+

ions were harmonically restrained with a force constant of
10 kcal/(mol Å2). Subsequently, 200 ps of dynamics were
performed with the force constant set to 5 kcal/(mol Å2),
and finally 200 ps with the force constant set to 1 kcal/(mol
Å2). This allowed the equilibration of the solvent and the
proper readjustment of the cell volume without disruption
of the ligand conformation, or of the lipase structure that
preserved the active open form.7 The final structures were

then used as starting point for QM/MM simulations. To
ensure the validity of the structures obtained, a subsequent
run was continued for a further 100 ps without restraints
and with velocities redistributed according to a Boltzmann
distribution. The mean values of the protein heavy atoms
RMSD calculated with respect to the initial conformation
were 0.87 and 0.92 Å for the (R)-MPP and (S)-MPP systems,
respectively (RMSD time evolutions are available in the
Supporting Information).

2.2. QM/MM System. In order to obtain an accurate
description of the chemical processes involved in the reaction
mechanism while reducing the computational cost inherent
in ab initio calculations, a QM/MM scheme was chosen to
model the reactive site.

The QM/MM driver58,59 is based on the QM program
QUICKSTEP60,61 and the MM driver FIST, which are both
part of the freely available CP2K package.62 The quantum
part is treated at the density functional theory (DFT) level.
This region consists of the substrate, with the exception of
the large substituent (Phe-CH2-), the Ser87 side chain with
inclusion of the CR backbone atom (at a two atoms distance
from the attacking oxygen), and the imidazole ring of His286,
adding up to a total number of 35 atoms. This set contains all
the atoms directly involved in the reaction or whose stabilization
of the reaction intermediates cannot be described uniquely with
electrostatic effects. Therefore, the only atoms which have
been excluded from the quantum region are the hydrogens
of the oxyanion hole and side chain of Asp264 and Glu289
near the His286. The exclusion of these atoms from the
quantum region is not crucial due to the evidence24,25,33,63

that they have mainly an electrostatic stabilization role.
The boundary between the QM and the MM regions

(Cγ-C� of His286, CR-CO and CR-NH of Ser87, and
C2-C3 of MPP) were saturated by link hydrogen atoms (see
Figure 3). In agreement with the IMOMM link scheme,64

the scaling factor projecting the forces on the capping
hydrogen was refined to maintain the QM/MM bond
distances at the same values of the forcefield.

The remaining part of the system, including the water
molecules and counterions, has been modeled at the classical
level with the AMBER forcefield, explicitly taking into
account the steric and electrostatic effects of the substrate,
the enzyme, and the solvent.

Figure 3. Main residues of the catalytic site and (S)-MPP
acetate substrate. The atoms comprising the QM region that
were used in this study are shown in ball-and-stick represen-
tation. The link hydrogen atoms are highlighted in green; the
MM region, in gray, is shown in tube representation.
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A triple-� valence basis set with two sets of polarization
functions, TZV2P,65 and an auxiliary plane-wave basis set
with a density cutoff of 280 Ry were used to describe the
wave function and the electronic density. Dual space
pseudopotentials66,67 were used for describing core electrons
and nuclei. We used the gradient-corrected Becke exchange68

and the Lee, Parr, and Yang correlation functional (BLYP).69

Energies were tested for convergence with respect to the
wave function gradient (5 × 10-7 Hartree) and cell size,
which was required to be no smaller than 16.0 Å (cubic box)
to achieve a correct decoupling between the periodic im-
ages.70

The QM regions were first minimized by keeping the entire
MM subsystem frozen. Subsequently, a complete minimiza-
tion was performed over the entire system, employing a
conjugate gradient method as implemented in CP2K. Root-
mean-square (RMS) values of 0.005 hartree ·Bohr-1 for force
and 0.005 Bohr for positions were selected as convergence
criteria. The systems were then subject to a brief equilibration
by means of a QM/MM MD simulation in the NVT ensemble
for 2.5 ps. The temperature was set to 300 K, and each degree
of freedom was controlled via a Nosé-Hoover thermostat71,72

with a time constant of 50 fs. A single integration time step
of 0.50 fs was used.

2.3. Metadynamics. The choice of collective variables
(CV) is crucial in metadynamics46,47 for its successful
application. Looking at Figure 1, the fundamental geometrical
variables describing the acylation reaction can be identified
as the distances between the atoms involved in the nucleo-
philic attack, the subsequent release of the alcohol’s moiety,
and the hydrogen transfer.

During the nucleophilic attack, the rC-O variable, defined
as the distance between the carbonyl carbon atom of the ester
group and the serine oxygen atom, gradually decreases until
the formation of the acyl-enzyme complex. In constrast, the
rC-O1 variable, defined as the distance between the carbonyl
carbon atom of the ester and the alcohol oxygen atom,
gradually increases during the nucleophilic attack and the
subsequent release of the alcohol moiety. The variable rH-Nε

,
defined as the distance between the serine hydrogen and the
histidine nitrogen, traces the proton transfer that occurs
during the reaction.

To reduce the complexity while maintaining an accurate
description of the system, 2 CVs were chosen from the three
variables mentioned and defined as CVa(r) ) rH-Nε

and
CVb(r) ) (rC-O1 - rC-O), the difference between the bond
distances rC-O1 and rC-O, spanning a two-dimensional
subspace of the free energy surface reaction. The metady-
namics runs were performed using Gaussian-shaped potential
hills with a height of 3.0 × 10-3 Hartree and a width of 0.1
Bohr.

The hills were spawned at intervals of 20 fs of QM/MM
MD. To restrict the surface of exploration, an upper limit in
the CVa(r) was imposed with activation of a quadratic wall
positioned at 2.20 Å, with a quadratic potential constant of
30.0 kcal/(mol Å2), whereas CVb(r) was delimited by two
quadratic walls positioned at -1.5 and 1.5 Å, with a quadratic
potential constant of 20.0 kcal/(mol Å2). QM/MM metady-
namics were conducted in the NVT ensemble. The temper-

ature was set to 300 K, and each degree of freedom was
controlled via a Nosé-Hoover thermostat71,72 with a time
constant of 50 fs. Temperature stability was monitored along
the metadynamics runs (see the Supporting Information). A
single integration time step of 0.5 fs was used. The runs were
protracted for about 90 ps for both systems until they showed
a free diffusivity along the CVs. These convergence criteria
were chosen in agreement with the guidelines published in
a recent paper directed to assess the accuracy of metady-
namics.73 Trajectories were saved every 20 steps (10 fs time
interval) of metadynamics for subsequent analysis. The long
QM/MM MD simulation times guaranteed an extensive
sampling of the configurational space, important for provid-
ing meaningful determination of the energetics for enzymatic
reactions.74

3. Results

To elucidate catalytic mechanism of BCL at the molecular
level, we reconstructed the free energy surfaces (FESs) for
the enzyme acylation reaction by MPP acetate enantiomers
according to two defined CVs, CVa(r) ) rH-Nε

and CVb(r)
) (rC-O1 - rC-O), using metadynamics and a QM/MM
computational framework.

The results of our calculations are given in Figures 4 and
5 for (S)-MPP acetate and (R)-MPP acetate, respectively.
The two FESs show similar contours, and in both cases, two
broad minima can be recognized corresponding to the
enzyme-substrate complex (ES) and to the enzyme-product
complex (EP). The ES region spans from 0.75 to 2.5 Å for
CVa(r) and negative values for CVb(r). The EP region
corresponds to values from 0.75 to 2.5 Å for CVa(r) and
positive values for CVb(r).

In Figure 6, the time evolution of CVb(r) is displayed
together with the times at which the acylation reaction
and the reverse reaction have occurred. The observation
of the “retro” reaction restoring the reagent species highlights
the early achievement of free diffusivity conditions along
the CVs. According to the description of the reaction profile,

Figure 4. Acylation reaction free energy surface of the (S)-
MPP system reconstructed using metadynamics as a
function of two CVs, specifically, CVa(r) ) rH-Nε

and CVb(r)
) (rC-O1 - rC-O). Energy is in kcal/mol; the CV values are
expressed in Å.
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it can be observed that the reaction occurs after 32 ps in the
case of the (S)-enantiomer and after 39 ps in the case of the
(R)-enantiomer, that is, when CVb(r) changes from negative
to positive values.

Both acylation reactions are exothermic, and the total free
energy changes, extrapolated from the values reported in
Figures 4 and 5, are about ∆G ) -8 ( 2 kcal/mol for (S)-
MPP and ∆G ) -3 ( 2 kcal/mol for (R)-MPP. As proposed
in Figure 1, both reactions proceed from the ES complex to
the TS1 species through nucleophilic attack and proton
transfer. The TS1 structures for both enantiomers can be
localized on the FES near a value of 1.3 Å for CVa(r) and
-0.5 to 0.0 Å for CVb(r).

In the case of (S)-MPP acetate, the acylation reaction
proceeds from TS1 to the proposed THI: in Figure 4, near a
value of about 0 Å for CVb(r) and about 1.1 Å for CVa(r),

it is possible to identify a shallow basin which reflects the
presence of a transient species, possibly to be identified as
the THI. The resolution of the metadynamics run, however,
proportional to the height of the Gaussian functions (3.0 ×
10-3 Hartree), is of about the same magnitude as the observed
stabilization energy for the supposed THI local minimum.
Due to this remark and since detailed inspection of trajec-
tories did not succeed in identifying a proper geometrical
characterization of the supposed THI, one cannot discard the
possibility that such a minimum is only an aberration due to
metadynamics. Finally, after the shallow basin, the reaction
goes toward the presumed TS2, with the consecutive release
of the (S)-alcohol.

In the case of (R)-MPP, the FES region corresponding to
TS1, THI, and TS2 is extremely flat, and the tetrahedral
intermediate is not as readily identifiable (see Figure 5) as
in the (S)-MPP case. In the EP basin, the reaction proceeds
toward the release of the alcohol moiety in a similar way as
it does with (S)-MPP.

Although Figures 4 and 5 display some differences in the
contours of the FESs, notably in the EP basin, both surfaces
exhibit extremely similar topological features. A quantitative
analysis reveals that the free energy barrier in going from
the ES basin to the first transition state (TS1) is ∆GS

† ) 20.5
( 2 kcal/mol for (S)-MPP and ∆GR

† ) 17.3 ( 2 kcal/mol
for (R)-MPP. The reverse reaction (from the EP basin to
the transition state TS2) occurs with a free energy barrier of
about 29 ( 2 and 21 ( 2 kcal/mol for (S)-MPP and (R)-
MPP, respectively. As a whole, the difference in the total
free energy change for the MPP acetate ester is ∆∆GS-R )
-5 ( 2 kcal/mol in favor of the release of the (S)-MPP
alcohol moiety.

The large magnitude of the barriers involved in the forward
and backward reaction paths addresses both enantioselective
hydrolyses of the acetate esters as thermodynamically
controlled reactions. In fact, at least for the (R)-enantiomer,
the barriers of both forward and backward reactions are
comparable, within computational errors. This casts serious
doubts on the possibility to rationalize quantitatively the data
reported in Table 1 simply applying the conventional
Michaelis-Menten mechanism, which correlates the kinetic
constant kcat to the forward reaction only and assumes the
acylation step to be irreversible.75 Therefore, the atomistic
aspects involved in the acylation reaction were analyzed to
properly understand the significance of kinetic and calculated
thermodynamic data.

To investigate the reaction mechanism, some geo-
metrical variables describing the motion of the catalytic
triad along the metadynamics trajectory were monitored.
In particular, the dihedral angles �1 (along the CR-C� bond)
and �2 (along the C�-Cγ bond) describe the dynamic
behavior of the imidazole ring of His286 during the reaction.
Their time evolution is reported in Figures 7 and 8,
respectively.

In the case of the (S)-MPP acetate, the time evolution of
�1 values shows a step at about 30 ps corresponding to a
main movement (see Figure 7). This can be described as a
sort of “pivoting” motion of the His286 imidazole ring, which
drives the hydrogen proton transfer from the Ser87 residue

Figure 5. Acylation reaction free energy surface of the (R)-
MPP system reconstructed using metadynamics as a
function of two CVs, specifically, CVa(r) ) rH-Nε and CVb(r)
) (rC-O1 - rC-O). Energy is in kcal/mol; the CV values are
expressed in Å.

Figure 6. Time evolution of CVb(r) during the metadynamics
run. The trend of the CVb(r) for (R)-MPP is shown in red,
whereas the trend of the CVb(r) for (S)-MPP is given in black.
Vertical lines give the time at which the reaction takes place.
The labels T1S and T1R refer to the acylation reaction for the
(S)- and (R)-enantiomers, respectively. T2S and T2R refer to
the reverse reaction.
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to the oxygen atom of the alcohol moiety. As in contrast to
the dihedral angle �1, the time evolution of the dihedral angle
�2, displayed in Figure 8, reveals only fluctuations of the
imidazole ring plane.

Figure 9 displays the superposition of representative
snapshots of the metadynamics trajectory of (S)-MPP acetate.
The structures identify a progression from an initial to a final
reaction state passing through an “intermediate” species. As
shown in Figure 9, the -CH2- group of the large substituent
of the (S)-MPP enantiomer points toward Leu17. This avoids
any steric hindrance between His286 and the alcohol moiety,
allowing the pivoting of His286 and the reaction to occur
smoothly.

In the case of the (R)-MPP acetate, the time evolution of
the �1 values shows a similar trend with respect to (S)-MPP,
while a peculiar rotation of about 30-40° of the �2 dihedral
angle is observed (red in Figure 8), which occurs at about
30 ps, that is, 10 ps before the reaction takes place. The
motion corresponds to a rotation or “flip” of the imidazole

ring. In Figure 10, the superposition of two representative
structures extracted from metadynamics runs, sampling the
catalytic environment before and after the histidine flip, is
shown. From the two snapshots of Figure 10, we can
reconstruct the His286 rearrangement path, which is induced
by the mechanical effect of a clash between the (R)-alcohol
moiety and the imidazole ring. Interesting enough, it is
possible to observe that, after the flip has occurred, the
alcohol moiety can get closer to the catalytic triad, with a

Figure 7. Time evolution of the �1 dihedral angle along the
CR-C� bond of His286 during the metadynamics run. Red
shows the course of �1 for (R)-MPP, black that of �1 for (S)-
MPP. Vertical lines indicate the time at which the reaction
takes place, as described in the caption of Figure 6.

Figure 8. Time evolution of the �2 dihedral angle along the
C�-Cγ bond of His286 during the metadynamics run. Red
depicts the course of �2 for (R)-MPP, black that of �2 for (S)-
MPP. Vertical lines indicate the time at which the reaction
takes place, as described in the caption of Figure 6.

Figure 9. Superposition of representative snapshots of the
metadynamics trajectory showing the evolution of the positions
of the catalytic triad during the acylation reaction for (S)-MPP
ester. The color code (yellow f orange f red) corresponds
to structures at 31.57, 31.72, and 54.43 ps of simulation,
respectively.

Figure 10. Catalytic triad residues. (R)-MPP ester enantiomer
and main residues surrounding the catalytic triad are displayed
in stick representation. Only polar hydrogens are shown. A
representative snapshot of the initial conformation is depicted
in yellow. A representative snapshot of the metadynamics run
(40 ps) after rotation of the catalytic histidine is depicted in
green. The hydrogen bond between His286 and Glu289 is
depicted as a dashed green line, while the hydrogen bond
between His286 and Asp264 is depicted as a dashed yellow
line. The �2 dihedral angle is depicted as a red arrow.
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portion of the large substituent (Phe-CH2-) inserted more
deeply into a cleft formed by the side chain of Leu287 and
His286, also known as the “His gap”.76,77 Therefore, the
His286 ring rotation increases the size of the narrow “His
gap” cleft, facilitating the approach of the (R)-MPP alcohol
toward the catalytic triad. It is important to observe that the
flip movement is permitted by a preparatory rearrangement
of the side chain of Val266, which rotates by about 120°
with respect to the initial position. As shown in Figure 10,
after this rotation, one of the Val266 methyl groups no longer
points toward the histidine imidazole, allowing for a greater
mobility of this residue.

During the histidine flip, the hydrogen bond between the
catalytic triad residues His286 and Asp264 breaks, and
another hydrogen bond forms between the rotated His286
and Glu289 to restore an alternative catalytic triad (Ser87,
His286, and Glu289). Because of the current choice of CVs,
the transition state associated with the catalytic triad reor-
ganization has not been detected, as it lays in a space
orthogonal to the one we used for exploring the free energy
surface. However, after such a reorganization of the catalytic
triad, the acylation reaction of the (R)-enantiomer proceeds
as in the case of the (S)-enantiomer and can be described
with the selected CVs without a loss of accuracy. Figure 11
shows the superposition of representative snapshots of the
metadynamics trajectory after the flip motion, showing the
time evolution of the (R)-enantiomer and of the residues
surrounding the substrate, including the alternative catalytic
triad, during the reaction.

Figures 9 and 11 allow the reconstruction of a path for
the acylation reaction, which is consistent with the serine
protease mechanism suggested by Radisky et al.78 and by
Fuhrmann et al.,29 on the basis of experimental evidence.
Moreover, Figures 9 and 11 highlight the different “adapta-
tion” of the enzymatic catalytic triad to the two enantiomers.
In the (R)-MPP system, the preliminary histidine flip motion
was necessary for the occurrence of the reaction; on the
contrary, the acylation reaction of the (S)-MPP ester occurred
without any disruption or rearrangement of the catalytic triad.

To the best of our knowledge, this is the first time that
clear evidence is provided, at the atomistic level, of the
possibility for BCL to shift toward a secondary catalytic triad
by preliminary histidine flip motion.

It is worth noting that, as demonstrated by the computed
FESs, (i) BCL retains similar catalytic activity using the
secondary triad Ser87, His286, and Glu289 and (ii) the
reorganization of the enzyme environment is associated with
a destabilization of the acyl-enzyme adduct, which is
reflected in the smaller free energy difference calculated for
the acylation reaction of (R)-MPP acetate.

The flip motion has been observed because BCL contains
two alternative acidic residues able to participate in the
formation of the catalytic triad: Asp264 and Glu289. A
closely related lipase, Pseudomonas glumae, exhibits the
same characteristic arrangement of acidic residues, Asp263
and Glu288, equivalent to Asp264 and Glu289 of BCL.79,80

In that case, mutation of Asp263 into alanine yielded a lipase
with 25% of the original activity.81 This experimental
observation strengthens the point that, similarly to Pseudomo-
nas glumae, the Glu289 residue of BCL can also serve as
an alternative proton acceptor.

The different catalytic mechanisms for the (S)- and (R)-
enantiomers suggest a way to increase further BCL enanti-
oselectivity by mutation of Glu289 into an aprotic residue
such as alanine. In fact, the lack of an additional donor for
the formation of the secondary catalytic triad would render
the standard catalytic triad the only one accessible for the
conversion of the (R)-enantiomer, with a large steric
hindrance. This would destabilize the reaction pathway,
providing a clean way to deplete the catalytic activity for
one of the two enantiomers.

Other structural adjustments of the enzyme environment
can be readily observed by root mean-square deviation
(RMSD) and root mean-square fluctuation (RMSF, i.e.
standard deviation) values of individual side chain residues
within 6 Å of the catalytic triad, calculated with respect to
the starting position of the metadynamics run. RMSDs and
RMSFs for selected residues, time averaged over the
simulation, are reported in Figures 12 and 13 for both
enantiomers.

The residues with the highest RMSD are Glu289, Phe119,
and Val266. Glu289 shows a high RMSD and RMSF only
in the case of the (S)-MPP because it is not involved in any
hydrogen bond within the catalytic triad. The mobility of
this residue, on the contrary, is reduced in the (R)-MPP
system due to the hydrogen bond formation with His286 in
the secondary catalytic triad. Phe119 and Val266 are adjacent
residues and form part of a hydrophobic pocket, which

Figure 11. Superposition of representative snapshots of the
metadynamics trajectory showing the evolution of the positions
of the catalytic triad during the acylation reaction for (R)-MPP
ester. The color code (greenf cyanf blue) corresponds to
structures at 35.34, 39.65, and 67.69 ps of simulation,
respectively. The progression is shown from an initial to a final
reaction state passing through an “intermediate” species
represented by a selected snapshot of the metadynamics
trajectory during the hydrogen transfer process. Even if the
-CH2- group of the large substituent of the (R)-MPP enan-
tiomer points toward His286, the reaction proceeds (after flip
motion) as in the case of the (S)-enantiomer.
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comprises also Pro113, Leu164, Leu167, and Val267, also
known as the hydrophobic groove HA,82 where the acyl
chain of the esters is accommodated. Accordingly, the
fluctuations of the Phe119 side chain have been related to
the emptiness of the HA groove usually occupied by acyl
chains. The movement of the Val266 residue deserves more
attention: it was monitored by following the time evolution
of the dihedral angle along the CR-C� bond of this residue
and of the distance between His286 Cδ2 and Val266 C� atoms
(see in Figure 14A and B). In the case of the (R)-MPP
system, as discussed above, a rotational rearrangement of
the Val266 side chain occurs at about 20 ps (see Figure 14A),
before both the His286 flip and pivoting movements. In the
case of the (S)-MPP system, a comparable side chain rotation
takes place as well, however, as a consequence of the reaction
progress. Figure 9 shows that this rotation for the (R)-
enantiomer is promoted by the pivoting movement of His286
and allows the relaxation of this residue.

An insight on the role of the acyl chain in the acylation
reaction has been obtained superimposing the previously
described X-ray structures of the hexylphosphonic transition-
state analogues38 onto the “intermediate” snapshots of the

(S)-MPP and (R)-MPP species (Figures 15 and 16). Although
comparison with transition state analogues should be used
with caution,83 since here the catalytic histidine is not
involved in the proton transfer and the system is in a relaxed
conformation, the excellent overlap displayed in the figures
indirectly confirms the accuracy of our computational setup.

As shown in Figures 15 and 16, the hexyl chains of both
phosphonate esters extend into the hydrophobic groove HA.
Both X-ray structures exhibit a favorable interaction between
Val266 and the acyl chain, mainly because one of the Val266
methyl groups points toward the catalytic His286. This

Figure 12. RMSD of residue side chain atoms. Only residues
within 6 Å of the catalytic triad are reported. Red bars
correspond to the (R)-MPP enantiomer; black bars correspond
to the (S)-MPP enantiomer.

Figure 13. RMSF of residue side chain atoms. Only residues
within 6 Å of the catalytic triad are reported. Red bars
correspond to the (R)-MPP enantiomer; black bars correspond
to the (S)-MPP enantiomer.

Figure 14. Time evolution of the dihedral angle along the
CR-C� bond of Val266 (A) and of the intermolecular distance
between His286 Cδ2 and Val266 C� atoms (B) during the
metadynamics runs. The trend of the values for (R)-MPP is
shown in red, whereas the trend of the values for (S)-MPP is
given in black. Vertical dashed lines highlight the time at which
the acylation reaction takes place. Labels T1S and T1R refer
to the acylation reaction for the (S)- and (R)-enantiomers,
respectively. In the blue box, a representative snapshot of the
initial Val266 and His286 relative orientation is depicted: a
red line shows the monitored distance (D), while a red arrow
shows the monitored dihedral angle (φ).

Figure 15. Superposition of a molecular dynamics snapshot
of the (S)-MPP “intermediate” species (orange) on the X-ray
S-enantiomer phosphonate analogue structure (white).
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peculiar arrangement is necessary to avoid a remarkable steric
hindrance between the rotated Val266 and the C3-C4
positions of the phosphonate acyl chain that would arise
further to a hypothetical rearrangement of the catalytic triad
(see Figure 16). Therefore, by choosing the acyl chain length
appropriately, the rotation of the residue Val266 can be
optimally controlled or even prevented, which supports the
experimental evidence reported in Table 1 that acetate
exhibits a moderate enantioselectivity and heptanoate has
the largest enantioselectivity, whereas butanoate shows
an intermediate value.

The results of this study offer an important interpretation
of the kinetic data shown in Table 1. The similar values for
kcat in the case of acetate compared to the different values
of kcat for heptanoate can be justified with the finding that,
in the case of acetate, the (R)- and (S)-enantiomers follow
two different reaction pathways, using two different catalytic
triads. Therefore, for the acetate, the enantioselectivity
originates only at the level of the binding strength, since both
enantiomers can find energetically favorable reaction pathways.

On the contrary, in the case of heptanoate, the reaction
pathway is identical for (R)- and (S)-enantiomers. A possible
rationale is that the accommodation of an heptanoil chain in
the active site of BCL prevents the Val266 side chain
movement so that the His286 flip rotation is hampered and
the catalytic triad of the enzyme is “forced” to work in the
native form. The blocked conformation thus creates a steric
hindrance between the (R)-enantiomer and His286, which
destabilizes the acylation reaction. This destabilization, which
is present only for the (R)-enantiomer, is the source of the
large difference between the two kinetic constants kcat for
(S)- and (R)-MPP heptanoate.

4. Conclusion

Enantioselectivity is fundamental to the design of new and
more efficient synthetic routes for modern drugs.

In this work, we report a study on the BCL-catalyzed
hydrolysis of the acetic ester of (R/S)-2-methyl-3-phenyl-
propanol (MPP), which is an important precursor in phar-
maceutical synthesis, using a QM/MM scheme based on DFT
for treating the quantum region. Using metadynamics for both
(S)- and (R)-enantiomers, we computed the free energy
surfaces of the catalyzed reaction with respect to two
collective variables that mapped the entire reaction path.

Our results show that the (R)-enantiomer cannot efficiently
undergo the acylation reaction using the BCL native catalytic
triad Ser87, His286, and Asp264, due to steric hindrance.
This enantiomer, instead, can follow a different and fruitful
reaction path exploiting an alternative triad based on Ser87,
His286, and Glu289. Residue Glu289, therefore, due to its
closeness to Asp264 and His286, plays a fundamental role
as an alternative proton acceptor.

From our studies, we were also able to identify in residue
Val266 one of the sources of the different stereospecifity
shown by BCL toward substrates with different acyl chain
lengths. A short acyl chain, in fact, allows mobility of
Val266, which is essential to promote the flip motion of
His286. On the contrary, longer acyl chains obstruct Val266
side chain rotation. A smaller mobility of this residue makes
the rearrangement of His286 more difficult and, conse-
quently, increases the stereospecifity of the catalyzed reaction.

The present work contributes, with state-of-the-art com-
puter simulations, to the understanding of atomistic aspects
of the catalytic triad in BCL when reacting with two different
enantiomers of MPP and provides detailed information on
how to regulate the enantioselectivity of this enzyme. In fact,
we hypothesize that the mutation of Glu289 or Asp264 into
an aprotic residue, or mutations designed to affect the
mobility of either Val266 or the catalytic triad, would be
possible strategies to regulate the stereoselectivity of the BCL
lipase.

After the execution of this work, a paper concerning the
control of BCL enantioselectivity by engineering the sub-
strate accessibility channel appeared,84 which gives experi-
mental evidence of our theoretical insights on the essential
contribution of Val266 to the enzyme enantiomeric prefer-
ence. Lafaquière et al., working with (R/S)-2-chloro ethyl
2-bromophenylacetate, have in fact observed a reversal of
the enantiopreference by mutation of Val266 into a “most
compact glycine”. According to our catalytic mechanism
rationalization, annihilation of Val266 side chain hindrance
is very much expected to affect the catalytic histidine
mobility producing dramatic consequences on the enzyme
enantioselectivity.
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Figure 16. Superposition of a molecular dynamics snapshot
of the (R)-MPP “intermediate” species (cyan) on the X-ray
structure of the (R)-enantiomer phosphonate analogue (white).
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Abstract: A revised density function is developed to define the molecular surface for the
numerical Poisson-Boltzmann methods to achieve a better convergence and a higher numerical
stability. The new density function does not use any predefined functional form but is numerically
optimized to reproduce the reaction field energies computed with the solvent excluded surface
definition. An exhaustive search in the parameter space is utilized in the optimization, using a
wide-range of training molecules including proteins, nucleic acids, and peptides in both folded
and unfolded conformations. A cubic-spline function is introduced to guarantee good numerical
behavior of the new density function. Our test results show that the average relative energy
errors computed with the revised density function are uniformly lower than 1% for both training
and test molecules with different sizes and conformations. Our transferability analysis shows
that the performance of the new method is mostly size and conformation independent. A detailed
analysis further shows that the numerical forces computed with the revised density function
converge better with respect to the grid spacing and are numerically more stable in tested
peptides.

Introduction

Solvation is one of the essential determinants of the structure
and function of proteins and nucleic acids.1-14 To model
solvation interactions in classical molecular simulations,
explicit solvent models that explicitly represent every atom
in a solvent molecule are natural choices. However, limita-
tions of explicit solvent models have also been recognized.
Apparently, the computational cost is a concern when explicit
solvent models are used. Often overlooked are the pre-
equilibration and sampling needs. Indeed the exponentially
large phase space of explicit solvent degrees of freedom
makes the convergence of simulations very challenging.
Analyses of these limitations prompted pioneers in molecular
simulations to propose implicit representations to model
solvation, especially in biomolecular applications.1-14

Implicit solvent models replace explicit solvent interactions
with an equivalent energetic term based on a mean field
approximation. Accuracy and transferability often requires

decomposing the mean field potential into electrostatic and
nonelectrostatic components and modeling the two compo-
nents separately. Such an approach can reduce the computa-
tion cost but has been found to provide a certain degree of
accuracy in the treatment of solvation interactions.1-14 With
over 20 years of developments, implicit solvent models,
especially those based on the Poisson-Boltzmann (PB)
theory, have been widely accepted in studies of solvation
interactions. In the PB-based implicit solvent models, the
electrostatic interaction or, more fundamentally, the electro-
static potential is assumed to obey the classical PB equation:

where ε is the dielectric constant, φ is the electrostatic
potential, F is the solute charge density, λ has a value of 0
wherever mobile ions cannot penetrate and a value of 1 where
they can, ni

0 is the number density of mobile ions of type i
in the bulk solution, qi is the charge of the mobile ions of
type i, and � ) 1/kT. Here k is the Boltzmann constant, and
T is the temperature. When the Boltzmann factor is close to
zero, eq 1 can be linearized as
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Adaptation of the PB solvent models to molecular
simulations requires a numerical solution of the three-
dimensional (3-D) partial differential equation. However,
the numerical procedure has been a bottleneck, largely
limiting the application to calculations with static struc-
tures only. The difficulty lies in the numerical procedure
to apply such solvent models, which involves discretiza-
tion of the partial differential equation into a system of
linear or nonlinear equations that tends to be rather large;
it is not uncommon to have millions of unknowns in
biochemical applications. In addition, the setup of the
system before the numerical solution and postprocessing
to obtain energies and forces are both nontrivial. Three
major discretization methods are widely used in biomo-
lecular applications. The most commonly used approach
is the finite-difference method.15-32 In this method, the
physical properties of the solution, such as atomic charges
and dielectric constants, are mapped onto rectangular grid
points, and a discrete approximation to the governing
partial differential equation is produced. The second
approach is the finite-element method,33-38 which ap-
proximates the potential by a superposition of a set of
basis functions. A linear or nonlinear system for the coef-
ficients produced by the weak formulation has to be solved.
The third approach is the boundary-element method.39-52 In
the boundary-element method, the Poisson or PB equation is
solved for either the induced surface charge39-41,43,45,46,49,52

or the normal component of the electric displacement42,44,47,48,50,51

on the dielectric boundary between the solute and the solvent.
Due to the computational expense for solving the PB

equation numerically, considerable efforts have been invested
in approximating the solution of the PB equation via
methods, such as the semianalytical generalized Born (GB)
model,53-63 the induced multipole model,64 the dielectric
screening model,65,66 and others. The pairwise GB model,
in particular, has been widely accepted as an efficient
estimation of the solution of the PB equation, as recently
reviewed.5,6,9-11

A crucial component of all implicit solvent models within
the PB framework is the dielectric model, i.e., the dielectric
constant distribution of a given solution system. Typically,
a solution system is divided into the low-dielectric interior
and the high-dielectric exterior by a molecular surface. That
is to say that the molecular surface is used as the dielectric
interface between the two piece-wise dielectric constants.
In numerical PB calculations, such as the finite-difference
methods, discretization of the molecular surface is required.
One possible approach is to build the molecular surface
analytically and then to map it onto a grid.67-69 However,
analytical procedures can be quite time-consuming and do
not necessarily offer any advantages for finite-difference
calculations because the surface must, in any case, be mapped
onto a grid lattice. In this study, we focus on representations
of molecular surface for numerical solutions of the PB
equation.

In numerical solutions of the PB equation, the solvent
excluded surface (SES) is the most used surface definition.24,26

Indeed, recent comparative analyses of both PB-based and
TIP3P solvent models show that the SES definition is
reasonable in calculation of reaction field energies and
electrostatic potentials of mean force of hydrogen-bonded
and salt-bridged dimers with respect to the TIP3P explicit
solvent.70-72 However, a previous test of the SES definition
in the finite-difference solution indicates that it is numerically
unstable for molecular dynamics.73 Similar numerical dif-
ficulty was also observed in the pairwise GB method when
the SES definition was used.74 A major limitation of the SES
definition is the re-entry volume; it is found that in simula-
tions of proteins at room temperature, large re-entry volumes
generated by nonbonded atoms come and go as often as every
femtosecond when the nearby atoms undergo vibrational
motion.73 Thus, extremely large surface derivatives with
respect to atomic coordinates may occur in the SES defini-
tion. In addition, surface cusp may also exist given certain
combinations of atom and probe radii and arrangements of
atoms.

The van der Waals (VDW) surface, or the hard sphere
surface, represents the low-dielectric molecular interior
as a union of atomic VDW spheres. With the VDW
definition, surface derivatives with respect to the atomic
coordinates are much better behaved, different from the
SES definition. However, surface cusp at the joint between
any two spheres may still cause instability in numerical
solutions and in force interpretations, just like the situation
in the SES definition. In addition, there exist many
nonphysical high (solvent) dielectric pockets inside the
solute interior when the VDW definition is used, as
discussed in ref 75. These small buried “solvent pockets”
result in a molecular interior too hydrophilic, which would
cause proteins to unfold. In addition, the complex
dielectric interface due to the buried solvent pockets also
results in an unsmooth field distribution, leading to
unstable dynamics simulations. Considering these limita-
tions, the modified VDW definition was proposed. The
basic idea of the modified VDW definition is to use the
solvent accessible surface (SAS) definition for fully buried
atoms and the VDW definition for fully exposed atoms.73

This is realized with a set of conformation-dependent
modified VDW radii, whose calculation requires the
solvent accessible surface area of all atoms to determine
their solvent accessibility.73 Apparently the definition of
modified VDW radii has to be smooth to be any use for
dynamics simulations. The standard VDW surface can then
be generated with the modified VDW radii. The harmonic
dielectric smoothing is also applied to smooth the
dielectric transition between solvent and solute.76 Appar-
ently, the dielectric distribution within and around buried
atoms is very smooth, i.e., it is all part of the solute low
dielectric. However, the dielectric distribution around
exposed atoms can still show spatial fluctuation, as in the
original VDW surface. Thus, an additional step in the
modified VDW definition is used to smooth the spatial
fluctuation around exposed atoms,73 though it is difficult
to implement and hard to be optimized to reproduce the
SES.

∇ · [ε∇φ] ) -F + λ ∑ �qi
2
φni

0 (2)
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The density approaches have recently been developed
and can be used for numerical PB solutions. Either a
Gaussian-like function or a smoothed step function has
been explored in previous developments.77,78 In these
approaches, a distance-dependent density/volume exclu-
sion function is used to define each atomic volume or
dielectric constant directly. This is in contrast to the hard-
sphere definition of atomic volume, as in the VDW or
the SES definition. Note that the use of a smooth function
allows the “boundary region” or the “solute/solvent
transition region” extends both inward and outward, i.e.,
the abrupt dielectric transition in the classical two-
dielectric model has been replaced with a smooth dielectric
transition region of finite width. Indeed, extension inward
is necessary in the new definition to reproduce the results
of the classical two-dielectric energetics for small training
molecules.77,78 In doing so, the trailing tail outside the
cavity radii can be used to smooth out the small cracks
and crevices formed by neighboring atoms. Apparently,
any surface cusps are removed by the use of smooth
density functions. However, their agreements with the
classical two-dielectric model for typical macromolecules
are not very good, as will be shown below even if the
agreements can be excellent for the small training
molecules.77,78

In this development, we have revisited the density
function strategy by combining it with the modified VDW
definition to balance numerical stability and model quality
for numerical PB applications. Specifically, we have
optimized the new density function to reproduce, as much
as possible, the reaction field energies based on the SES
definition due to its reasonable agreement with explicit
solvent models. A large and diversified training set of
biomolecules is used during the optimization. A separate
test set of biomolecules is also used to validate its
performance. Its benefit in improving the convergence and
the numerical stability of electrostatic force calculations
is also discussed.

Methods

Finite-Difference Method. In this work, we focus on
numerical solution of the linearized PB equation. However,
the proposed new numerical surface procedure can
certainly be applied to the full nonlinear PB equation,
which has been implemented in the Amber/PBSA
program.25,30-32 A widely used numerical method is the
finite-difference method. It requires mapping the problem
domain onto a lattice of grid points. The grid points are
connected with grid edges. Solute atomic charge distribu-
tion is mapped onto grid points, and the dielectric constant
distribution is mapped onto the centers of grid edges. The
linearized PB equation can then be converted into a linear
system with the finite-volume scheme. Under this dis-
cretization scheme, the partial differential equation can
be written as follows at each grid point:

where h is the spacing in each dimension, i, j, and k are
the grid indexes along the x, y, and z axes, respectively,
and ε(i - 1/2, j, k) is the dielectric constant between grids
(i, j, k) and (i - 1, j, k). Both ε(i, j - 1/2, k) and ε(i, j, k
- 1/2) are defined similarly. In the Boltzmann term, κ2

absorbs all the related coefficients, and q(i, j, k) is the
total charge within the cubic volume centered at (i, j, k).
We can use several methods to solve the linear system,
such as Gauss-Seidel, Jacobi, successive over relaxation,
conjugate gradient, and so on.79,80

Dielectric Distribution Model. A key issue in the solution
of eq 3 is how to map the dielectric constant distribution on
all grid edges. In biomolecular calculations, the dielectric
constant distribution often adopts a piece-wise constant
model, where the dielectric within the molecular surface is
assigned to that of the solute and the dielectric outside the
molecular surface is assigned to that of the solvent. Within
this model, the dielectric constant on a grid edge, apparently,
should be assigned to the dielectric constant in this region
where the two neighbor grid points belong. However, when
the two neighbor grid points belong to different dielectric
regions, i.e., when the grid edge is a boundary grid edge, its
dielectric constant is nontrivial to assign because the
dielectric constant is discontinuous across the interface. One
simple treatment is the use of harmonic average (HA) of
the two dielectric constants at the center of grid edges across
the solute/solvent boundary.76 For example, if (i - 1, j, k)
and (i, j, k) belong to solute and solvent regions, respectively,
then there must be an intersection point on the grid edge
between (i - 1, j, k) and (i, j, k). Denote a as the distance
from the intersection point to the grid point (i - 1, j, k) and
b as the distance from the same intersection point to the grid
point (i, j, k). In HA, ε(i - 1/2, j, k) is defined as

This strategy has been shown to improve the convergence
of reaction field energies with respect to the grid spacing
and to reduce the grid dependence of the solvation energet-
ics.76 The smoothed dielectric constant transition across the
solute/solvent interface also makes it possible to compute
dielectric boundary force via a variational approach proposed
by Gilson et al.81 Apparently, only the intersection points
between the molecular surface and the boundary edges are
needed to utilize eq 4 to assign dielectric constants at
boundary grid edges.

-h2ε(i - 1
2

, j, k) [φ(i - 1, j, k) - φ(i, j, k)]

-h2ε(i + 1
2

, j, k) [φ(i + 1, j, k) - φ(i, j, k)]

-h2ε(i, j - 1
2

, k) [φ(i, j - 1, k) - φ(i, j, k)]

-h2ε(i, j + 1
2

, k) [φ(i, j + 1, k) - φ(i, j, k)]

-h2ε(i, j, k - 1
2) [φ(i, j, k - 1) - φ(i, j, k)]

-h2ε(i, j, k + 1
2) [φ(i, j, k + 1) - φ(i, j, k)]

+κ
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2
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a
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+ b

ε(i, j, k)
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A Revised Density Function Strategy. In this study, we
explored representing the molecular surface indirectly or
implicitly with a molecular density function. That is to say
that the two-dimensional (2-D) molecular surface is repre-
sented as an equi-density surface of a 3-D density function.
The strategy appears to complicate the numerical problem
by increasing the dimensionality of the procedure. However,
the primary aim is to reduce the numerical instability arising
from using hard spheres in classical molecular surface
representation. In addition, the density function strategy
naturally fits in the level set method that can be utilized to
compute, numerically, many properties of the molecular
surface in a rather straightforward manner for the finite-
difference methods, as will be described.

The central idea of our revised density function is the same
as previous attempts to apply density functions to molecular
surface or volume presentations,77,78 i.e., to use a function
that smoothly maps out the interior of the SES of a molecule.
However, we require here that it also reproduces the solvation
energetics computed with the hard-sphere-based SES defini-
tion as much as possible. Specifically, atoms are described
by atomic density functions, and these are combined using
a composite molecular density function that can be used to
calculate discretized molecular surface, i.e., the intersection
points between the molecular surface and the boundary grid
edges. As discussed above, these points are used to define
the dielectric distribution of the solution system by the
harmonic average method.76

Specifically, given the nth atom centered at rn, its density
Fn is defined as

with x ) (d - rc)/2rp. Here, d ) |r - rn| is the distance to
the atomic center (rn), rc is the VDW radius of the atom,
and rp is the solvent probe radius. The domain of the
independent variable, x, is then set to be [-rc /2rp, 1], where
x ) -rc /2rp corresponds to the atomic center and x ) 1
corresponds to one probe diameter away from the atomic
VDW surface. Note also that x ) 0 corresponds to the atomic
VDW surface, when x is so defined. Apparently the domain
of the dependent variable, the density value (Fn), needs to
satisfy certain constraints to be physical or reasonable and
to be smooth for numerical PB methods. Here, the density
function is required to satisfy:

The constraints are meant to specify that: (i) the density
function is always positive; and (ii) the density value within
any atomic VDW surface is guaranteed to be g1 within a
molecule, as will become clear below. A main point of this
study is not to use any prescribed function form but to
optimize a numerical function, i.e., a table lookup function,
which satisfies the above constraints, and to achieve the best
possible agreement with a given benchmark for a specific
training set. The details of the benchmark, the training set,
and the quality measure will be discussed below. Of course,
to guarantee smoothness and good numerical behaviors the

cubic-spline interpolation is used to interpolate the function
value within the allowed range of x.

With the definition of atomic density functions, we can
now define a molecular density function as

in terms of a repeated product over atomic density
functions.77,78 Expanding this expression we obtain

where Fsum(r) ) ∑nFn is the linear summation of all atomic
terms, and the higher products, i.e., the “intersection terms”,
represent corrections for over or under counting of atomic
intersections.77,78 Use of Fmol(r) would produce a molecular
volume almost the same as the “classical” VDW volume,
which is not desired in numerical PB applications as reviewed
in the introduction.77,78 The original density function (Fmol)
was defined in such a way that Fmol > 1 corresponds the VDW
volume. If only the leading term Fsum were used, then Fsum >
1 would correspond to an overestimation of the VDW
volume. Corrections from the intersection terms in Fmol were
used to successively correct the volume so that it eventually
leads to a volume consistent with the VDW volume. That is
to say that when only the leading term is used, the definition
of Fsum > 1 has the potential to capture the “re-entry volume”,
in addition to the VDW volume when properly optimized.
A similar idea was used in previous work.77,78

Combination with the Modified VDW Surface. Note
that the molecular volume defined by a density function
crucially depends upon the function form. A function defined
to decay faster to zero would lead to a smaller molecular
volume, i.e., more solvent-exposed interatomic crevices
would exist. In contrast, a function defined to decay slower
to zero would lead to a larger molecular volume, i.e., less
solvent-exposed interatomic crevices would exist. Our initial
analysis of the density function approach shows that its
sensitivity to the function form makes it very difficult to
reproduce the SES definition.

The limitation can be attributed to the different require-
ments between defining the solvent-exposed surface for
exposed atoms and the solvent-excluded volume for buried
atoms. Our analysis shows that the density function has to
be defined to decay to zero faster to capture the solvent-
exposed surface in the SES definition. However, the density
function has to be defined to decay to zero slower to capture
the solvent-excluded volume in the SES definition. Since
more atoms on peptides are solvent-exposed, while more
atoms in proteins are solvent-excluded, the density function
tends to make the proteins too hydrophilic, if it is optimized
with respect to the peptides. In contrast, the density function
tends to make the peptides too hydrophobic, if it is optimized
with respect to the proteins. Overall, it is too difficult to find
a compromise that would work for different sized molecules.

We explored combining the density function with the
modified VDW approach reviewed in the introduction to

Fn ) Fn(x) (5)

Fn(x) > 1, x < 0

Fn(x) ) {1, x ) 0
0, x ) 1

(6)

Fmol(r) ) 1 - ∏
n

(1 - Fn) (7)

Fmol(r) ) ∑
n

Fn - ∑
n>m

FnFm + ∑
n>m>l

FnFmFl + ...

) Fsum(r) + ″intersection terms″
(8)

1160 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Ye et al.



overcome its limitation. Specifically, the density function is
revised as follows:

A. Compute SAS with unmodified VDW radii (rc).
B. Compute modified VDW radii (rc

m) based on atomic
SAS (see below).

C. Calculate the composite density function, Fsum(r) )
∑nFn, with the modified VDW radii, i.e., with rc

replaced by rc
m in eq 5.

The modified VDW radius of atom i is defined to be
smoothly dependent upon atomic SAS as follows:

where rc,i
m is the modified radius of atom i, rc,i is the

unmodified VDW radius of atom i, η ∈ [0,1] controls how
much increment to be added to the unmodified VDW radius,
rp is the solvent probe radius, Ai

s is the relative solvent
accessibility of atom i, and Ac ∈ [0,1] is the cutoff relative
solvent accessibility. Equation 9 shows that only VDW radii
of buried or somewhat exposed atoms are incremented, while
VDW radii of highly exposed atoms are not incremented.73

Thus, when the density function is defined with the
modified VDW radii, we can achieve the goal of raising the
density function value higher within the molecular interior
by effectively pushing the atomic VDW surface outward,
while still preserving the low-density values for solvent-
exposed atoms that are needed to define the solvent-exposed
surface. As will be shown below, a more consistent
performance can be realized among different sized molecules
when the modified VDW radii are used in the density
function approach. Of course, parameters η and Ac should
be optimized, along with the density function, to best
reproduce the reaction field energies with the SES definition.

Use of Numerical Function to Represent the Atomic
Density Function. Up to this point, we have yet to define
the atomic density function, except its overall properties. As
discussed, a main point of this study is not to use any
prescribed function form but to optimize a numerical function
for Fn(x) to achieve the best possible agreement between
Fsum(r) and the given benchmark for a specific training set.
Specifically, five intervals in the range of [0, 1] were used
to optimize the numerical function. These are then interpo-
lated over the domain of interest with the cubic-spline
interpolation to guarantee a continuous and smooth Fn(x).82

It is found that use of more intervals does not improve the
quality of the agreement with the SES definition. Of course,
the use of fewer intervals reduces the quality of the
agreement.

Apparently, it is perfectly reasonable to include intervals
<0 in the optimization, but these intervals are already within
the atomic VDW volumes, which are guaranteed to be within
the molecular surface and do not contribute to the optimiza-
tion quality of the function. Inclusion of these intervals only
increases the difficulty of the optimization problem. Instead,
we extended the density function all the way to the atomic
center with a linear function with the slope of the cubic-
spline function at x ) 0. For example, the atomic density

function optimized within the range of [0, 1] is shown in
Figure 1, which also plots two more intervals <0. Note also
that the numerical function within the first interval [0, 0.2]
is almost linear, even if the cubic-spline interpolation is used
(Figure 1).

As described above, the numerical density function is
optimized with a benchmark set. Here the PB reaction field
energies in the SES definition were used in this study. Our
choice of the SES definition as a benchmark was based on
recent comparative analyses of both PB and TIP3P solvent
models. These studies show that the SES definition is a
reasonable surface definition in the calculation of reaction
field energies and electrostatic potentials of mean force of
hydrogen-bonded and salt-bridged dimers, with respect to
the TIP3P explicit solvent.70-72 Finally, to ensure transfer-
ability and universality of the density function, we used a
large set of diversified biomolecules, both folded and
unfolded conformations, in the optimization of the density
function.

In summary, the following parameters were optimized: (i)
the four density function values at x ) 0.20, 0.40, 0.60, and
0.80, respectively, to determine Fn(x); and (ii) η and Ac to
determine the optimal modified VDW radii (eq 9). The
optimization was conducted with respect to the benchmark
reaction field energies computed with the SES definition. The
average error (i.e., unsigned relative deviation) between the
two sets of reaction field energies was used as the optimiza-
tion measure. Note that the function values at x ) 0 and 1
have been fixed as 1.0 and 0.0, respectively, according to
eq 6. In this study, we used a three-step systematic scan of
the parameter space to optimize the parameters. At step one,
an initial scan in the resolution of 0.2 was used for all six
parameters. At step two, a refinement scan in the resolution
of 0.05 was used in the reduced search space ((0.2), centered
on the best parameter set from step one. Finally, at step three,
a second refinement scan in the resolution of 0.01 was used
in the reduced search space of ((0.05), centered on the best
parameter set from step two. The optimized parameters are
shown in the Results and Discussion Section.

Implicit Molecular Surface Representation by the
Level-Set Method. Once Fsum(r) is defined on grid points,
we need to know where the equi-density surface, Fsum(r) )
1, intersects all grid edges to use the harmonic average
method to set up the dielectric constants of all boundary grid
edges, see eq 4. In addition, we also need the surface normal
direction in the force calculation, as will be shown next.

We explored computing these numerical surface properties
with the level set method.82,83 In the level set method, a scalar

rc,i
m ) {rc,i +

1
2

ηrp[1 + cos(π
Ai

s

Ac)], Ai
s < Ac

rc,i, Ai
s g Ac

(9)

Figure 1. Optimized atomic density function.
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function, �(r), i.e., the level set function, is used to represent
the surface implicitly. For example, to describe a 2-D
spherical surface with the radius of 1, we can define a level
set function as �(r) ) |r|2 - 1 in the 3-D space. Thus, the
spherical surface consists of all the points satisfying the
condition of �(r) ) 0. In addition, for any point r, we can
easily determine it is within the surface, if �(r) < 0 or outside
of the surface, if �(r) > 0. It should be pointed out that for
a specific surface (�(r) ) 0), there may be many different
level set functions because the requirement of �(r) ) 0
cannot uniquely define the 3-D function. To utilize the level
set method to define the molecular surface, we need to define
a level set function so that �(r) ) 0, i.e., the zero level set
corresponds to the molecular surface. In addition, positive
and negative function values denote the solvent and the solute
sides of the surface, respectively. Thus, our revised density
function can be used to define a level set function as

With these preparations, we proceed to compute the
interaction point of a boundary grid edge and a molecular
surface, as follows. Without loss of generality, suppose that
this is an x-edge flanked by two grid points x1 and x2. The
level set function values are �1 and �2, respectively.
Apparently, we have �1 × �2 < 0, since the sign of the level
set function, defined by eq 10, changes when crossing the
molecular surface and the intersection point is between x1

and x2. Next, we choose a third grid point, x3, from the two
grid points that flank the x-edge in the x-direction, i.e., it is
right next to x1 or x2 and has the same y and z coordinates.
Given the three grid points with their x coordinates as x1,
x2, x3 and with corresponding level set functions as �1, �2,
�3, respectively, a quadratic function � ) a2x2 + a1x + a0

can be determined to pass through three points (x1, �1), (x2,
�2), and (x3, �3). Thus, the intersection point is simply the
root of the quadratic equation a2x2 + a1x + a0 ) 0, within
[x1, x2]. It has been shown that the error in the calculated
intersection point scales as O(h2).82,83

With the level set method, calculation of other surface
properties is also straightforward. In this study, the surface
normal direction is needed at every intersection point and
can be computed as82,83

where �x is the derivative of �, with respect to x. Other
symbols are defined similarly. The simplicity of the level
set method makes it well suited to the finite-difference
method, where these derivatives can be interpolated with
accuracy of O(h2).82,83

Computation Details

Electrostatic Energy and Force Calculation. The elec-
trostatic reaction field energy was computed via the dielectric
polarization charges, which were calculated using the Gauss
law and the grid potential obtained from the finite-difference
solution of the PB equation.26 In the finite-difference method,

the dielectric polarization charges are located on the boundary
grid points, i.e., the grid points surrounded by nonuniform
dielectric grid edges. To improve the convergence of reaction
field energy, the polarization charges were first projected onto
the molecular surface, according to the procedure described
by Rocchia et al.,26 before they were used to compute the
reaction field energy as a pairwise summation of Coulombic
interactions between atomic and polarization charges.

It is well-known that the electrostatic force density can
be derived through the divergence of the Maxwell stress
tensor (P) as84,85

where Ff is the fixed charge density, E is the electric field,
ε is the dielectric constant, ∆Π is the excess osmotic
pressure,86 and λ is the Stern layer defined so that it is 1 in
regions accessible to the mobile ions and 0 elsewhere. This
is consistent with the formulation of Gilson et al.81

Equation 12 shows that there are three components in the
total electrostatic forces: (i) the Coulombic and reaction field
forces acting on the atomic charges, FfE; (ii) the dielectric
boundary forces, or pressure acting on the dielectric bound-
ary, -(1/8π)E2∇ε; and (iii) the ionic boundary forces, or
pressure on the ionic boundary. Since the Coulombic forces
can be computed analytically by pairwise summation of
Coulombic interactions among atomic charges, only the rest
of the force components were computed numerically.

Similar to the treatment of reaction field energy, dielectric
polarization charges can be used to improve the convergence
of reaction field forces, with respect to the grid spacing.
Specifically, the reaction field forces were calculated by the
pairwise summation of the Coulombic interactions between
polarizarion and atomic charges.26 The computation of
dielectric boundary forces requires the derivative of the
dielectric constant. Thus, only a smoothly varied dielectric
model, such as eq 4, can be used in eq 12,85 where the
dielectric constants on grid edges across the dielectric
boundary (molecular surface) were assigned as weighted
harmonic averages of solvent and solute dielectric constants.
The finite-difference procedure to implement -(1/8π)E2∇ε,
given the weighted harmonic averages of dielectric boundary
grid edges, has been described in detail by Gilson et al.81

Note that the dielectric boundary force element is always
along the direction of the gradient of dielectric constant,
which is the normal direction of the molecular surface. Thus,
computation of the dielectric boundary force element requires
the numerical calculation of surface normal vectors, which
was computed by eq 11.

Due to the fact that the SES surface is not differentiable,
the dielectric boundary force elements are distributed to
nearby atoms in an ad hoc manner, as follows. For the contact
portion of the SES, the surface force elements are distributed
to the closest atom sphere. For the re-entry portion of the
SES, the dielectric boundary force elements are distributed
to the two nearest atom spheres proportional to the inverse

�(r) ) 1 - Fsum(r) (10)

n ) ∇�
|∇�|

)
(�x, �y, �z)

(�x
2 + �y

2 + �z
2)1/2

(11)

f ) ∇ · P ) ∂

∂x
(i · P) + ∂

∂y
(j · P) + ∂

∂z
(k · P)

) FfE - 1
8π

E2∇ε - ∆Π∇λ

(12)
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of the distances of the two atom spheres. This procedure is
also used to distribute the dielectric boundary force elements
for the surface defined by the revised density function.

Finally, the ionic boundary forces are ∼O(10-2) smaller
than those of the reaction field forces and the dielectric
boundary forces in water,81 so that we only focus on the
reaction field forces and dielectric boundary forces in the
performance analysis of the revised density function below.
In addition their performance is apparently more closely
related to how the Stern layer is defined, which is beyond
the scope of this development.

Training and Test Sets. To cover the highly heteroge-
neous molecular surface topologies, eight different structure
sets were used in this study to calibrate and to test the revised
density function (see Table 1). Sets 1 and 4 contain a large
set of Protein Data Bank (PDB) structures, ranging from
small peptides to very large biomolecules (with more than
550 residues) and covering a wide variety of native protein
folds.87 Sets 2, 5, and 6 are unfolded protein conformations
of three small global proteins from high-temperature unfold-
ing simulations: 1PGB (alpha/beta), 1ENH (all-alpha), and
1SHG (all-beta). Sets 3, 7, and 8 are from unfolding
simulations of three peptides. Set 3 is a hairpin from 1PGB,
set 7 is a helix from 1PGB, and set 8 is a hairpin from 1SHG.
These sets are used to test how well reaction field energies
are reproduced for different native and nonnative conforma-
tions of the same protein. Finally, sets 1-3 were used as
training sets, and sets 4-8 were used as test sets. All molecular
structures were processed with Leap in Amber988 and held
static in all calculations. As described above, the optimization
of the density function was conducted with the reaction field
energies of chosen training molecules. In the surface potential
analysis, the native structures of 1PGB, 1ENH, and 1SHG
and the p53 DNA binding domain with and without DNA
were used.

Other Details. In all calculations, the ion concentration
was set to 0. The dielectric constant of the solvent was set
to 80, i.e., for water, while the solute was set to 1. The solvent
probe was set to be 0.6 Å. Our use of an unusually small
probe radius was based on our previous comparative analyses
of the numerical PB and TIP3P solvent models. In these
analyses, the reaction field energies of small molecules were
found to be not very sensitive to the different probe sizes,
but the electrostatic potentials of mean force of the hydrogen-
bonded or the salt-bridged dimers were quite sensitive to
the probe radius used, and a solvent probe radius of 0.6 Å

was found best to reproduce the TIP3P solvent among the
tested values.72 Subsequent analysis of the ion pairs on
peptides and proteins also indicates that the probe radius of
0.6 Å can best reproduce the TIP3P solvent [Tan and Luo,
manuscript in preparation]. The finite-difference grid spacing
was set to be 0.5 Å, if not mentioned otherwise. A two-
level electrostatic focusing was used to speed up the
assignment of electrostatic boundary condition. The coarse
grid spacing was 2.0 Å. The dimension of the coarse grid
was set to be twice as large as the dimension of the solute
to secure the quality of the nonperiodic boundary condition
in the PB calculations. The finite-difference convergence
criterion was set to be 10-3. All other parameters are set to
be default as in the PBSA program of Amber 9.25,73,88

Results and Discussion

Optimization of the Revised Density Function. As
described in the method, the revised density function was
optimized by a systematic search of the six parameters with
respect to a benchmark set of reaction field energies
computed with the SES definition. The optimized parameters,
with the lowest average unsigned error with respect to the
benchmark set, are as follows: Fn(x) ) 0.21, 0.15, 0.05, and
0.01 at x ) 0.2, 0.4, 0.6, and 0.8, respectively; η ) 0.57;
and Ac ) 0.08. Once the discrete density function values
are given, the cubic-spline function is utilized to interpolate
the density function within the range of [0, 1] for x. Note
that x ) 0 corresponds to the atomic VDW surface, and the
atomic density function is defined for x < 0 as a linear
function with the slope at x ) 0. Figure 1 plots the cubic-
spline interpolated function with the optimized discrete
density function values. To fully understand the performance
gain in combining the density function with the modified
VDW surface, the pure density function approach, i.e., with
density function defined with the unmodified VDW radii,
was also optimized with respect to the same benchmark set.
The optimized parameters are as follows: Fn(x) ) 0.26, 0.21,
0.05, and 0.01 at x ) 0.2, 0.4, 0.6, and 0.8, respectively.

It can be seen in Table 2, the revised density function with
the modified VDW radii, denoted as “revised density”, can
achieve average errors less than 1% (PDB1: 0.47; PGB: 0.76;
and HPN1: 0.76%) for all three training sets, a respectable
agreement. The corresponding values of the density function
with the unmodified VDW radii, denoted as “density”,

Table 1. Training (1-3) and Test Sets (4-8) Used in This
Studya

structure set no. structures no. residues rmsd (Å)

1: PDB1 290 16-517 0.00
2: PGB 314 56 0.01-13.80
3: HPN1 300 16 0.02-11.63
4: PDB2 289 19-497 0.00
5: ENH 261 54 0.02-10.50
6: SHG 284 57 0.16-13.22
7: helix 501 19 0.02-8 0.95
8: HPN2 451 16 0.02-11.28

a Root-mean-square deviation from the experimental native
structure is defined as rmsd.

Table 2. Average Error, Maximum Error, And Error Spread
(Average/Max/Spread) for Each of the Training and Test
Setsa

structure set revised density density MVDW

1: PDB1 0.47/1.82/3.11% 1.26/6.58/9.40% 2.01/6.66/8.07%
2: PGB 0.76/2.38/3.05% 0.57/3.50/4.77% 4.39/6.75/5.37%
3: HPN1 0.76/3.26/5.90% 1.84/3.72/5.36% 4.37/9.32/10.47%
4: PDB2 0.45/2.40/3.86% 1.27/8.44/10.85% 1.95/5.95/6.83%
5: ENH 0.58/1.72/2.50% 0.56/2.23/2.90% 3.18/5.27/4.39%
6: SHG 0.89/2.47/3.01% 0.71/2.98/4.32% 4.72/7.42/6.11%
7: helix 0.54/1.87/3.66% 1.29/2.82/5.61% 3.88/7.67/7.46/%
8: HPN2 0.58/3.38/5.53% 1.24/3.12/5.95% 3.89/8.52/9.22%

a Revised density: density function definition with modified VDW
radii. Density: density function definition with unmodified VDW
radii. MVDW: VDW surface definition with modified VDW radii.
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(PDB1: 1.26; PGB: 0.57; and HPN1: 1.84%) and modified
VDW definition, denoted as “MVDW”, are relatively larger
(PDB1: 2.01; PGB: 4.39; and HPN1: 4.37%). The average
errors of the revised density definition are also lower than
those of the density and the MVDW definitions in the test
sets. Overall the average error of every training or test set is
lower than 1% (0.45-0.89%). For practical purposes, it is
also important, however, to minimize maximum errors and
error spreads. Here, the error spread is defined as the
difference between the maximum positive and negative
errors. It can be seen from Table 2 that the unsigned
maximum errors by the revised density definition are smaller
than those of the density and the MVDW definitions (revised
density: 1.72-3.38%; density: 2.23-8.44%; and MVDW:
5.27-9.32%) and that the error spreads of the revised density
definition are narrower (revised density: 2.50-5.90%; den-
sity: 2.90-10.85%; and MVDW: 4.39-10.47%). Overall,
the revised density definition can achieve a more consistent
performance with lower average errors, maximum errors, and
error spreads than those of the density and MVDW defini-
tions in both the training and test sets.

We next consider the correlation between the reaction field
energies computed with the revised density definition and
those with the SES definition for test set PDB2. As shown
in Figure 2, all data fall on the diagonal line with almost no
scatter. Indeed, the correlation coefficient is 0.999979, the

slope is 0.999505, the offset is 5.30848, and the root-mean-
square (rms) relative deviation is 0.57%. In contrast, the
correlation between the density definition and the SES
definition is 0.999607, the slope is 1.01631, the offset is
11.1488, and the rms relative deviation is 1.79%. The
correlation between the MVDW and the SES definitions is
0.999876, the slope is 1.01112, the offset is -15.306, and
the rms relative deviation is 2.17%.

Transferability Considerations. While the overall relative
error in reaction field energy should be as small as possible,
it is also important that the error is both system and structure
independent. We investigated two aspects in this regard:
errors with different system sizes and different conformations
(loosely packed/unfolded or folded conformations). To study
the transferability of the new method, we calculated the errors
versus number of atoms for the PDB2 set. Figure 3 shows
that the error range of the revised density definition does
not change much as the number of atoms increases. This
confirms that the performance of the revised density and the
density definitions are mostly size independent, though the
revised density definition clearly agrees better with the SES
definition. On the other hand, the size-dependence effect of
the MVDW definition is obvious; the error increases as the
number of atoms increases.

Besides the size dependence, we also studied the confor-
mation dependence of the revised density definition. We
unfolded two proteins (SHG/ENH) and two peptides (helix/
HPN2) with high-temperature (500 K) molecular dynamics
simulations and analyzed the correlation between energy
errors and conformations for about 250-500 collected
snapshots for each molecule. Figure 4 shows that the
conformation dependence of the revised density definition
is lower, i.e., the energy errors are uniform over the different
conformations, shown as different rmsd’s. It is worth pointing
out that in the SHG and ENH test sets, the reaction field
energies of the revised density definition are similar to those
of the density definition. In the helix and HPN2 test sets,
however, the results of the revised density definition are
much better than both the density and MVDW definitions.
This demonstrates the more consistent performance of the
revised density definition over different sized molecules.

Convergence and Stability of Atomic Electrostatic
Forces. Given the overall improved agreement in the
computed reaction field energies between the revised density

Figure 2. Top: Correlation between reaction field (RF)
energies computed with the SES definition and those com-
puted with the revised density definition (correlation: 0.999979,
slope: 0.999505, offset: 5.30848, and rms relative deviation:
0.57%). Middle: Correlation between RF energies computed
with the SES definition and those computed with the density
definition (correlation: 0.999607, slope: 1.01631, offset: 11.1488,
and rms relative deviation: 1.79%). Bottom: Correlation
between RF energies computed with the SES definition and
those with the MVDW definition (correlation: 0.999876, slope:
1.01112, offset: -15.306, and rms relative deviation: 2.17%).

Figure 3. Size dependence of relative errors in reaction field
energies for the revised density (square), the density (circle),
and the MVDW (triangle) definitions. To improve clarity, the
numbers of atoms are binned with a width of 400, and the
error is averaged for each bin before plotting.
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and the SES definitions, we studied the convergence and
the numerical stability of atomic electrostatic forces, which
are important for stable dynamics simulations. The conver-
gence quality of atomic electrostatic forces is measured by
the correlation and the rmsd of atomic forces at a typical
coarse grid spacing (1/2 Å) with respect to those at a fine
grid spacing (1/8 Å). The numerical stability of atomic forces
is measured by the average standard deviations of individual
atomic forces computed with different finite-difference grid
origins. Here 64 different finite-difference grid origins were
used to analyze the numerical uncertainty of different
methods. Two small systems, the native helix (from test set
helix) and the native hairpin (from test set HPN2) structures,
were selected in this analysis because they can be processed
with the finest tested grid spacing, 1/8 Å, on our local
computer servers.

Consistency of the Two Methods. While the two surface
definitions are clearly different, we have tried to optimize
the revised density definition so that the reaction field
energies computed with the two surface definitions agree as
much as possible. Thus, we expect the correlation of atomic
forces computed with the two surface definitions to be
reasonably well, at least at the finest grid spacing tested, 1/8
Å. The correlations between the two sets of forces are shown
for the two tested molecules in Figure 5. The reaction field
(RF) forces are shown on the left, with the correlation
coefficients of 0.98730 for the helix and 0.98912 for the
hairpin, indicating that the RF forces by SES are reasonably
well reproduced by the revised density function. Similarly,
the right panel of Figure 5 plots the correlations of dielectric

boundary (DB) forces between the two methods for the two
tested molecules. The correlation coefficients are 0.95137
for the helix and 0.95848 for the hairpin. Due to the physical
nature of the dielectric boundary forces, which act on the
molecular surface, they are more sensitive to the exact
location of molecular surface. Therefore, the correlation of
DB forces is, in principle, lower than that of the RF forces
between the two surface definitions.

ConVergence of Forces. We next analyzed the convergence
of forces at typical coarse grid spacing (1/2 Å) for biomo-
lecular simulations for both the revised density and the SES
definitions. The convergence measures show that the revised
density definition converges faster than the SES definition
in the numerical calculation of RF forces (Table 3) and DB
forces (Table 4). The correlations of RF forces for the revised
density function are 0.99411 for the helix and 0.98917 for
the hairpin, respectively, while the corresponding correlations
for the SES definition are 0.96625 and 0.91612, respectively.
The rms deviations of RF forces computed with the revised
density function are a factor about two smaller than the
corresponding rms deviations with the SES definition.
The convergence comparison for the DB forces is similar.
The correlations of DB forces computed with the revised
density function are 0.93229 for the helix and 0.95588 for
the hairpin, respectively, while the corresponding correlations
computed with the SES definition are 0.90205 and 0.84782,
respectively. The rms deviations of DB forces computed with
the revised density function are a factor of about two smaller
than the corresponding rms deviations with the SES definition.

Numerical Stability of Forces. Finally, we analyzed the
numerical stability of numerical electrostatic forces for both
the revised density and the SES definitions. Our stability
measure shows that the revised density definition is more
stable than that of the SES definition in the numerical
calculation of RF and DB forces (Tables 3 and 4); reductions

Figure 4. Conformation dependence of relative unsigned
errors in reaction field energies for the revised density
(square), the density (circle), and the MVDW (triangle) defini-
tions. To improve clarity, the rmsd’s are binned with a width
of 0.5 Å, and the error is averaged for each bin before plotting.

Figure 5. Left: Correlation between reaction field (RF) forces
computed with the revised density definition and those
computed with the SES definition. Right: Correlation between
dielectric boundary (DB) forces computed with the revised
density definition and those computed with the SES definition.
All forces are computed with a grid spacing of 1/8 Å.
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in the standard deviations by a factor of about two were
observed when the revised density definition was used for
both types of forces.

Reproduction of Molecular Surface. Note that we have
solely relied on reaction field energies in the optimization
of the revised density definition. This is reasonable because
the measure based on reaction field energies is quite sensitive
to the exact locations of molecular surface. Nevertheless,
we have also studied the quality of the revised density
definition in reproducing the molecular surfaces with the SES
definition. Figure 6 shows the molecular surfaces for folded
1ENH, 1PGB, and 1SHG. It can be seen that both definitions
are quite consistent for these folded proteins. Figure S-1 in
the Supporting Information shows the molecular surfaces for
unfolded 1ENH, 1PGB, and 1SHG with the two definitions,
respectively. Here slightly more discrepancy can be observed
in the computed molecular surface. Overall, the molecular
surface of both folded and unfolded conformations in the
SES definition can be reasonably reproduced by the revised
density function.

Reproduction of Surface Electrostatic Potential. We
further analyzed the surface electrostatic potential of several
selected proteins with the revised density definition. Figure

7 shows the surface potentials for 1PGB, 1ENH, and 1SHG
calculated with the revised density function and the SES
definition, respectively. Clearly, the two surface potential
maps agree very well for the three selected proteins. For the
larger p53 tetramer with and without DNA, the agreement
is also excellent, as shown in Figure S-2 in the Supporting
Information.

Limitation of the Density Function Approaches. A
limitation of the revised density definition concerns the use
of a “unconventionally” small solvent probe, 0.6 Å, which
was optimized to reproduce the electrostatic potential of mean
forces of dimers and surface salt bridges on macromolecules
in the TIP3P explicit solvent. It is likely that the use of a
small probe may result in a more hydrophilic interior in
loosely packed macromolecules. Thus, we also tried to use
the traditional solvent probe of 1.4 Å in our training of the
revised density function. However, our analysis shows that
the revised density definition can perform no better than the
MVDW definition, even in the training sets (data not shown).

Table 3. Convergence and Numerical Stability of Reaction Field forces (e2/ Å2) for the Tested Helix and Hairpin at the
Coarse Grid Spacing of 1/2 Åa

revised density SES

1/h CC rmsd (×10-4) σ (×10-4) CC rmsd (×10-4) σ (×10-4)

helix 2 0.99411 12.7 3.40 0.96625 22.5 5.04
8 NA NA 0.192 NA NA 0.274

hairpin 2 0.98917 18.5 5.40 0.91612 39.5 7.59
8 NA NA 0.238 NA NA 0.326

a SES: solvent excluded surface definition. CC: correlation coefficient between the forces at 1/2 and 1/8 Å. rmsd: rms deviation between
the forces at 1/2 and 1/8 Å. σ: average standard deviation of individual atomic forces.

Table 4. Convergence and Numerical Stability of Dielectric Boundary Forces (e2/ Å2) for the Tested Helix and Hairpin at the
Coarse Grid Spacing of 1/2 Åa

revised density SES

1/h CC rmsd (×10-4) σ (×10-4) CC rmsd (×10-4) σ (×10-4)

helix 2 0.93229 16.2 7.08 0.90205 22.4 15.9
8 NA NA 1.58 NA NA 2.27

hairpin 2 0.95588 12.8 12.5 0.84782 33.0 24.9
8 NA NA 2.64 NA NA 2.77

a See Table 3 for more information.

Figure 6. Molecular surface determined by the revised
density and SES definitions for folded conformations of 1ENH,
1PGB, and 1SHG, respectively. Figure 7. Surface electrostatic potential (in kT/mol-e) for

protein 1ENH, 1PGB, and 1SHG, respectively (from left to
right). Upper panel: computed with the revised density defini-
tion. Lower panel: computed with the SES definition. Potential
is visualized in PyMol using a continuous color scale. Blue:
positive values; white: zero; and red: negative.
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Thus, the limitation of the method to applications with a
smaller solvent probe radii is clearly an issue that needs
further considerations, to make it a more general numerical
procedure for molecular surface calculations. Nevertheless,
since our ultimate motivation in the study was to reproduce
as close as possible the explicit solvent energetics, and it is
unclear how quantitative loosely packed the molecular
interior would be without detailed explicit solvent simula-
tions, we delay further improvement to a future study. In
addition, it is worth highlighting the intrinsic difference
between all density function definitions and the SES defini-
tion to represent the molecular surface. Indeed, the multibody
re-entry region in the SES definition is very difficult, if not
possible, to reproduce with any additive density function
approach.

Concluding Remarks

A revised density function is developed to define the
molecular surface for dielectric assignment in the numerical
PB methods. The density function is optimized through an
exhaustive search using a benchmark data set of reaction
field energies, computed with the solvent excluded surface
for a wide-range of proteins and peptides in both folded and
unfolded conformations. A uniformly low average unsigned
error of less than 1% in reaction field energies can be
achieved for both the training and test sets. The maximum
errors and error spreads are also smaller than the modified
van der Waals and the original density function definitions,
upon which the new density function was developed. We
further studied the transferability of the revised density
function. Our data show that the average unsigned errors
change little as the molecular size increases, confirming the
size independence of the method. We also studied the
conformation dependence of the revised density function with
unfolded conformations of two proteins and two peptides.
It turns out that there is little conformation dependence in
the revised density function. Next, we studied the conver-
gence and the stability of numerical electrostatic forces
computed with the revised density function. The analysis
shows that the revised density function can improve both
the convergence and numerical stability by a factor of two
over the solvent excluded surface. The analysis of computed
molecular surfaces shows that the revised density function
can well reproduce the solvent excluded surfaces for the three
tested proteins in both folded and unfolded conformations.
Finally, we also analyzed the performance of the revised
density function in reproducing the surface electrostatic
potential. The analysis shows that the agreements are very
good for different sized proteins, whether it is neutral or
highly charged.

Nevertheless, it is worth pointing out the limitation of the
current development documented here. First, it is important
to highlight that the numerical instability of the dielectric
boundary forces is still higher than that of the reaction field
forces. This is, in part, due to the use of grid-independent
surface polarization charges in the computation of the
reaction field energy and forces, which improves the
convergence and stability in the computed energies and
forces. In contrast, the dielectric boundary forces were

computed directly with the finite-difference grid potential
without further treatment. This is, in part, responsible for
their larger error and uncertainty. We are actively working
to improve the convergence and the stability of dielectric
boundary forces by utilizing the grid-independent surface
polarization charges, which would further enhance their
numerical performance when combined with the revised
density function. In addition, partition of dielectric boundary
force elements on the solvent/surface interface to nearby
atoms is clearly the next natural step before the method can
be applied to routine molecular dynamics simulations. We
are actively working on both issues in this group.

Finally, our analysis shows that the density approximation
does not work well for “conventional” solvent probes of 1.4
Å. Fortunately, our prior comparative analysis indicates that
the numerical PB methods with a probe radius of 0.6 Å
reproduces the TIP3P solvent best on the tested conforma-
tions and systems. It is likely that the use of a small probe
may result in a more hydrophilic interior in loosely packed
macromolecules. This apparent dilemma between the mo-
lecular interior being too hydrophilic and the best agreement
with TIP3P solvent points to the limitation of the hard-
sphere-based strategies to define the dielectric model for
numerical PB methods. To overcome this difficulty, we may
revise the molecular surface calculation into a two-step
procedure. First, we shall use a large solvent probe to
calculate solvent accessibility of each atom. Of course, this
procedure should be optimized to be consistent with solvent
accessibility simulated in explicit solvent models. For the
solvent inaccessible atoms, we will augment their VDW radii
with an optimized amount that would effectively fill the
molecular interior, resulting in a hydrophobic interior.
Second, we will still use the density function optimized with
a solvent probe of 0.6 Å to compute the re-entry region
among the solvent-accessible atoms. The proposed strategy
is still within the hard-sphere strategies but may resolve the
dilemma discussed to a certain degree.
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Abstract: Recently, we have shown how a colored-noise Langevin equation can be used in
the context of molecular dynamics as a tool to obtain dynamical trajectories whose properties
are tailored to display desired sampling features. In the present paper, after having reviewed
some analytical results for the stochastic differential equations forming the basis of our approach,
we describe in detail the implementation of the generalized Langevin equation thermostat and
the fitting procedure used to obtain optimal parameters. We also discuss the simulation of nuclear
quantum effects and demonstrate that by carefully choosing parameters one can successfully
model strongly anharmonic solids such as neon. For the reader’s convenience, a library of
thermostat parameters and some demonstrative code can be downloaded from an online
repository.

1. Introduction

Stochastic differential equations (SDE) have been used to
model the time evolution of processes characterized by
random behavior in fields as diverse as physics and econom-
ics. In particular, the Langevin equation (LE) has been
regularly applied in the study of Brownian motion and used
extensively in molecular dynamics (MD) computer simula-
tions as a convenient and efficient tool to obtain trajectories
which sample the constant-temperature, canonical ensemble.1,2

In its original form, the Langevin equation is based on
the assumption of instantaneous system-bath interactions,
which corresponds to the values of the random force being
uncorrelated at different times. A non-Markovian, generalized
version of the LE arises in the context of Mori-Zwanzig
theory.3,4 In this theory, if one considers a harmonic system
coupled with a harmonic bath, it is possible to integrate out
the degrees of freedom of the bath. This leaves one with a
linear stochastic equation where both the friction and the
noise have a finite memory. The conventional LE is
recovered in the limit of a clear separation between the
characteristic time scale of the system’s dynamics and that
of the system-bath interaction.

This class of non-Markovian SDEs has been extensively
used to model the dynamics of open systems interacting with
a physically relevant bath (see, e.g., refs 5–7). Instead, our
recent works8,9 have used colored(correlated)-noise SDEs
as a device to sample efficiently statistical distributions in
molecular-dynamics (MD) simulations. These works aimed
to show how a stochastic thermostat suitable for Car-
Parrinello-like dynamics8 could be constructed, and how nuclear
quantum effects can be included in a large class of problems at
a fraction of the cost of path-integrals calculations.9 In these
applications the real dynamics is lost, and one focuses only on
the efficient calculation of static ensemble averages.

In this paper we discuss the practical implementation of
the generalized Langevin equation (GLE) thermostat that we
used in the two cases mentioned above. We also provide
the reader with the analytical and numerical tools needed to
construct SDEs tailored to their own sampling needs.
Throughout we take advantage of the dimensional reduction
scheme, which allows one to exploit the equivalence between
non-Markovian dynamics and Markovian dynamics in higher
dimensionality. In doing this, we supplement the physical
coordinates with additional degrees of freedom,4 whose
equations of motion are taken as linear, so as to simplify
the formalism and analytical derivations.

In the Appendices we recall some of the properties of
multidimensional stochastic processes,5,10–12 which are useful
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to our discussion, and present a short comparison of the GLE
thermostat and the widely used massive Nosé-Hoover
chains.13–16 A simple FORTRAN90 code implementing our
method to the dynamics of a harmonic oscillator and a library
of optimized thermostat parameters can be downloaded from
an online repository.17

2. Generalized Langevin Thermostat

2.1. Markovian and Non-Markovian Formulations.
The Langevin equation for a particle with position q and
momentum p, subject to a potential V(q), can be written as

where �(t) represents an uncorrelated, Gaussian-distributed
random force with unitary variance and zero mean [〈�〉 ) 0,
〈�(t)�(0)〉 ) δ(t)]. Here and in what follows we use mass-
scaled coordinates. Furthermore, for consistency, the friction
coefficient (usually denoted by γ) is here given the symbol
app, while bpp is the intensity of the random force. In this
notation, the fluctuation-dissipation theorem (FDT) reads
bpp

2 ) 2appkBT. If this relation holds, the dynamics generated
by eq 1 will sample the canonical ensemble at temperature T.4,18

As explained in the Introduction, in order to bypass the
complexity of dealing with a non-Markovian formulation
directly, we supplement the system with n additional
degrees of freedom s ) {si}, which are linearly coupled
to the physical momentum and between themselves. The
resulting SDE can be cast into the compact form

Here, � is a vector of n + 1 uncorrelated Gaussian random
numbers with 〈�i(t)�j(0)〉 ) δijδ(t). Clearly, eq 1 is
recovered when n ) 0. For a harmonic potential V(q) )
ω2q2/2, eqs 2 are linear and an Ornstein-Uhlenbeck (OU)
process is recovered whose time propagation can be
evaluated analytically. In the nonlinear case one can use
the Trotter decomposition to split the dynamics into a
linear part, which evolves the (p, s) momenta, and a
nonlinear part, which evolves Hamilton’s equations.19 This is
facilitated by the fact that the dynamics of (p, s) alone is linear,
and its exact finite-time propagator can be analytically evaluated
(see section 2.5).

Here and in the rest of the paper, we adopt the same
notation introduced in ref 9 to distinguish between matrices
acting on the full state vector x ) (q, p, s)T or on parts of it
as illustrated below:

The Markovian dynamical eqs 2 are equivalent to a non-
Markovian process for the physical variables only. This is
best seen by first considering the evolution of the (p, s)
variables in the free-particle analogue of eqs 2. The additional
degrees of freedom s can be integrated away, and one is left
with (see ref 4 and Appendix A)

where the memory kernel K(t) is related to the elements of
Ap by

On the basis of the fact that the free-particle dynamics of
(p, s) is an OU process, one also finds than the relationship
between the static covariance matrix Cp ) 〈(p, s)T(p, s)〉, the
drift matrix Ap, and the diffusion matrix Bp is given by

Note the remarkable formal analogy between eq 6 and the
equations for the orthogonality constraints in Car-Parrinello
dynamics, see, e.g., ref 20. In Appendix A we show that
setting Cp ) kBT is sufficient to satisfy the FDT. In this case,
eq 6 fixes Bp once Ap is given. FDT also implies that the
colored-noise autocorrelation function H(t) ) 〈�(t)�(0)〉 is
equal to kBTK(t), whereas the more complex relation between
K(t) and H(t), valid in the general case, is reported in eq 27.

Since there is no explicit coupling between the position q
and the additional momenta s, one can check that exactly
the same dimensional reduction can be performed in the case
of an arbitrary potential coupling p and q and that eqs 2
correspond to the non-Markovian process

In the memory kernel eq 5, A can be chosen to be a general
real matrix and can have complex eigenvalues, provided they
have a positive real part. This results in a K(t) that is a linear
combination of exponentially damped oscillations. Therefore,
a vast class of non-Markovian dynamics can be represented
by Markovian equations such as eqs 2.

2.2. Exact Solution in the Harmonic Limit. The ther-
mostats typically used in MD simulations have a few
parameters that are chosen by trial and error. A thermostat
based on eqs 2 depends on a much larger number of
parameters, and hence the fitting procedure is more complex.
It is therefore important to find ways to compute a priori
analytical estimates so as to guide the tuning of the
thermostat.

To this end, we examine the harmonic oscillator, which
is commonly used to model physical and chemical systems.
By choosing V(q) ) ω2q2/2 the force term in eqs 2 becomes
linear and the dynamics of x ) (q, p, s)T is the OU process
ẋ ) -Aqpx + Bqp�. In eqs 2 the s degrees of freedom are
coupled to the momentum only. Therefore, most of the
additional entries in Aqp and Bqp are zero, and the equations
for x read

q̇ ) p
ṗ ) -V'(q) - appp + bpp�(t)

(1)

q̇ ) p

(ṗ
ṡ ) ) (-V′(q)

0 ) - (app ap
T

āp A )(p
s ) + (bpp bp

T

b̄p B )(�)
(2)

ṗ ) -∫-∞

t
K(t - s)p(s)ds + �(t) (4)

K(t) ) 2appδ(t) - ap
Te-|t|Aāp (5)

ApCp + CpAp
T ) BpBp

T (6)

q̇ ) p

ṗ ) -∂V
∂q

- ∫-∞

t
K(t - s)p(s)ds + �(t)

(7)
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The exact finite-time propagator for eq 8 can be computed,
and so it is possible to obtain any ensemble average or time-
correlation function analytically. Of course, one is most
interested in the expectation values of the physical variables
q and p. In particular, one can obtain the fluctuations 〈q2〉
and 〈p2〉 and correlation functions of the form 〈q2(t)q2(0)〉,
which can be used to measure the coupling between the
thermostat and the system. The resulting expressions are
simple to evaluate but lengthy, and we refer the reader to
Appendix B for their explicit form.

One can envisage, using the estimates computed for an
oscillator of frequency ω, to predict and hence optimize the
response of a normal mode of a similar frequency in the
system being studied. Furthermore, thanks to the properties
of eq 8, one does not need to perform a normal-modes
analysis to turn this idea into a practical method. Consider
indeed a perfect harmonic crystal and apply an independent
instance of the GLE thermostat to the three Cartesian
coordinates of each atom. It is easy to see that since eq 8 is
linear and contains Gaussian noise, the thermostatted equa-
tions of motion are invariant under any orthogonal transfor-
mation of the coordinates. Therefore, the resulting dynamics
can be described on the basis of the normal modes just as in
ordinary Hamiltonian lattice dynamics. As a consequence,
each phonon will respond independently as a 1-D oscillator
with its own characteristic frequency. Thus, to tune the GLE
thermostat, one only needs the analytical results in the one-
dimensional case, evaluated as a function of ω. The
parameters can then be optimized for a number of different
purposes, based solely on minimal information on the
vibrational spectrum of the system under investigation,
without any knowledge of the eigenmodes of the phonons.

The invariance properties of the GLE thermostat lead to
additional advantages. For instance, we can contrast its
behavior with that of Nosé-Hoover (NH) chains, based on
equations which are quadratic in p (see Appendix C). As a
consequence of the nonlinearity, the efficiency of an NH
chains thermostat for a multidimensional oscillator depends
on the orientation of the eigenmodes relative to the Cartesian
axes, an artifact which is absent in our case.

Having set the background, we now turn to the description
of the various applications of eqs 2.

2.3. Efficient Canonical Sampling. We first discuss the
design of a GLE which can optimally sample phase space.
In this case, the target stationary distribution is the canonical
ensemble, so the equations of motion need to satisfy the
detailed-balance condition. Still, there is a great deal of
freedom available in the choice of the autocorrelation kernel
or, equivalently, in the choice of the Ap matrix. These free
parameters can be used to optimize the sampling efficiency.
To this end, we must first define an appropriate merit
function. Standard choices are the autocorrelation times of
the potential and total energy (V and H, respectively):

In the harmonic case, these can be readily computed in terms
of correlation times of q2 and p2 (see Appendix B) and will
depend on Ap and the oscillator’s frequency ω. For example,
one easily finds that in the white-noise limit with no
additional degrees of freedom as in eq 1

Both response times are constant in the high-frequency limit
and increase quadratically in the low-frequency extreme of
the spectrum. For a given frequency one can choose app so
as to minimize the correlation time, thus enhancing sampling.
It should be noted that eqs 10 contain a “trivial” dependence
on ω, as one expects that sampling a normal mode would
require at least a time on the order of its vibrational period.
One can thus define a renormalized κ(ω) ) [τ(ω)ω]-1 as a
measure of the efficiency of the coupling. In the white-noise
case, κ ) 1 for the optimally coupled frequency (ωH ) app/2
and ωV ) app, respectively) and decreases linearly for lower
and higher values of ω.

While this result in itself provides a guide to choose a
good value of the friction coefficient in conventional (white-
noise) Langevin dynamics, we can enhance the value of κ(ω)
over a broader frequency range by using a colored-noise
SDE. If we want to obtain canonical sampling, the FDT has
to hold, so that Cp ) kBT. We therefore consider the entries
of Ap as the only independent parameters, since Bp is then
determined by eq 6.

In practice, we set up a fitting procedure in which we
choose a set of frequencies ωi distributed over a broad range
(ωmin, ωmax). For an initial guess for the thermostat matrix
Ap we compute κ(ω) for each of these frequencies. We then
vary Ap so as to optimize miniκ(ωi) and aim at a sampling
efficiency on the range (ωmin, ωmax) which is as high and
frequency independent as possible. We will discuss this
fitting procedure in more detail in section 3.

In Figure 1 we compare the optimized κ(ω) for different
frequency ranges and number of additional degrees of
freedom. We find empirically that κ(ω) ) 1 is the best result
which can be attained and that nearly optimal efficiency can
be reached over a very broad range of frequencies. This
constant efficiency decreases slightly as the fitted range is
extended, regardless of the number n of si employed. For a
given frequency range, however, increasing n has the effect
of making the response flatter.

Clearly this scheme will work optimally in harmonic or
quasi-harmonic systems, and anharmonicity will introduce
deviations from the predicted behavior. In the extreme case
of diffusive systems such as liquids, one has to ask the
question of how much diffusion will be affected by the
thermostat, especially since in an overdamped LE equation
the diffusive modes are considerably slowed down (see, e.g.,
ref 21). To estimate the impact of the thermostat on the

(q̇
ṗ
ṡ

) ) -( 0 -1 0

ω2 app ap
T

0 āp A
)(q

p
s ) + (0 0 0

0
0

Bp )(0

� ) (8)
τV ) 1

〈V2〉 - 〈V〉2 ∫0

∞
〈(V(t) - 〈V〉)(V(0) - 〈V〉)〉dt

τH ) 1

〈H2〉 - 〈H〉2 ∫0

∞
〈(H(t) - 〈H〉)(H(0) - 〈H〉)〉dt

(9)

τH(ω) ) 1
app

+
app

4ω2
, τV(ω) ) 1

2app
+

app

2ω2
(10)
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diffusion, we define the free-particle diffusion coefficient D*
as that calculated switching off the physical forces. Its value
when a GLE thermostat is used is

where we assumed the FDT to hold. In practical cases, if an
estimate of the unthermostated (intrinsic) diffusion coefficient
D is available, one should choose the matrix Ap in such a
way that D* . D, so that the thermostat will not behave as
an additional bottleneck for diffusion. Equation 11 has the
interesting consequence that D* can be enhanced either by
reducing the overall strength of the noise, as in white-noise
LE, or by carefully balancing the terms in the denominator
of eq 11.

We found empirically that for an Ap matrix fitted to
harmonic modes over the frequency range (ωmin, ωmax) the
diffusion coefficient computed by eq 11 is D* ≈ kBT/mωmin.
This latter expression gives a useful recipe for choosing the
minimal frequency to be considered when fitting a GLE
thermostat for a system whose diffusion coefficient can be
roughly estimated.

2.4. Frequency-Dependent Thermostatting. The ability
to control the strength of the thermostat-system coupling
as a function of the frequency, demonstrated above, points
quite naturally at more sophisticated applications. For
instance, one can apply two thermostats with distinct target
temperatures and different efficiencies κ(ω) (see Figure 2).
Obviously, such a simulation is not an equilibrium one, since
energy is systematically injected in some modes and removed
from others, but leads to a steady state that has useful

properties. Indeed, the normal modes will couple differently
to the two thermostat, so that the effective temperature of
each mode can be controlled as a function of ω. This two-
thermostats example is just an instance of a broader class of
stochastic processes, for which the FDT is violated. In
general, we can relax the assumption that Cp ) kBT, and for
a given drift matrix we can choose a Bp, which is suitable
to our purpose.

Returning to the harmonic oscillator case, one can solve
exactly the dynamics for a given choice of Ap, Bp, and
frequency ω. The resulting dynamics is performed in the
(n+2)-dimensional space defined by the variables (q, p, s)
according to eq 8. For a compact notation, we used the full
matrices Aqp and Bqp. The full Cqp(ω), which defines the
stationary distribution in the steady state, can be computed
solving an equation analogous to eq 6

One can tune the free parameters (Ap and Bp) so as to make
the cqq(ω) and cpp(ω) elements of the extended covariance
matrix as close as possible to the desired target functions
〈q2〉(ω) and 〈p2〉(ω).

In a previous paper9 we applied this method to obtain
〈q2〉(ω) and 〈p2〉(ω) in agreement with the values appropriate
for a quantum harmonic oscillator and obtained a good
approximation to the quantum-corrected structural properties
in quasi-harmonic systems. Many other applications can be
envisaged, which take advantage of frequency-dependent
thermostatting. For instance, one could use this technique
in accelerated sampling methods,22–24 which work by
artificially heating the low-frequency modes while keeping
the other modes at the correct temperature.

2.5. Implementation. The implementation of a GLE
thermostat in molecular-dynamics simulations is straight-
forward. Here, we consider the case of a velocity-Verlet

Figure 1. Sampling efficiency as estimated from eq 9 for a
harmonic oscillator, plotted as a function of the frequency ω.
The κ(ω) curve for a white-noise Langevin thermostat opti-
mized for ω ) 1 (black, dotted lines, eq 10) is contrasted with
those for a set of optimized GLE thermostats. The panels,
from bottom to top, contain the results fitted, respectively, over
a frequency range spanning 2, 4, and 6 orders of magnitudes
around ω ) 1. Dark, continuous lines correspond to matrices
with n ) 4, and dashed, lighter lines correspond to n ) 2.
The GLE curves correspond to the sets of parameters
kv_4-2, kv_2-2, kv_4-4, kv_2-2, kv_4-6, kv_2-6, which
can be downloaded from an online repository.17

mD*
kBT

) 1

〈p2〉
∫0

∞
〈p(t)p(0)〉 dt

) [Ap
-1]pp ) (app - ap

TA-1āp)
-1

(11)

Figure 2. Cartoon representing a two-thermostat setup, which
we take as the simplest example of a stochastic process
violating the fluctuation-dissipation theorem. If the relaxation
time versus frequency curves for the two thermostats are
different, a steady state will be reached in which normal
modes corresponding to different frequencies will equilibrate
at different effective temperatures.

AqpCqp + CqpAqp
T ) BqpBqp

T (12)

Colored-Noise Thermostats à la Carte J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1173



integrator, which updates positions and momenta by a time
step ∆t, according to the scheme:

Equations 13 can be obtained using Trotter splitting in a
Liouville operator formalism.25 In the same spirit one can
introduce our GLE thermostat by performing two free-
particle steps by ∆t/2 on the (p, s) variables:19

At variance with thermostats based on second-order equations
of motion such as Nosé-Hoover, where a multiple time-
step approach is required to obtain accurate trajectories,26,27

this free-particle step can be performed without introducing
additional sampling errors. The exact finite-time propagator
for (p, s) reads

where � is a vector of n + 1 uncorrelated Gaussian numbers
and the matrices T and S can be computed once at the
beginning of the simulation and for all degrees of freedom.10,28

The relations between T, S, Ap, Cp, and ∆t read

It is worth pointing out that when FDT holds, the canonical
distribution is invariant under the action of eq 15, whatever
the size of the time step. A useful consequence of this
property is that in the rare cases where applying eq 15
introduces a significant overhead over the force calculation,
the thermostat can be applied every m steps of dynamics
using a stride of m∆t. This will change the trajectory but
does not affect the accuracy of sampling.

The velocity-Verlet algorithm (eq 13) introduces finite-∆t
errors, whose effect needs to be monitored. In microcanonical
simulations, this is routinely done by checking conservation
of the total energy H. Following the work of Bussi et al.29

we introduce a conserved quantity H̃, which can be used for
the same purpose

where ∆Ki is the change in kinetic energy due to the action
of the thermostat at the ith time step and the sum is extended
over the past trajectory. In cases where the FDT holds, such
as that described in section 2.3, the drift of the effective
energy quantitatively measures the violation of detailed
balance induced by the velocity-Verlet step, similarly to
refs 19 and 29. In the cases where the FDT does not hold,
such as the frequency-dependent thermostatting described
in section 2.4, the conservation of this quantity just measures
the accuracy of the integration, similarly to refs 30 and 31.

3. Fitting of Colored-Noise Parameters

A key feature of our approach resides in the possibility to
optimize the performance of the thermostat based on analyti-
cal estimates, making the method effectively parameterless.
Such optimization, however, is not trivial, even if compu-
tationally inexpensive. The relationship between Ap, Bp, and
the correlation properties of the resulting trajectory is highly
nonlinear. Furthermore, we found empirically that many local
minima exist which greatly hinder the optimization process.
With these difficulties in mind, we provide a downloadable
library of fitted parameters17 which can be adapted to most
of the foreseeable applications, according to the prescriptions
given in section 3.4. Details about the fitting procedure are
given in the following three sections.

3.1. Parameterization of GLE Matrices. A number of
constraints must be enforced on the drift and diffusion
matrices in order to guarantee that the resulting SDE is well
behaved. It is therefore important to find a representation of
the matrices such that during fitting these conditions are
automatically enforced and that the parameters space is
efficiently explored. A first condition, required to yield a
memory kernel with exponential decay, is that all the
eigenvalues of Ap must have positive real part. A second
requirement is that the kernel K(ω) is positive for all real ω.
This ensures that the stochastic process will be consistent
with the second law of thermodynamics.32

Finding the general conditions for Ap to satisfy this second
constraint is not simple. However, we can state that a
sufficient condition for K(ω) > 0 is that Ap + Ap

T is positive
definite. For simplicity we shall assume such a positivity
condition to hold, since we found empirically that this modest
loss of generality does not significantly affect the accuracy
or the flexibility of the fit. Moreover, in the case of canonical
sampling, Ap + Ap

T > 0 is also required in order to obtain a
real diffusion matrix, since BpBp

T ) kBT(Ap + Ap
T) according

to eq 6.

One would like to find a convenient parametrization, which
automatically enforces these constraints. This is best done
by writing Ap ) Ap

(S) + Ap
(A), the sum of a symmetric and

antisymmetric part. Since any orthogonal transform of the s
degrees of freedom would not change the dynamics (see
Appendix A), one can assume without loss of generality that
the A(S) block in Ap

(S) is diagonal (see eq 3 for the naming
convention). Since in the general case the antisymmetric Ap

(A)

does not commute with Ap
(S), we will assume it to be full,

while Ap
(S) can be written in the form

In order to enforce the positive definiteness, one uses an
analytical Cholesky decomposition Ap

(S) ) QpQp
T with

p r p - V′(q)∆t/2
q r q + p∆t
p r p - V′(q)∆t/2

(13)

(p, s) r P [(p, s), ∆t/2]
p r p - V'(q)∆t/2
q r q + p∆t
p r p - V'(q)∆t/2

(p, s) r P [(p, s), ∆t/2]

(14)

P [(p, s), ∆t]T ) T(∆t)(p, s)T + S(∆t)�T (15)

T ) e-∆tAp, SST ) Cp - e-∆tApCpe
-∆tAp

T

H̃ ) H - ∑
i

∆Ki (16)

Ap
(S) ) ( a a1 a2 . . . an

a1 R1 0 . . . 0
a2 0 R2

··· 0

l l ···
··· l

an 0 0 . . . Rn

) (17)

1174 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Ceriotti et al.



and Ri ) di
2, ai ) diqi, and a ) q2 + Σiqi

2. Such a
parametrization guarantees that Ap will generate a dynamics
with a stationary probability distribution and requires 2n +
1 parameters for the symmetric part (the elements of Qp, eq
18) and n(n + 1)/2 for the antisymmetric part Ap

(A). If we
want the equilibrium distribution to be the canonical, we must
enforce the FDT and BpBp

T is uniquely determined.
If we aim at a generalized formulation, which allows for

frequency-dependent thermalization, there are no constraints on
the choice of Bp other than the fact that both BpBp

T and the
covariance Cp must be positive definite. Clearly, a real, lower
triangular Bp is the most general parametrization of a positive-
definite BpBp

T and amounts to introducing (n + 1)(n + 2)/2 extra
parameters. Together with the assumption that Ap

(S) > 0, the
condition BpBp

T > 0 is sufficient to ensure that the unique
symmetric Cp which satisfies eq 6 is also positive definite.

3.2. Fitting for Canonical Sampling. Armed with such
a robust and fairly general parametrization, one only needs
to define a merit function to be optimized. Again, we first
consider the simpler case of canonical sampling. Here, we
want to obtain a flat response over a wide, physically relevant
frequency range (ωmin, ωmax). We have chosen the form

where ωis are equally spaced on a logarithmic scale over
the fitted range. If a large value of m is chosen, the ωi which
yields the lowest efficiency is weighted more and a flat
response curve is obtained. We found empirically that values
of m larger than 10 lead to a proliferation of local minima
and hinder efficient optimization. To resolve this, one can
use the optimal parameters for m ) 2 as input for further
refinement at larger m until convergence is achieved.

This procedure can be modified so as to provide an
efficient thermostat which can be used in Car-Parrinello-
like dynamics. In this case, the GLE has to act as a low-
pass filter in which only the low ionic frequencies are
affected and fast electronic modes are not perturbed. To
obtain this effect, we compute eq 19 only for the ωi’s which
are smaller than a cutoff frequency ωCP and introduce an
additional term

�2 enforces a steep decrease of κ(ω) above ωCP with a slope
k on a logarithmic scale. Values of k as large as 9 can be
used, which guarantee an abrupt drop in thermalization
efficiency for the fast modes (see Figure 3).

3.3. Nonthermal Noise and Quantum Thermostat. We
now discuss the case in which the thermostat is permitted to
violate FDT in order to achieve frequency-dependent equili-

bration. For these applications, one must also fit the fluctua-
tions cpp(ω) and cqq(ω) to some target function c̃pp and c̃qq.
We shall not treat the general case but rather investigate the
example of the quantum thermostat (ref 9). The procedure
followed provides a clear guide for future extensions to
different applications.

In order to reproduce quantum ions effects, one must
selectively heat high-frequency phonons for which zero-point
energy effects are important without affecting the low-
frequency modes which behave classically. The required
frequency dependence of the variance for this case is that of
a quantum oscillator, i.e., c̃pp(ω) ) ω2c̃qq(ω) ) pω/2 coth
pω/2kBT. The ω f 0 classical limit can be proved to
correspond to two conditions on the elements of the free-
particle covariance matrix Cp, namely, cpp ) kBT and ap

TA-1cp

) 0. One could enforce such constraints exactly by consider-
ing the entries of Cp as independent fitting parameters and
obtaining the diffusion matrix from eq 6. We found however
that this choice makes it difficult to obtain a positive-definite
BpBp

T and that the fitting becomes more complex and
inefficient.

As an alternative, we decided to enforce the low-frequency
limit with an appropriate penalty function

to be optimized together with the sampling efficiency (eq
19) and a term which measures how well the finite-frequency
fluctuations were fitted

Since the low-frequency limit is already enforced by eq 21,
we compute eq 22 on a set of points equally spaced between

Qp ) (q q1 q2 . . . qn

0 d1 0 . . . 0
0 0 d2

··· 0

l l ···
··· l

0 0 0 . . . dn

) (18)

�1 ) [ ∑
i

|log κ(ωi)|
m]1/m

(19)

�2 ) [ ∑
ωi>ωCP

max[log κ(ωi) - k log
ωCP

ωi
, 0]m]1/m

(20)

Figure 3. Thermostatting efficiency, as estimated from eq 9,
for a colored-noise thermostat optimized for Car-Parrinello
dynamics. Sampling efficiency is optimized for ω ∈ (10-3, 1),
and an abrupt drop in efficiency is enforced for ω ∈ (1, 10)
using the penalty function eq 20in the fitting. The continuous
(dark red) curve corresponds to k ) 9, the dashed (orange)
curve to k ) 6, and the dotted (light orange) curve to k ) 3.
The κ(ω) curve for a white-noise thermostat centered on the
optimized range is also reported for reference (dotted black
curve). The three curves correspond to the parameters set,
cp-9_4-3, cp-6_4-3 and cp-3_4-3.17

�3 ) (cpp/kBT - 1)2 + (ap
TA-1cp/kBT)2 (21)

�4 ) [ ∑
i

|log
cqq(ωi)

c̃qq(ωi) |m + |log
cpp(ωi)

c̃pp(ωi) |m]1/m

(22)

Colored-Noise Thermostats à la Carte J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1175



the maximum frequency ωmax and one-half of the onset
frequency for quantum effects ωq ) kBT/p.

3.4. Transferability of Fitted Parameters. The scheme
described in the previous sections allowed us to obtain
matrices suitable for all the applications discussed in previous
works. Furthermore, it provides a starting point for obtaining
matrices which one might deem useful for novel applications.
However, the reader is advised that the fitting is still far from
being a black-box procedure. It is thus necessary to experi-
ment with a combination of different initial parameters and
minimization schemes. We found the downhill simplex
method33 to be particularly effective but resorted to simulated
annealing when the optimization got stuck in a local
minimum. There is a great deal of arbitrariness in the choice
of the terms in eqs 19-22 and in their weighted combination
� ) Σwi�i. To make the procedure even more delicate, we
observe that in high-n cases the parameters tend to collapse
into “degenerate” minima, where the full dimensionality of
the search space is not exploited. This phenomenon can be
successfully circumvented by enforcing an even spacing of
the eigenvalues of A over the frequency range of interest
and slowly releasing this restraint during the later stages of
optimization.

However, the problems mentioned above have no major
practical consequences, as the computation of analytical
estimates is inexpensive and one can afford a great deal of
trial and error during the optimization. Moreover, fitted
parameters can be reused, since the optimized parameters
can be easily transferred to similar problems because of the
scaling properties of the dynamics (eq 8).

In fact, one can see that if the drift and covariance matrices
(Ap, Cp) lead to the efficiency curves κ(ω) and fluctuations
cpp(ω), the scaled matrices (RAp, �Cp) will yield κ(R-1ω)
and the fluctuations �cpp(R-1ω). This means that if Ap is
optimized for sampling over the range (ωmin, ωmax), RAp will
be optimal over (Rωmin, Rωmax). We also remark that if
(Ap, Cp) are fitted to the quantum harmonic oscillator
fluctuations at temperature T, (RAp, RCp) will be suitable
for temperature RT. Care must be taken in this case to ensure
that the scaled frequency range still encompasses the whole
vibrational spectrum of the system being studied.

4. Understanding the Quantum Thermostat

As discussed in ref 9, one must pay a great deal of attention
when using a “quantum thermostat” because energy is
transferred between modes of different frequency as a
consequence of the anharmonic coupling. This is reminiscent
of zero-point energy (ZPE) leakage which plagues semiclas-
sical approaches to the computation of nuclear quantum
effects.34,35 In the cases we explored so far, empirical
evidence suggests that quasi-harmonic solids can be treated
with good accuracy down to temperatures as low as 10% of
the Debye temperature ΘD. Clearly, the ultimate test to assess
the accuracy of the method is a comparison with path-integral
calculations to be performed on a similar but computationally
cheaper model, such as a smaller size box or a simpler force
field.

One would like however to obtain some qualitative
measure of the quality of the fit and gauge the transferability
of a given set of parameters. To this end, we first state a
couple of empirical rules and then validate them on two fairly
different real systems. A first observation is that it is useless
to push the fitting of the fluctuations cpp(ω) and cqq(ω) to
very high accuracy if this comes at the expense of the
coupling efficiency. In fact, we would be trading a small,
controlled fitting error with a possibly larger, uncontrollable,
and system-dependent error stemming from anharmonicity.
Second, we observed that in order to contrast more ef-
fectively the flow of energy between different phonons, one
should try to reduce the correlation time of the kinetic energy
τK, rather than focus solely on the terms in eq 9, which are
better suited to measure sampling efficiency. In fact, a low
τK(ω) corresponds to a slightly overdamped regime, where
sampling efficiency is suboptimal but ZPE is enforced more
tightly.

To demonstrate these concepts in a real system, we
performed some calculations with a Tersoff model of
diamond at a temperature T ) 200 K. At this low temper-
ature, slightly below 0.1ΘD, quantum effects are very strong
and we therefore expect to have problems maintaining the
large difference in temperature between the stiff and soft
phonons. Using a very harmonic system such as diamond is
particularly useful, since one can monitor directly the
efficiency of the thermostat by projecting the atomic veloci-
ties on a selection of normal modes. Hence, a projected
kinetic temperature T’(ω) can be computed and its value
checked against the predictions in the harmonic limit in the
same spirit as in ref 9. In Figure 4 we report the results with
a matrix fitted taking into account only the terms in eqs 21
and 22. Even in a harmonic system such as diamond there
are major errors due to ZPE leakage from the high-frequency

Figure 4. (a) ω dependence of the kinetic energy correlation
time τk(ω) (light, dotted line) and the ratio of the fitted
fluctuations cpp(ω) (dashed line) and ω2cqq(ω) (full line) with
the exact, quantum-mechanical target function. (b) Normal-
mode-projected kinetic temperature for a few selected phonons
in diamond. The dashed line is the value expected from the
fitted cpp(ω), while the full line is the exact, quantum-
mechanical expectation value for a harmonic oscillator.
Calculations have been performed with the parameters
qt-20_6_BAD.17
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to the low-frequency modes, which the thermostat compen-
sates only partially. These poor results should be compared
with those of Figure 5. Here, we also introduced in the fit a
term analogous to 19 to reduce the value of τK(ω). The
projected kinetic temperature now agrees almost perfectly
with the analytical predictions cpp(ω) for most of the modes.
The only ones displaying significant deviations are the faster
ones, for which the value of τK(ω) is slightly larger. The
cpp(ω) curve deviates by nearly 10% from the exact,
quantum-mechanical expectation value. However, thanks to
the more efficient coupling, the errors due to anharmonicities
are better compensated, and in actuality, the overall error is
much smaller than for the parameters presented in Figure 4.

To test whether these prescriptions work for less harmonic
problems, we now turn to a completely different system;
namely, the structural properties of solid neon at 20 K. At
variance with diamond, quantum-ions effects are less pro-
nounced, but the system is close to its melting temperature
and is significantly anharmonic. As shown in Figure 6, the
agreement between our results and those of accurate path-
integral calculations36 is almost perfect if the parameters of
Figure 5 are used. As expected, large errors are present if
qt-20_6_BAD is used. Further improvements on the fitting
strategy and the application to strongly anharmonic systems
is currently being investigated and will be the subject of
further work.

5. Conclusions

In this paper we discussed in detail the use of colored-noise
dynamics based on Ornstein-Uhlenbeck processes as a tool
for performing molecular dynamics. Applications range from
enhanced sampling, which we demonstrate in the harmonic
limit and will be applied to real systems in forthcoming

publications, to thermostats for adiabatically separated
problems and frequency-dependent thermalization.

Our idea exploits the linear nature of the OU stochastic
differential equations, which allows one to use the one-
dimensional harmonic oscillator as a simple but physically
motivated reference model. On the basis of the analytical
prediction obtained in that case, we describe a recipe for
fitting the thermostat parameters so as to obtain the desired
response properties in real systems. The procedure is not
simple, and we are considering different approaches to make
it more robust and effective. Fortunately, however, fitted
matrices can be easily transferred from one system to another.
With this in mind we provided an extensive library of
optimized parameters,17 which makes fitting unnecessary for
most applications.

We also comment on practical issues concerning the imple-
mentation of the generalized-Langevin thermostat in a molec-
ular-dynamics program and its use in applications. In particular,
we discuss in detail how one can use colored noise to model
nuclear quantum effects.9 We provide some empirical rules to
guide the fitting in this difficult case, and we demonstrate that
a normal-mode analysis in a quasi-harmonic system is a
valuable tool for assessing the quality of a set of parameters.
We believe that further investigation will find many other
applications for colored noise in molecular dynamics and in
computer simulations of molecular systems in general. As an
example, we are currently investigating the use of a zero-
temperature, optimal-sampling GLE thermostat in order to
perform structural optimization. On similar lines and taking
inspiration from “quantum annealing”,37,38 one can envisage
using frequency-dependent thermalization to improve the
performance of simulated annealing.

Appendix A: Memory Kernels for the
Non-Markovian Formulation

The connection between the Markovian (eq 2) and non-
Markovian (eq 7) formulations of the colored-noise Langevin
equation can be understood using techniques similar to those
adopted in Mori-Zwanzig theory.4,11 Let us first consider a
very general, multidimensional OU process, where we single

Figure 5. (a) ω dependence of the kinetic energy correlation
time τK(ω) (light, dotted line) and the ratio of the fitted
fluctuations cpp(ω) (dashed line) and ω2cqq(ω) (full line) with
the exact, quantum-mechanical target function. (b) Normal-
mode-projected kinetic temperature for a few selected phonons
in diamond. The dashed line is the value expected from the
fitted cpp(ω), while the full line is the exact, quantum-
mechanical expectation value for a harmonic oscillator.
Calculations have been performed with the parameters
qt-20_6.17

Figure 6. Radial distribution function as computed from fully
converged path-integral calculations36 (black, dotted line) and
a quantum-thermostat MD trajectory for a Lennard-Jones
model of solid neon at T ) 20 K. Distances are in reduced
units. Full line corresponds to the parameters set qt-20_6 (cf.
Figure 5) and lighter, dashed line to the set qt-20_6_BAD (cf.
Figure 4).
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out some degrees of freedom (y) that we wish to integrate
away, leaving only the variables marked as x.

Assuming that the dynamics has finite memory, one can
safely take y(-∞) ) 0 and the ansatz

Substituting into eq 23, one sees that y can be eliminated
from the dynamics of x and arrives at

One can see that eqs 25 are invariant under any orthogonal
transformation of the y dynamical variables, meaning that
such a transformation leaves the dynamics of the x’s
unchanged.

The colored noise is better described in terms of its time-
correlation function, H(t) ) 〈�(t)�(0)T〉. Let us first introduce
the symmetric matrix D ) BBT, whose parts we shall label
using the same scheme used for A in eq 23. We shall also
need Zyy ) ∫0

∞e-AyytDyye-Ayy
T t dt. With these definitions in mind,

one finds

Note that the value of H(t) for t < 0 is determined by the
constraint H(-t) ) H(t)T; the value of K(t) instead is
irrelevant for negative times: we will assume K(-t) ) K(t)T

to hold, since this will simplify some algebra below.
Let us now switch to the case of the free-particle

counterpart of eqs 2, which is relevant to the memory
functions entering eqs 7. Here, we want to integrate away
all the s degrees of freedom, retaining only the momentum
p. Hence, we can transform eqs 25 and 26 to the less
cumbersome form

This compact notation hides certain relevant property of the
memory kernels, which are more apparent when the kernels
are written in their Fourier representation. If Dp ) BpBp

T is
transformed according to eq 6. K(ω) and H(ω) read

It is seen that the memory functions (hence the dynamical
trajectory) are independent of the value of C, the covariance
of the fictitious degrees of freedom. Moreover, a sufficient

condition for the FDT to hold is readily found. By setting
cpp ) kBT and cp ) 0, one obtains H(ω) ) kBTK(ω), which
is precisely the FDT for a non-Markovian Langevin equation.
Since the value of C is irrelevant we can take Cp ) kBT,
which simplifies the algebra and leads to numerically stable
trajectories.

Appendix B: Covariance Matrix and
Correlation Times for the Harmonic
Oscillator

Given A and C matrices (the drift term and static covariance
for a generic OU process), one can find the diffusion matrix
B by an expression analogous to eq 6. The same relation
can be used to obtain the elements of C given the drift and
diffusion matrices by solving the linear system. However,
the covariance matrix can be computed more efficiently by
finding the eigendecomposition of A ) O diag(Ri) O-1 and
computing

Now, let x be the vector describing the trajectory of the OU
process. In order to compute τH or τV (eq 9) one needs time-
correlation functions of the form 〈xi(t)xj(t)xk(0)xl(0)〉. The
corresponding, non-normalized integrals

can be computed in terms of the tensorial quantity

as τijkl ) (1/4) (Xijkl + Xijlk + Xklij + Xlkij). For example, if
we consider the full OU process in the harmonic case, one
computes

where we use an obvious notation for the indices in τijkl.

Appendix C: Comparison with Nosé-Hoover
Chains

The most widespread techniques for canonical sampling in
MD are probably white-noise Langevin and Nosé-Hoover
chains (NHC). The white-noise Langevin can be considered
as a limiting case of the thermostatting method we describe
in this work, but NHC is based on a radically different
philosophy. It is therefore worth performing a brief com-
parison between the latter and the GLE thermostat.

In the “massive” version of the NH thermostat,13,14 each
component of the physical momentum is coupled to an
additional degree of freedom with a fictitious mass Q by
means of a second-order equation of motion. The resulting
dynamics ensures that the physically relevant degrees of

(ẋ
ẏ) ) -(Axx

Ayx
|Axy

Ayy
)(x

y) + (Bx�

By�
)(�) (23)

y(t) ) ∫-∞

t
e-(t-t')Ayy[-Ayxx(t') + By��(t')]dt' (24)

ẋ(t) ) -∫-∞

t
K(t - t')x(t')dt' + �(t)

K(t) ) 2Axxδ(t) - Axye
-tAyyAyx (t g 0)

�(t) ) Bx��(t) - ∫-∞

t
Axye

-(t-t')AyyBy��(t')dt'

(25)

H(t) ) δ(t)Dxx + Axye
-tAyy[ZyyAxy

T - Dyx] (t g 0) (26)

K(t) ) 2appδ(t) - ap
Te-|t|Aāp

H(t) ) dppδ(t) + ap
Te-|t|A[Zap - dp]

(27)

K(ω) ) 2app - 2ap
T A

A2 + ω2
āp

H(ω) ) K(ω)(cpp - ap
T A

A2 + ω2
cp) +

2ω2(ap
T 1

A2 + ω2
cp)(1 + ap

T 1

A2 + ω2
āp)

(28)

Cij ) ∑
kl

Oik[O
-1BBTO-1T]klOjl

Rk + Rl
(29)

τijkl ) ∫0

∞
[〈xi(t)xj(t)xk(0)xl(0)〉 - 〈xixj〉〈xkxl〉]dt

(30)

Xijkl ) ∑
mn

Oim[O-1C]mlOjn[O
-1C]nk

Rm + Rn
(31)

τH )
ω4τqqqq + 2ω2τqqpp + τpppp

ω4cqq
2 + 2ω2cqp

2 + cpp
2

, τV )
τqqqq

cqq
2

(32)

1178 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Ceriotti et al.



freedom will sample the correct, constant-temperature en-
semble with the advantage of having deterministic equations
of motion and a well-defined conserved quantity. However,
in the harmonic case, trajectories are poorly ergodic. This
problem can be addressed by coupling the fictitious momen-
tum to a second bath variable with a similar equation of
motion. By repeating this process further a “Nosé-Hoover
chain” can be formed, which ensures that the dynamics is
sufficiently chaotic to achieve efficient sampling.15,41 The
drawback of this approach is that the thermostat equations
are quadratic in momenta. It is therefore difficult to obtain
analytical predictions for the properties of the dynamics, and
the integration of the additional degrees of freedom must be
performed with a multiple time-step approach, which makes
the thermostat more expensive.

To examine the performances of NHC and GLE, one could
envisage comparing the sampling efficiency as defined by the
correlation times (eq 9). Obtaining such estimates is not
straightforward, not only because the harmonic case cannot be
treated analytically but also because in the multidimensional
case the properties of the trajectory will not be invariant under
an orthogonal transformation of coordinates, as discussed in
section 2. The simplest model we can conceive for comparing
NHC and GLE is therefore a two-dimensional harmonic
oscillator with different vibrational frequencies on the two
normal modes and adjustable relative orientations of the
eigenvectors with respect to the thermostatted coordinates.

The resulting τV is reported in Figure 7: in the highly
anisotropic cases, the efficiency of the NH chains depends
dramatically on the orientation of the axes, while for well-
conditioned problems is almost constant. The linear stochastic
thermostat, on the other hand, has a predictable response, which
is completely independent of orthogonal transforms of the
coordinates. In the one-dimensional case, or when eigenvectors

are perfectly aligned with the axes, NH chains are very efficient
for all modes with frequency ω < (kBT/Q)1/2. One should
however consider that in the absence of an exact propagator
choosing a small Q implies that integration of the trajectory
for the chains will become more expensive.

Obviously, such a simple toy model does not give quantitative
information on the behavior in real-life cases, where modes of
different frequencies coexist with anharmonicity and diffusive
behavior. However, it demonstrates that the colored-noise
Langevin thermostat performs almost as well as the axis-aligned
NH chains. Furthermore, unlike the NHC, there are no
unpredictable failures for anisotropic potentials.
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Abstract: Lennard-Jones (LJ) parameters for a variety of model compounds have previously
been optimized within the CHARMM Drude polarizable force field to reproduce accurately pure
liquid phase thermodynamic properties as well as additional target data. While the polarizable
force field resulting from this optimization procedure has been shown to satisfactorily reproduce
a wide range of experimental reference data across numerous series of small molecules, a
slight but systematic overestimate of the hydration free energies has also been noted. Here,
the reproduction of experimental hydration free energies is greatly improved by the introduction
of pair-specific LJ parameters between solute heavy atoms and water oxygen atoms that override
the standard LJ parameters obtained from combining rules. The changes are small and a
systematic protocol is developed for the optimization of pair-specific LJ parameters and applied
to the development of pair-specific LJ parameters for alkanes, alcohols and ethers. The resulting
parameters not only yield hydration free energies in good agreement with experimental values,
but also provide a framework upon which other pair-specific LJ parameters can be added as
new compounds are parametrized within the CHARMM Drude polarizable force field. Detailed
analysis of the contributions to the hydration free energies reveals that the dispersion interaction
is the main source of the systematic errors in the hydration free energies. This information
suggests that the systematic error may result from problems with the LJ combining rules and is
combined with analysis of the pair-specific LJ parameters obtained in this work to identify a
preliminary improved combining rule.

1. Introduction

Computer simulations of atomic models are powerful tools
that have improved the understanding of many biochemical
phenomena, shedding new light on a range of systems from
small molecule conformational preferences1,2 to the dynamics
of a complete virus,3 protein-ligand binding,4 protein

folding,5 and nucleic acid dynamics.6 Underpinning such
computer simulations is the concept of a force field: a
parametrized set of simple differentiable mathematical func-
tions that imitate the quantum mechanical Born-Oppenheimer
energy surface and thus allow the calculation of the forces
acting on atoms and molecules. Most of the force fields
commonly used for the study of biomolecules are based
around similar basic concepts,7 with a series of simplifying
approximations introduced to render the simulation of large
molecules computationally tractable. One such approximation
is that the electrostatic properties of each atom are repre-
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sented by a single effective point charge at the site of the
nucleus, with energies of electrostatic interactions determined
using a Coulomb potential. While this approximation has
been both necessary and successful, it neglects the distortion
of the electron density around an atom or molecule under
the influence of an external field; such models based on fixed
effective partial charges ignore the polarizability of the
molecule. With increasing computational power available to
researchers, the need to use simplified nonpolarizable
potential functions in biomolecular simulations is lessened,
and simulations based on force fields including an explicit
representation of induced polarizability have become
feasible.8–10 Moreover, it is known that there are certain
situations in which the omission of polarizability may result
in a force field unable to yield accurate results.7 For example,
treatment of the cation-π interaction,11 which is potentially
stronger than a conventional hydrogen bond12 and significant
in many biological situations,13–16 has been shown to require
polarizability.17

A number of different methods for the explicit inclusion
of polarizability into molecular mechanics (MM) force fields
are currently being considered.18 These include methods
based on induced point-dipoles,19,20 classical Drude oscil-
lators,21 and the fluctuating charge model.22,23 The CHARMM
Drude polarizable force field is an approach based on the
classical Drude oscillator model24 in which polarizability is
incorporated via the addition of a “Drude particle” associated
with each heavy atom.21 This auxiliary Drude particle carries
a point charge and is attached to its atomic nucleus by a
harmonic spring; it is able to relax its position in response
to an external field and the relative positions of the fixed
charge at the nucleus, and the displacement of the Drude
particle then gives rise to an induced dipole moment,
accounting explicitly for the polarizability. To date, CHARMM
Drude polarizable force field parameters have been developed
for a variety of molecules, with a focus on small molecule
analogues of the functional groups present within biological
macromolecules. Specifically, force field parameters have
been obtained for water,21,25 alkanes,26 alcohols,27 aromat-
ics,28 ethers,29,30 N-containing aromatic heterocycles,31

amides,32 and sulfur-containing compounds.33 This param-
etrization has been achieved through extensive fitting to
quantum mechanical and experimental reference data using
methodologies that have become well-established.34,35 The
resulting parameters have been shown to give satisfactory
reproduction of many experimental properties, including
liquid and crystal phase thermodynamic properties, liquid
phase dielectric constants, dipole moments, interactions with
rare gas molecules, and vibrational spectra. However, the
force field resulting from this well-established optimization
protocol tends to slightly but systematically overestimate the
hydration free energies relative to experimental values (i.e.,
the calculated free energies are too favorable by about 1 kcal/
mol).

Clearly, the ability to match experimental hydration free
energies accurately (i.e., to within a fraction of a kcal/mol)
is highly desirable for a force field that is targeted at the
modeling of biomolecular systems. For example, as Xu et
al. note, “hydration free energies of amino acids are important

because they are directly related to protein folding,
protein-protein and protein-membrane interactions.”36 Shirts
and Pande further argue that one “cannot expect that
calculations performed on more complicated systems, such
as those used to compute ligand-protein binding free
energies, will be any more accurate than the hydration free
energies (or at least the relative hydration free energies) of
the respective small constituents.”37 With many of the
parameters developed for use in the CHARMM Drude
polarizable force field targeted at small molecule analogues
of amino acid side chains and drug-like functional groups,
these statements alone indicate the importance that should
be attached to the accurate reproduction of hydration free
energies for all model compounds within the CHARMM
Drude polarizable force field.

Accurate calculation of hydration free energies has long
been a problem within MM force fields,37–39 and a variety
of approaches have been used in attempts to overcome this
problem. Mobley et al. examined the role of atomic partial
charges by performing calculations using charge sets derived
from increasingly advanced levels of ab initio calculation,
ultimately concluding that modifying the atomic charges
made little difference to the agreement between calculated
and experimental hydration free energies.40 Xu et al. at-
tempted to correct hydration free energies for aromatic groups
using an approach in which π electron density was repre-
sented using a series of non-atom-centered point charges,41–43

finding that a good reproduction of experimental values could
be obtained but, ultimately, that the extra complexity of the
model was not justified when comparable improvements
could be obtained using a simple reparametrization of the
atomic point charges.36 Having previously identified that
additive force fields uniformly “underestimate the solubility
of all the (amino acid) side chain analogs”,44 Shirts and
Pande37 came to a similar conclusion. They suggested that
the inability of biomolecular force fields to reproduce
hydration free energies arose because they were not generally
included in the parametrization process. They also concluded
that, through careful modification of parameters, it was
possible to obtain accurate reproduction of hydration free
energies without sacrificing the reproduction of other proper-
ties of interest. However, attempts to develop a complete
set of parameters for the GROMOS force field based on the
simultaneous reproduction of liquid phase thermodynamic
properties, free energies of solvation in cyclohexane, and
hydration free energies were unsuccessful.39 The authors
concluded that “for almost all functional groups (they) could
not find a combination of a charge distribution and a set of
van der Waals parameters that would reproduce the free
enthalpy of hydration while simultaneously reproducing the
density and heat of vaporization of the pure liquid.”39 Instead,
they ultimately produced two sets of parameters: one for use
in neat liquid simulations and one for use in aqueous phase
calculations. Unsurprisingly, the parameter set optimized to
reproduce hydration free energies (termed 53A6) was
subsequently shown45 to provide a better reproduction of the
hydration free energies of a series of amino acid side chain
analogs than did either the AMBER9946 or OPLS-AA47,48

models. Both of those models yielded hydration free energies
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that were systematically less favorable than the experimental
results. The ability of the 53A6 parameter set to reproduce
solvation free energies in a variety of nonaqueous solvents
has also been tested, with the parameters yielding results
that are generally “in satisfactory agreement with experi-
ment.”49

One of the most persistently problematic areas for MM
force fields has been the accurate representation of the
“anomalous” hydration free energies of amines and amides,
where the addition of hydrophobic methyl groups results in
a more favorable hydration free energy.50,51 Early additive
force fields failed to capture this effect,52 and attempts to
remedy the problem via the inclusion of polarizability also
proved unsuccessful.53,54 Ultimately, the work of Rizzo and
Jorgensen55 and subsequently Chen et al.56 showed that the
errors obtained were due to “nonoptimal parametrization”
and that a good reproduction of experimental data could be
obtained using a well parametrized additive model with “no
need for models with more complex functional forms
including explicit polarizability.”55

Within the CHARMM Drude polarizable force field,
hydration free energies calculated using parameters obtained
from optimizations primarily targeting the accurate reproduc-
tion of pure liquid properties are typically too favorable.
Figure 1 shows the relationship between experimental
hydration free energies and hydration free energies calculated
using the CHARMM Drude polarizable force field taken
from the literature, as well as a previously unpublished set
of hydration free energies calculated for a series of S
containing compounds.33 While the deviations are small,
most are smaller than 1.5 kcal/mol, they are clearly indicative
of a systematic problem. There are three points, representing
ethane, cyclohexane, and ethane thiol, that lie above the line
of perfect correlation, indicating calculated values that are
less favorable than the corresponding experimental values.
The remaining 22 calculated values, which lie below the line,
are more favorable than the corresponding experimental
values. For the acyclic alkanes,26 errors range from 0.07 kcal/
mol (4.0%) for ethane to -0.69 kcal/mol (-32.1%) for
butane (Table 1). It is also notable that, for the linear alkanes,

experimental hydration free energies appear to increase with
increasing chain length, while calculated hydration free
energies decrease with increasing chain length; the hydration
free energies are also too favorable with the alkane param-
eters57 for a CHARMM fluctuating charge58 polarizable force
field, and they do not show the decrease in solvation as a
function of chain length. For the alcohols,27 the errors in
the calculated values range from -0.09 kcal/mol (2%) for
methanol to -1.54 kcal/mol (34%) for butan-2-ol, with the
force field again failing to predict correctly the sign of the
change in hydration free energy that occurs with increasing
chain length (Table 1). Similar results were also obtained
for the ethers30 (Table 1), where all hydration free energies
are predicted by the Drude model to be too favorable, with
errors ranging from -0.05 kcal/mol (2.6%) for dimethyl ether
to -2.22 kcal/mol (71.2%) for tetrahydropyran.

During optimization of Drude parameters for several series
of molecules,27,31 attempts have been made to overcome this
problem and provide an accurate reproduction of experi-
mental hydration free energies. These attempts have focused
on the use of specific atom-atom Lennard-Jones (LJ)
parameters (ie. pair-specific LJ parameters), parameters that
can be introduced using the NBFIX option in the CHARMM
parameter file thereby overriding the standard LJ parameter
combining rules. The use of pair-specific LJ parameters
within the Drude model has focused on modifying the
interaction between solute atoms and the O atom of the
SWM4-NDP25 polarizable water model and has generally
been successful where applied. For example, in the alcohols,
the inclusion of pair-specific parameters to modify the
interaction between the hydroxyl O and the water O reduced
the average error in calculated hydration free energies from
17% to -1%.27

Within the CHARMM Drude polarizable force field, the
repulsion and dispersion components of the nonbond interac-
tion energy, ELJ(r), are calculated using a standard LJ
potential:

where r is the separation between two interacting atoms and
Rmin and ε are two empirical parameters, corresponding to
the value of r at which ELJ(r) is a minimum, and the depth
of the energy well, respectively. The values of Rmin and ε
used to calculate the interaction between two atoms i and j
are obtained from individual parameters assigned to each of
the two interacting atoms via the following combining rules:

When pair-specific LJ parameters are used, however, these
standard combining rules are overridden. Values of Rmin and
ε for a given atom pair are not calculated from individual
contributions arising from each atom but instead are specified
directly. This approach allows for the inclusion of pair-
specific LJ parameters for any atom pairs of choice, while

Figure 1. Comparison of experimental hydration free ener-
gies with published values calculated using the CHARMM
Drude polarizable force field.
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nonbond interactions involving all other atom pairs are
calculated using Rmin and ε values obtained via the standard
combining rules.

As mentioned above, the pair-specific LJ parameter
approach to correcting calculated hydration free energies has
been shown to work.27,31 An objective of the present work
is, therefore, to extend this approach to allow for the
development of new pair-specific LJ parameters in a more
systematic fashion. As an example, consider the case of the
alcohols, where alcohol hydration free energies were modi-
fied by introducing pair-specific LJ parameters.27 The alcohol
parameters were built upon the alkane parameters with the
nonbond parameter optimization focusing on the hydroxyls
and adjacent aliphatic moieties; the remaining alkane pa-
rameters were directly transferred. However, when efforts
were made to correct for the free energies of hydration, pair-
specific LJ terms were introduced only for the hydroxyl O
atoms. Changes were not made in the alkane LJ parameters,
which were problematic, as stated above. This led to
overcompensation in the case of the pair-specific LJ param-
eters for the interaction between the hydroxyl O atom and
the water O atom. Accordingly, it is necessary to reconsider
the implementation of pair-specific LJ parameters in the
Drude polarizable force field.

If the pair-specific LJ approach is to be used to correct
calculated hydration free energies within the CHARMM
Drude polarizable force field, it is essential that these
parameters be applied in a consistent way, which allows for
the simultaneous representation of all classes of molecules.
In addition, it would be useful for future force field
developers if a general parametrization approach could be
developed to allow for parameter optimization that is as

systematic and straightforward as possible. With these goals
in mind, the specific objectives of this work are as follows:

(1) The implementation of pair-specific LJ parameters in
a hierarchical fashion, starting with the alkanes

(2) The development of a consistent set of pair-specific
LJ parameters that give good reproduction of hydration
free energies across all series of parametrized mol-
ecules

(3) The development of a reliable, systematic protocol for
the determination of pair-specific LJ parameters.

2. Theory and Methods

The literature values of the hydration free energies calculated
using the CHARMM Drude polarizable force field that are
listed in Table 1 and illustrated in Figure 1 have been
obtained from a series of distinct studies. To avoid any
discrepancies introduced by small differences in free energy
simulation methodologies and sampling, the first stage of
this work was to recalculate the free energy of hydration for
every molecule considered in this study using an identical
protocol. Specifically, free energies of aqueous solvation were
calculated Via the free energy perturbation (FEP) method59

using the staged protocol of Deng and Roux.38 In this
method, the LJ potential is separated into purely repulsive
and attractive parts using the scheme originally developed
by Weeks, Chandler, and Andersen (WCA).60

When a single solute molecule, u, is solvated in solvent
V, with the coordinates of solute and solvent represented by
X and Y, respectively, the solute-solvent interaction po-
tential, EuV(X,Y), comprises a short-range nonpolar contribu-
tion and a long-range electrostatic contribution:

Table 1. Hydration Free Energies of Alkanes, Alcohols, and Ethers, All Values in kcal/mol

molecule
experimental

∆Ghyd

previously reported
Drude ∆Ghyd error

without pair-specific LJ
parameters ∆Ghyd error

with pair-specific LJ
parameters ∆Ghyd error

Alkanes
CPEN 1.20a 0.81 ( 0.39 -0.39 0.10 ( 0.05 -1.10 1.16 ( 0.08 -0.04
CHEX 1.23a 1.42 ( 0.21 0.19 0.44 ( 0.05 -0.79 1.22 ( 0.10 -0.01
ETHA 1.77b 1.84 0.07 1.64 ( 0.08 -0.13 1.73 ( 0.10 -0.04
PROP 1.98b 1.63 -0.35 1.32 ( 0.04 -0.66 2.04 ( 0.08 0.06
BUTA 2.15b 1.46 -0.69 1.12 ( 0.12 -1.04 2.08 ( 0.07 -0.07
IBUT 2.28b 2.19 0.09 1.47 ( 0.08 -0.81 2.25 ( 0.02 -0.03
NEOP 2.50c N/A N/A 0.69 ( 0.10 -1.81 2.25 ( 0.12 -0.26

average -0.91 -0.06

Alcohols
MEOH -5.11a -5.20 ( 0.19 -0.09 -5.20 ( 0.08 -0.09 -5.20 ( 0.08 -0.09
ETOH -5.01a -5.66 ( 0.31 -0.65 -5.14 ( 0.07 -0.13 -4.85 ( 0.07 0.16
PRO2 -4.76a -6.06 ( 0.23 -1.30 -5.50 ( 0.05 -0.74 -5.41 ( 0.05 -0.65
BUO2 -4.57c -6.11 ( 0.18 -1.54 -5.57 ( 0.08 -1.00 -4.21 ( 0.08 0.36
PRO1 -4.83a -5.38 ( 0.16 -0.55 -5.21 ( 0.08 -0.38 -4.96 ( 0.08 -0.13
BUO1 -4.72a -5.72 ( 0.16 -1.00 -5.61 ( 0.09 -0.89 -4.74 ( 0.09 -0.02

average -0.54 -0.06

Ethers
THF -3.47c -4.80 ( 0.08 -1.33 -4.83 ( 0.05 -1.36 -3.58 ( 0.05 -0.11
THP -3.12c -5.34 ( 0.27 -2.22 -5.40 ( 0.07 -2.28 -3.08 ( 0.10 0.04
DEE -1.76c -2.77 ( 0.10 -1.01 -2.66 ( 0.15 -1.76 -1.83 ( 0.14 -0.07
DMOE -4.84c -5.61 ( 0.54 -0.77 -5.47 ( 0.11 -0.63 -5.05 ( 0.13 -0.21
DME -1.92c -1.97 ( 0.13 -0.05 -1.85 ( 0.07 0.07 -1.85 ( 0.06 0.07
MEE -2.10d -2.27 ( 0.25 -0.17 -2.51 ( 0.08 -0.41 -1.78 ( 0.08 0.32

average -1.06 0.01
overall average -0.84 -0.03

a Experimental data from ref 81. b Experimental data from ref 50. c Experimental data from ref 68. d Experimental data from ref 82.
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The nonpolar contribution is given by the LJ equation (eq
1) and, using the WCA scheme, is separated into contribu-
tions due to the repulsive and attractive (dispersion) interac-
tions, so that

Where the repulsive and attractive contributions to the LJ
potential are given by eqs 6 and 7.

With the WCA scheme applied, the total potential energy
of the system can be written as

where Eu is the internal potential energy of the solute
molecule, EV is the solvent potential energy, and EuV

represents the interaction between solvent and solute mol-
ecules, with the three terms corresponding to the Coulomb
electrostatic, LJ-WCA core repulsion, and LJ-WCA disper-
sive attraction, respectively. For the free energy perturbation
calculation, coupling between the initial and final states (Ea

and Eb) is achieved by means of a staging parameter. For
both the electrostatic and dispersive interactions, a simple
linear coupling of the initial and final states is used, with
coupling parameters denoted λ and � (eqs 9 and 10).

For the solute-solvent core repulsion term, such linear
scaling is not practical, and the repulsion term is instead
transformed into a soft-core potential using the nonlinear
staging parameter, s:

With the formulation in place, the reversible work corre-
sponding to the insertion of the fully interacting solute into
the solvent is calculated in three steps using three distinct
staging parameters s, �, and λ. Initially, the solute-solvent
core repulsion is progressively introduced (eq 12), followed
by the dispersion interaction (eq 13), and finally the

electrostatic interaction (eq 14). The total solvation free
energy is then the sum of these three terms.

The computational details were identical to those described
elsewhere,30 but with the simulation time extended to 50 ps
of equilibration and 100 ps of production for a given value
of the coupling and/or staging parameter (with coordinates
saved every 0.1 ps), and all free energy values presented as
the average of five (rather than three) separate calculations.

A long-range correction61 was also included to account
for errors introduced by the truncation of LJ interactions.
To calculate this long-range correction, for every calculated
value of the hydration free energy, a single simulation of a
single solute molecule in a box of 250 SWM4-NDP25 water
molecules was run for 50 ps of molecular dynamics in the
NVT ensemble, during which coordinates were saved every
1 ps. Following completion of the MD simulation, coordi-
nates were extracted from the final 30 ps of the CHARMM
trajectory file, and energies were calculated for each set of
coordinates using two different nonbonded interaction cutoff
schemes. In the first scheme, nonbond pair lists were
maintained to 14 Å with a cutoff of 12 Å used for both
electrostatic and van der Waals (vdW) terms, with the latter
truncated via an atom-based switch algorithm. In the second
scheme, the only differences were that nonbond pair lists
were maintained to 54 Å, and a cutoff of 50 Å was used.
The difference in the vdW interaction energy calculated using
the two nonbonded interaction cutoff schemes, averaged over
all sets of coordinates, was taken as the long-range correction.
The longer cutoff used in these calculations (50 Å) was
significantly larger than that used in previous work, where
nonbond pair lists were maintained to 36 Å and a cutoff of
32 Å was used.30 The motivation for this change will be
discussed in detail in the Results section. It should be noted
that the box of 250 SWM4-NDP water molecules used in
these calculations has a side length of approximately 20 Å.
When a nonbond cutoff of 50 Å (or indeed 32 Å) is used,
this means that periodic images of the solvent box must be
used to calculate the total nonbond interactions. Each of these
periodic images also includes one copy of the solute
molecule, and so the total nonbond interaction energy
includes a contribution due to solute-solute interactions. In
practice, however, this contribution is small. The nearest
solute image to the original solute molecule will be at a
distance of 20 Å, and there will be six such images at this
distance. Taking butane as an example, the solute-image
solute interaction energy will be around -0.0005 kcal/mol
per image, totaling -0.003 kcal/mol. Images at greater
distances will have an even smaller impact. In addition, these
solute molecules are occupying space that would otherwise
be occupied by water molecules. A single butane molecule
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has a molecular volume of 160.5 Å,26 which is equivalent
to the volume occupied by 5.3 water molecules.25 At a
distance of 20 Å, 5.3 water molecules would contribute
around -0.0003 kcal/mol to the total interaction energy.
Overall, it can therefore be said that the overall error
introduced by the presence of a single solute image at a
distance of 20 Å is -0.0002 kcal/mol. Errors of this
magnitude will have negligible impact on the final calculated
results.

The computational method for calculation of the long-
range correction described above has been applied in
previous simulations involving the CHARMM Drude po-
larizable force field.27,30,31,33 To evaluate the quality of this
long-range correction calculation, the long-range correction
has also been evaluated analytically37,44,62 by solving eq 15.

where i runs over all solute atoms, r is the distance from
solute atom i, F is the number density of solvent molecules,
ε and Rmin are the LJ parameters between atom i and the O
atom of the solvent water molecule (the H atoms of the
SWM4-NDP water model have no LJ parameters), S(r) is
the switching function used to reduce smoothly the interac-
tion from its full value to 0, and ron is the distance at which
the switching function is turned on. For this approach to be
valid, it is required that the solvent radial distribution function
g(r) ) 1 at all points beyond ron. This is known to be true
for the SWM4-NDP water model.25

The simulations described above were all performed using
the program CHARMM63 without the inclusion of any pair-
specific LJ parameters. The same procedure was also used
to calculate an initial, uncorrected, hydration free energy for
any molecule that had not had its hydration free energy
evaluated as part of a previous study.

2.1. Pair-Specific LJ Parameter Determination. Precise
calculation of hydration free energies via the FEP method
described above is a computationally intensive process, and
it would be impractical to derive new pair-specific LJ
parameters by scanning over ranges of Rmin and ε and using
FEP to calculate the hydration free energy for every
parameter combination. Instead, a method is implemented
to provide an initial assessment of the approximate values
of Rmin and ε that are likely to yield hydration free energies
in good agreement with experimental results, so that the FEP
calculation of actual hydration free energies can be reduced
to only a small number of new parameter sets. To achieve
this, initial molecular dynamics (MD) simulations were
performed on each of the solute molecules in a box of 250
SWM4-NDP25 water molecules for 150 ps at a temperature
of 298 K in the NPT ensemble, with periodic boundary
conditions (PBC) and the SHAKE algorithm64 used to
constrain covalent bonds to hydrogen. Electrostatic interac-
tions were treated using particle-mesh Ewald (PME) sum-
mation65 with a coupling parameter of 0.34 and a sixth order
spline for mesh interpolation. All simulations used the
standard CHARMM Drude polarizable force field param-

eters, as described in the respective publications,26,27,30 and
included no pair-specific LJ parameters. A time step of 1 fs
was employed, and coordinates were saved to a trajectory
file every 100 steps.

Once these MD simulations were complete, the free energy
changes associated with changing the LJ parameters could
be calculated. The LJ parameters used in the original MD
simulation were first used to evaluate the solute-solvent
interaction energy for every set of coordinates saved to the
trajectory file. The LJ parameters used in the original MD
simulation were then modified, the trajectory file was reread,
and, for every set of coordinates, the solute-solvent interac-
tion energy was re-evaluated using the new set of parameters.
The difference in the solute-solvent interaction energies
obtained using the original and modified LJ parameters was
then used to estimate the free energy change associated with
modifying the parameters. Once the free energy change for
modifying the parameters in aqueous solution is obtained, it
is straightforward to obtain the hydration free energy of the
solute with the new LJ parameters by considering the
thermodynamic cycle in Figure 2.

The free energy of hydration associated with the new set
of LJ parameters, ∆G′hyd, can be calculated from eq 16.

Because, by design, only the parameters affecting interac-
tions between the solute and the solvent are modified, ∆G(g)

) 0 such that the free energy change associated with
modifying the parameters in aqueous solution, ∆G(aq), is
sufficient to provide for the difference between ∆Ghyd and
∆G′hyd. The method described above for the calculation of
∆G(aq) is highly approximate because, in reality, the system
will reorganize itself in response to any parameter change
that changes the interaction energies and forces, whereas the
approach outlined here assumes that the solvent structure
around the solute is unaffected by the change in parameters.
However, this technique is sufficient to provide a first
approximation of parameter values that will yield a reason-
able hydration free energy, and the impact of new parameter
values can be assessed in a matter of seconds, rather than
the approximately 2400 h of CPU time required to evaluate
a single hydration free energy using the full method outlined
above.

Once this approximate method had been used to identify
a set of pair-specific LJ parameters appropriate for calculation
of the hydration free energy for a given solute, its free energy
of hydration was evaluated using the full FEP method
described above. Three independent FEP calculations were

ELRC ) ∑
i

4πFε∫ron

∞ [(Rmin

r )12
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r )6]S(r)r2 dr

(15)

Figure 2. Thermodynamic cycle for calculating the free
energy of hydration with a perturbed set of LJ parameters,
∆G′hyd, from the free energy of hydration with the original set
of LJ parameters, ∆Ghyd. S indicates the solute represented
using the original set of LJ parameters; S′ indicates the solute
represented using the perturbed set of LJ parameters.

∆Ghyd′ ) ∆Ghyd + ∆G(aq) - ∆G(g) (16)
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performed, and the resulting hydration free energy values
were averaged to give a final result. This result was then
compared to the relevant experimental value. If necessary, the
pair-specific LJ parameters were adjusted again and the hydra-
tion free energy re-evaluated, with this process repeated until
satisfactory agreement with the experiment was obtained.
During parametrization of the CHARMM Drude polarizable
force field, the aim is generally that final calculated values
should be within ∼2% of the corresponding experimental
values. In this work, where experimental target values can be
extremely small, and uncertainties in calculated values relatively
large, such an approach is less reasonable. Cyclopentane, for
example, has an experimental hydration free energy of 1.20 kcal/
mol: a 2% target would require a calculated value to be between
1.18 kcal/mol and 1.22 kcal.mol. Given that the uncertainty in
the calculated value of ∆Ghyd for cyclopentane with no pair-
specific LJ parameters is 0.05 kcal/mol (Table 1), this level of
accuracy is unrealistic. Rather, a goal where the final calculated
hydration free energies should be within 0.1 kcal/mol of the
corresponding experimental value is more reasonable. Once
satisfactory agreement with the experiment had been obtained,
further FEP calculations were performed so that the final
hydration free energy values presented in this work are the
average of five individual calculations. The error in each
calculation is given as the standard deviation of the mean
calculated over 500 iterations of a bootstrap procedure using
software by Wessa.66

To evaluate the effect that the introduction of pair-specific
LJ parameters would have on other calculated properties,
solute-water heterodimeric complexes were examined. The
methods used and results obtained are described in the
Supporting Information that accompanies this paper.

2.2. Testing the Need for Pair-Specific LJ Parameters.
It has been shown in the past that the use of pair-specific LJ
parameters allows for the correction of hydration free
energies when LJ parameters derived to reproduce liquid
phase thermodynamic properties are unable to, and this study
aims to exploit this fact. There is, however, an important
question that must also be addressed during this work: are
pair-specific LJ parameters really essential or, as some have
suggested, would it be possible, by including ∆Ghyd values
as target data in the initial parameter optimization, to find a
set of LJ parameters that are able to reproduce accurately
both the liquid phase thermodynamic data and solvation free
energies simultaneously?

In an attempt to answer this question, the final pair-specific
LJ parameters developed in this study were broken down
into their constituent parts using the inverse of the standard
LJ combining rules:

where Rmin and ε are the pair-specific LJ parameter values
and the ODW atom LJ parameters are fixed, thereby
transferring the whole of the effect of the pair-specific LJ
parameters onto the solute heavy atoms. In this way, it was

possible to generate a new set of atomic LJ parameters, Rmin/2
and εi, for every atom type considered in this study. Once
this had been done, a series of calculations were performed
to evaluate the molecular volume (Vm) and enthalpy of
vaporization (∆Hvap) of each of four alkane and five ether
molecules, to assess whether these new pair-specific LJ
parameters would be appropriate for use in both the bulk
liquid and aqueous solution, indicating that one set of
parameters would be sufficient in both cases, and that specific
heavy atom-ODW LJ parameters would be unnecessary.
[When eq 18 is applied for the calculation of energies or
forces (e.g., as in eq 1), ε has a positive value. However,
within the CHARMM parameter file, by convention ε is
always shown as negative, in both the NONBOND and
NBFIX sections. For the sake of convenience, the CHARMM
parameter file notation is used throughout this paper, and ε
values are always shown to be negative.] To calculate Vm

and ∆Hvap for each molecule, 10 liquid phase molecular
dynamics simulations of 150 ps duration were performed.
All 10 liquid phase simulations were commenced from an
identical pre-equilibrated box of 128 molecules, with a
random number seed used to assign different initial velocities
in each case. The first 50 ps were treated as equilibration,
with the remaining 100 ps used for analysis. Volumes and
energies were averaged over all 10 simulations, and the gas
phase contribution to the heat of vaporization was calculated
from a single simulation of 2.5 ns, with 0.5 ns used for
equilibration and 2.0 ns for analysis. All simulations were
performed at the temperatures reported in Table 2.

3. Results

3.1. The Long Range Correction. As noted above, in
previous studies where the CHARMM Drude polarizable
force field has been used to calculate hydration free energies,
a cutoff of 32 Å has been used in the evaluation of the long-
range correction associated with the truncation of the LJ
interactions. In this study, the effect of the cutoff on the total
long-range correction was examined, and the results can be
seen in Figure 3, where long-range corrections have been
calculated for progressively larger molecules. While using
a cutoff of 32 Å (denoted by the vertical line in Figure 3)
captures the majority of the long-range correction, it is clear
that at 32 Å the long-range correction has not yet reached
convergence. To achieve convergence (to two decimal
places) for all of the molecules considered in this study, it
was necessary to use a cutoff of at least 50 Å. The final
long-range correction values obtained for all molecules in
this study, both with and without pair-specific LJ parameters,
are presented in Table 3 along with long-range correction
values calculated analytically. The analytically calculated
values can be considered the “correct” values, and it is
encouraging to note that the numerically calculated values
are very close to the analytically calculated values, with an
average error of -0.011 kcal/mol and a maximum error of
-0.018 kcal/mol. Such small errors will have minimal impact
on the final hydration free energies, and it can be concluded
that the numerical method is valid for the evaluation of the
long-range correction.

Rmin

2
, i ) Rmin -

Rmin

2
, ODW (17)

εi ) - ε2

εODW
(18)
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3.2. Parametrization Strategy. One of the key objectives
of this work was to obtain not only a set of useable
parameters but also a reliable method by which they should
be obtained. The initial strategy employed was to vary Rmin

until good agreement was obtained between the calculated
and experimental hydration free energies. In particular, since
all but one of the calculated hydration free energies were
more favorable than their experimental equivalents, it was
anticipated that increasing Rmin would be a good general
strategy for making calculated free energies less favorable.
For polar molecules, this was based on the assumption that,
by increasing the radius at which the most favorable
interaction occurs, atom pairs having favorable electrostatic
interactions (specifically, hydrogen bonding interactions
involving water molecules) would be pushed further apart,

and these favorable electrostatic interactions would decrease.
However, in the case of the nonpolar alkanes, such an
approach is not appropriate because the LJ term dominates
the free energy of aqueous solvation. For example, in the
acyclic alkanes, an increase in Rmin resulted in a more
favorable free energy of hydration, as shown for butane in
Figure 4.

This effect can be explained by considering the functional
form of the LJ term (eq 1): Figure 5 shows two such LJ
curves in which Rmin differs, but ε is unchanged. Comparison
of these two curves shows that an atom-atom pair with a
separation, r, greater than rint, the point at which the two
curves intersect, will have a more favorable LJ interaction
energy when Rmin ) Rmin2 than when Rmin ) Rmin1. An atom
pair with a separation, r, less than rint, will have a less
favorable interaction when Rmin ) Rmin2 than when Rmin )
Rmin1. Given the large number of atom-atom pairs with
distances greater than rint, an increase in Rmin from Rmin1 to
Rmin2 usually results in a more favorable total interaction.
This in turn leads to the more favorable free energy of
solvation of the alkanes with larger Rmin values on the C
atoms, because the solvation free energy has a significant
contribution from the LJ term as compared to more polar
molecules. It is not until Rmin become so large that it causes
significant short-range atom-atom repulsion that the LJ
energy starts to become less favorable. Alternatively, in-
creasing ε without changing Rmin (Figure 5) yields the more
intuitive result where the overall LJ surface is more favorable
at all atom-atom distances with the LJ interaction energy
>0. Importantly, varying ε also does not significantly impact
the repulsive wall, which in the present study was that
obtained from parameters based on the pure solvent or crystal
simulations.

With these observations in mind a modified parametriza-
tion strategy was developed, having three distinct stages.

(1) For polar molecules, an attempt is made to correct
the hydration free energy by varying only Rmin of

Table 2. Vm and ∆Hvap Calculated Using LJ Parameters Obtained from the Pair-Specific LJ Parameters Calculated in This
Work, and Compared to Vm and ∆Hvap Calculated Using the Standard CHARMM Drude Polarizable Force Field LJ
Parameters

T/K experimental standard LJ % err pair-specific LJ % err

Molecular Volumes
ETHA 184.55 91.8 91.6 ( 0.3 -0.2 95.6 ( 1.7 4.1
PROP 231.10 125.7 124.5 ( 0.4 -1.0 136.7 ( 1.8 8.8
BUTA 272.65 160.5 160.9 ( 0.3 0.2 182.8 ( 1.8 13.9
IBUT 261.43 162.5 160.6 ( 0.3 -1.2 187.4 ( 3.0 15.3
THF 298.15 135.6 134.8 ( 0.4 -0.6 148.4 ( 1.6 9.5
THP 298.15 162.3 163.8 ( 0.8 0.9 188.7 ( 1.8 16.3
DMOE 298.15 173.6 178.1 ( 0.9 2.6 194.3 ( 1.3 11.9
DME 248.34 104.9 104.2 ( 0.8 -0.7 108.3 ( 1.0 3.2
MEET 273.20 137.5 140.2 ( 0.8 2.0 152.8 ( 1.4 11.1

Heats of Vaporization
ETHA 184.55 3.53 3.42 ( 0.01 -3.1 3.23 ( 0.03 -8.5
PROP 231.10 4.51 4.48 ( 0.01 -0.7 3.67 ( 0.02 -18.6
BUTA 272.65 5.37 5.41 ( 0.03 0.7 3.66 ( 0.02 -31.8
IBUT 261.42 5.12 5.03 ( 0.02 -1.8 3.71 ( 0.04 -27.5
THF 298.15 7.65 7.69 ( 0.03 0.9 5.66 ( 0.04 -26.0
THP 298.15 8.26 8.41 ( 0.04 1.8 5.59 ( 0.04 -32.3
DMOE 298.15 8.79 8.67 ( 0.07 -1.4 6.82 ( 0.04 -22.4
DME 248.34 5.14 5.18 ( 0.02 0.8 4.51 ( 0.02 -12.3
MEET 280.60 5.90 5.85 ( 0.04 -0.8 4.68 ( 0.04 -20.7

Figure 3. Dependence of the long-range LJ correction on
the magnitude of the cutoff used. The vertical line indicates a
cutoff of 32 Å, the previous “standard value” used in calculat-
ing the long-range correction with the CHARMM Drude
polarizable force field.
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heavy atom-ODW pairs, up to a maximum ∆Rmin of
0.1 Å: if the calculated ∆Ghyd in the absence of pair-
specific LJ parameters is too favorable, only increasing
Rmin is considered; if the calculated ∆Ghyd in the
absence of pair-specific LJ parameters is not favorable
enough, only decreasing Rmin is considered.

(2) In the case of nonpolar molecules, an attempt is made
to correct the free energy of hydration by varying only
ε of heavy atom-ODW pairs.

(3) If either 1 or 2 is unsuccessful, an attempt is made to
correct the hydration free energy by increasing both Rmin

and ε of heavy atom-ODW atom pairs simultaneously.
To date, such an approach has been sufficient to give pair-

specific LJ parameters that provide good agreement with
experimental data in every case, with one exception. It is
anticipated that, in the future, in the small number of cases
where this scheme will not be successful, the molecules in
question will need to be approached on a case-by-case basis:
the only molecule for which pair-specific LJ parameters could
not be obtained using this scheme in the present work will

be discussed in detail below. All pair-specific LJ parameters
obtained in this work are listed in Table 4.

3.3. Hydration Free Energies. A total of 19 molecules
were chosen to comprise the “parametrization set” (Figure
6), the set of molecules that would be used to develop the
pair-specific LJ parameters. With the aim of creating a
consistent, systematic set of pair-specific LJ parameters for
use across all molecules, it was necessary to take the alkanes
as a starting point. For the alkanes, seven molecules were
considered as part of the parametrization process: the acyclic
alkanes ETHA, PROP, BUTA, IBUT, and NEOP and the
cyclic alkanes CPEN and CHEX. The first step of the
parametrization involved the development of pair-specific
LJ parameters for the ethane methyl C atoms (Ca, Figure
6). Once these parameters had been developed, they were

Table 3. Calculated Long Range Corrections, in kcal/mol, for Molecules Considered in This Work

numerically calculated long range correctiona analytically calculated long range correction

molecule
without pair-specific

LJ parameters
with pair-specific
LJ parameters

without pair-specific
LJ parameters

with pair-specific
LJ parameters

Alkanes
CPEN -0.505 ( 0.002 -0.456 ( 0.002 -0.519 -0.468
CHEX -0.617 ( 0.002 -0.575 ( 0.002 -0.634 -0.592
ETHA -0.250 ( 0.001 -0.243 ( 0.001 -0.255 -0.248
PROP -0.353 ( 0.001 -0.328 ( 0.002 -0.361 -0.334
BUTA -0.456 ( 0.002 -0.409 ( 0.002 -0.467 -0.421
IBUT -0.441 ( 0.001 -0.391 ( 0.002 -0.455 -0.405
NEOP -0.549 ( 0.001 -0.487 ( 0.001 -0.568 -0.505

Alcohols
MEOH -0.225 ( 0.001 -0.225 ( 0.001 -0.229 -0.229
ETOH -0.303 ( 0.001 -0.280 ( 0.002 -0.311 -0.288
PRO2 -0.392 ( 0.001 -0.347 ( 0.001 -0.404 -0.357
BUO2 -0.494 ( 0.002 -0.430 ( 0.001 -0.511 -0.444
PRO1 -0.402 ( 0.002 -0.357 ( 0.001 -0.414 -0.368
BUO1 -0.504 ( 0.002 -0.440 ( 0.001 -0.521 -0.454

Ethers
THF -0.455 ( 0.002 -0.408 ( 0.002 -0.464 -0.415
THP -0.553 ( 0.002 -0.475 ( 0.001 -0.564 -0.484
DEE -0.495 ( 0.001 -0.448 ( 0.003 -0.506 -0.458
DMOE -0.550 ( 0.001 -0.499 ( 0.001 -0.567 -0.512
DME -0.309 ( 0.001 -0.296 ( 0.002 -0.317 -0.303
MEE -0.401 ( 0.001 -0.371 ( 0.002 -0.411 -0.381

a Calculated values averaged over five independent simulations, with errors as ( 1 standard deviation.

Figure 4. Calculated hydration free energy of butane as a
function of Rmin for the CD32A-ODW pair, with all other LJ
parameters fixed. Rmin in Å, ∆Ghyd in kcal/mol.

Figure 5. Example LJ interaction energy curves. Comparing
the two curves with ε ) ε1: if the two curves intersect at a
point rint, then all interactions with r > rint will become more
favorable on moving from Rmin1 to Rmin2; all interactions with
r < rint will become less favorable on moving from Rmin1 to Rmin2.
Comparing the two curves with Rmin ) Rmin2: moving from ε1

to ε2 results in interactions becoming more favorable at all
values of r.
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then used in the development of parameters for the Cb atoms,
based on propane and butane; the Cc atom, based on
isobutane; and the Cd atom, based on neopentane. While
the C atom in CPEN was always treated as having a different
atom type from the acyclic CH2 C atoms, CHEX C atoms
were initially assigned the Ca atom type. However, it was
not possible to obtain a set of pair-specific LJ parameters
that gave good agreement across both the acyclic alkanes
and CHEX, and ultimately, the C atoms of CHEX were
assigned their own atom type. In this way, it was possible
to construct a consistent set of parameters that gave good

agreement with experimental ∆Ghyd values across the whole
range of alkane molecules considered as part of the param-
etrization process (Table 1). Overall, the average error in
the calculated hydration free energy has been reduced from
-0.91 to -0.05 kcal/mol, with the root-mean-square devia-
tion (rmsd) reduced from 1.02 to 0.10 kcal/mol, indicating
that the systematically too-favorable prediction of alkane
hydration free energies has been corrected. In general, the
agreement with experimental results obtained using the new
pair-specific LJ parameters is excellent across all alkane
molecules, with only NEOP (with a deviation of -0.25 kcal/

Table 4. Final Pair-Specific LJ Parameters, and Comparison to LJ Parameters Obtained Using Standard Combining Rulesa

atom
name

atom
type 1

atom
type 2

standard LJ
parameters

pair-specific LJ
Parameters

change in
LJ parameters

ε Rmin ε Rmin ∆ε ∆Rmin

Ca CD33A ODW -0.1283 3.8269 -0.1233 3.8269 0.0050 0.0000
Cb CD32A ODW -0.1087 3.8869 -0.0817 3.8869 0.0270 0.0000
Cc CD31A ODW -0.0681 3.9869 -0.0211 3.9869 0.0470 0.0000
Cd CD30A ODW -0.0650 3.9869 -0.0050 4.1869 0.0600 0.2000
Ce CD325A ODW -0.1125 3.8069 -0.0965 3.8069 0.0160 0.0000
Cf CD326A ODW -0.1087 3.8869 -0.0992 3.8869 0.0095 0.0000
Ch CD33E ODW -0.1481 3.7869 -0.1431 3.7869 0.0050 0.0000
Ci CD32E ODW -0.1067 3.8069 -0.0797 3.8069 0.0270 0.0000
Cj CD325B ODW -0.1125 3.8069 -0.0925 3.8069 0.0200 0.0000
Ck CD326B ODW -0.1087 3.7969 -0.0827 3.7969 0.0260 0.0000
Ob OD31B ODW -0.1779 3.5269 -0.1779 3.4969 0.0000 -0.0300
Oc OD30A ODW -0.1125 3.5269 -0.0919 3.5469 0.0206 0.0200
Od OD305A ODW -0.1299 3.5069 -0.1299 3.5269 0.0000 0.0200
Oe OD306A ODW -0.1299 3.5269 -0.1299 3.5469 0.0000 0.0200
N/A CD315A ODW -0.0822 3.7869 -0.0662 3.7869 0.0160 0.0000
N/A CD315B ODW -0.0822 3.7869 -0.0622 3.7869 0.0200 0.0000
N/A CD316A ODW -0.0822 3.7869 -0.0727 3.7869 0.0095 0.0000

a ε in kcal/mol, Rmin in Å. Atom names are as listed in Figure 6: atom types CD315A, CD315B, and CD316A are from the test set
molecules CPNM, TF2M, and CHXM, respectively. No pair-specific LJ parameters were required for atoms Cg or Oa.

Figure 6. Compounds used in development of pair-specific LJ parameters: (a) ethane, ETHA; (b) propane, PROP; (c) butane,
BUTA; (d) isobutane, IBUT; (e) neopentane, NEOP; (f) cyclopentane, CPEN; (g) cyclohexane, CHEX; (h) methanol, MEOH; (i)
ethanol, ETOH; (j) propan-1-ol, PRO1; (k) butan-1-ol, BUO1; (l) propan-2-ol, PRO2; (m) butan-2-ol, BUO2; (n) dimethyl ether,
DME; (o) methyl ethyl ether, MEET; (p) diethyl ether, DEET; (q) 1,2-dimethoxyethane, DMOE; (r) tetrahydrofuran, THF; (s)
tetrahydropyran, THP.

1190 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Baker et al.



mol from the experimental value) giving a deviation with
magnitude greater than 0.07 kcal/mol from the corresponding
experimental value. Moreover, the inclusion of pair-specific
LJ parameters results in an accurate reproduction of the
ordering of ∆Ghyd values. The LJ parameters obtained using
the standard combining rules incorrectly predicted that ∆Ghyd

values decrease with increasing chain length. When pair-
specific LJ parameters are included, hydration free energies
become less favorable with increasing chain length, in
agreement with experimental results.

Examination of Table 4 reveals that the central C atom of
NEOP (Cd in Figure 7; CHARMM atom type CD30A) is
also the only alkane atom type for which it was necessary
to break the “rules” for pair-specific LJ parameter develop-
ment outlined above. The final pair-specific LJ parameters
for Cd have ∆ε ) 0.0600 and ∆Rmin ) 0.2000: for
comparison, the largest change in any of the other alkane
atom types is found in CD31A from IBUT (Cc, Figure 7),
where ∆ε ) 0.0470 and ∆Rmin ) 0.0000. Put simply, it
appears that the CD30A atom of NEOP is being asked to
do too much work. Before any pair-specific LJ parameters
are added, NEOP gives the hydration free energy in worst
agreement with experimental data (Table 1). In addition, the
changes made to the methyl C atom (Ca) are extremely small,
meaning that only the pair-specific LJ parameters for the
CD30A atom type could be optimized to correct the
calculated ∆Ghyd. With this atom surrounded by methyl
groups in NEOP, it is a significant distance from the nearest
water molecules, thereby reducing the impact of any changes
in the LJ parameters on ∆Ghyd. While the magnitude of the
difference upon moving from the combining rule to pair-
specific LJ parameters is not ideal, the CD30A atom type
does not appear in biomolecular systems, which are the
ultimate target of this small molecule work, and so was not
a great cause for concern.

It should be noted that two papers focused on the
development of computational methods for estimating hydra-
tion free energies have reported experimental values of the
hydration free energy for neopentane that are significantly
different. Michielan et al. reported a value of 2.69 kcal/mol,67

while Ooi et al. reported a value of 2.50 kcal/mol.68 While
Michielan et al. give no information on the source of the
experimental value used in their work, Ooi et al. provide
references to the original sources of their experimental
data.69,70 For this reason, the experimental hydration free
energy of neopentane used in this work is that obtained from
the work of Ooi et al.

The alkane parameters were then applied to the alcohol
and ether molecules, with the logic being that pair-specific
LJ parameters for atom types not included in the alkanes
should be built on top of the alkane pair-specific LJ
parameters, so as to yield a set of parameters that is consistent
across all molecules.

For the alcohols, inclusion of the alkane pair-specific LJ
parameters has a dramatic effect on the calculated hydration
free energies (Table 1). For MEOH, ETOH, PRO2, and
BUO2, which share an atom type for the hydroxyl O, no
further pair-specific LJ parameters were required to yield
an acceptable improvement in the calculated ∆Ghyd values.
For the long chain primary alcohols PRO1 and BUO1, which
possess a different O atom type than the other alcohols, the
addition of the alkane pair-specific LJ parameters results in
a slight overcorrection, making the ∆Ghyd values, which were
initially too favorable, not favorable enough. Pair-specific
LJ parameters were applied to the O atom to rectify this
overcorrection (Table 4). The resulting set of pair-specific
LJ parameters gave an average error for the alcohols of
-0.06 kcal/mol and an rmsd of 0.32 kcal/mol, compared to
an average error of -0.54 kcal/mol and an rmsd of 0.65 kcal/
mol for the values obtained using the LJ parameters obtained
from the standard combining rules.

For the ethers, the situation was complicated by the
presence of several C atom types that do not appear in the
alkanes, corresponding to the C atoms adjacent to the ether
O atoms in the linear ethers. For these atom types, the change
in the LJ parameters needed to obtain pair-specific LJ
parameters for the corresponding alkane atom was retained
for use in the ether atom types, resulting in pair-specific LJ
parameters that differ in magnitude but show the same
change relative to the combining rule LJ parameters. With
these C atom pair-specific LJ parameters in place, it was a
matter of adjusting only the Oc atom type pair-specific LJ
parameters until optimal agreement with the experiment was
obtained. For the cyclic ethers THF and THP, a similar
approach was attempted, in which the change in LJ param-
eters for the C atoms was transferred directly from the
corresponding atom types in CPEN and CHEX. Using such
an approach, however, very large changes were required in
the Od/Oe-ODW LJ parameters to obtain acceptable hydra-
tion free energies. These changes not only violated the rules
outlined above for the derivation of pair-specific LJ param-
eters but also resulted in a significant worsening of the
calculated gas phase heterodimer interactions with water
molecules (Table S3 of the Supporting Information). Ac-

Figure 7. Compounds used for testing pair-specific LJ
parameters: (a) pentane, PENT; (b) hexane, HEXA; (c)
heptane, HEPT; (d) 2-methylbutane, BU2M; (e) 2,2-dimeth-
ylbutane, BU22M; (f) 2,3-dimethylbutane, BU23M; (g) meth-
ylcyclopentane, CPNM; (h) methylcyclohexane, CHXM; (i)
pentan-1-ol, PEO1; (j) hexan-1-ol, HXO1; (k) pentan-2-ol,
PEO2; (l) 3-methylbutan-1-ol, B3MO1; (m) cyclopentanol,
CPOH; (n) 2-(R)-methyl tetrahydrofuran, MTHF; (o) 1,4-
dioxane, DIOX; (p) methyl propyl ether, MPET; (q) ethyl propyl
ether, EPET.
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cordingly, for THF and THP, this approach was abandoned,
and pair-specific LJ parameters for both the C and O atoms
of both molecules were allowed to vary. The final set of
pair-specific LJ parameters gave hydration free energies as
shown in Table 1: the average error in the values calculated
using the new pair-specific LJ parameters was 0.01 kcal/
mol with an rmsd of 0.17 kcal/mol, compared to an average
error of -0.95 kcal/mol and an rmsd of 1.21 kcal/mol in
the values calculated without pair-specific LJ parameters.

Across all 19 molecules considered in the parametrization
process, the average error in the ∆Ghyd values calculated
using the pair-specific LJ parameters is -0.03 kcal/mol, with
an rmsd of 0.21 kcal/mol. For ∆Ghyd values calculated
without the inclusion of any pair-specific LJ parameters, the
average error is -0.84 kcal/mol and the rmsd is 0.99 kcal/
mol. Performing a Student’s t test71 results in the rejection
of the null hypothesis that these two mean errors are the
same (P valuee 0.0001): the difference between the average
errors is statistically significant. Clearly, through the inclusion
of pair-specific LJ parameters, the systematic error in the
calculated ∆Ghyd values has been eliminated, while at the
same time the absolute error in the ∆Ghyd values has also
decreased.

To further ensure the utility of the pair-specific LJ
parameters, the issue of sampling was considered: if free
energy values are to be calculated accurately, it is important
that all accessible conformations of a molecule and its
aqueous environment be sampled to yield an adequate
precision.37 While torsional modes tend to be most prob-
lematic when it comes to achieving adequate sampling, even
nontorsional relaxation times are on the order of 2-10 ps.
With, in this case, 100 ps of sampling per coupling value,
this results in 10-100 independent samples. To assess
whether the use of 100 ps/window in the free energy
calculations represents a sufficient level of sampling, FEP
calculations were performed for ETOH and THF using the
method described above with 500 ps rather than 100 ps of
production MD for every value of the coupling and/or staging
parameter. These calculations were performed using the final
values of the pair-specific LJ parameters obtained in this
work. For ETOH, the mean hydration free energy obtained
over five independent calculations with the longer calcula-
tions was -4.73 ( 0.03 kcal/mol. The equivalent value
obtained from the original, shorter, calculations was -4.81
( 0.05 kcal/mol. Performing a Student’s t test71 with a
significance level of 0.05 leads to the acceptance of the null
hypothesis that the two means are the same (P value )
0.234). The same conclusion is also reached for THF (P value
) 0.555) where the shorter simulations gave ∆Ghyd ) -3.58
( 0.07 kcal/mol and the longer simulations gave ∆Ghyd )
-3.62 ( 0.03 kcal/mol. Overall, it can be concluded that,
for these molecules, performing longer MD simulations has
no statistically significant effect on the calculated hydration
free energies and that the level of sampling used in the
original calculations is adequate.

3.4. Test Compounds. To test the transferability of the
parameters obtained above, simulations were performed on
another 17 compounds (Figure 7): six acyclic alkanes, three
linear (PENT, HEXA, HEPT) and three branched (BU2M,

BU22M, BU23M); two cyclic alkanes (CPNM, CHXM); four
acyclic alcohols, three linear (PEO1, PEO2, HXO1) and one
branched (B3MO1); one cyclic alcohol (CPOH); two acyclic
ethers (MPET, EPET); and two cyclic ethers (MTHF,
DIOX). This test set was designed to include at least one
example of every atom type for which pair-specific LJ
parameters had been developed above. In total, 18 different
atom types are represented within the test set. Fifteen of these
were considered during the pair-specific LJ parameter
optimization, with the remaining three having no pair-specific
LJ parameters. For all 17 molecules, simulations were
performed both with and without the pair-specific LJ
parameters developed above. For the 15 atom types for which
pair-specific LJ parameters had been explicitly parametrized,
all of the pair-specific LJ parameters used in the simulation
of these molecules were taken directly from Table 4. The
three atom types for which pair-specific LJ parameters had
not been explicitly calculated were the CHARMM atom
types CD315B, CD315A, and CD316A, corresponding to
the ring C atoms bonded to the substituent methyl groups in
MTHF, CPNM (and CPOH), and CHXM, respectively.
These atom types have LJ parameters that differ from other
C atoms in their respective rings, which have the same atom
types as the THF, CPEN, and CHEX ring C atoms.30 In such
cases, where pair-specific LJ parameters have not been
optimized, pair-specific LJ parameters were introduced on
the basis of the assumption that the change in the LJ
parameters will be the same as the change needed to obtain
pair-specific LJ parameters for the parent ring C atoms.
Obtaining parameters by analogy in this manner is not a
recommended procedure and generally yields suboptimal
results. In this case, however, such an approach was deemed
necessary to retain an objective test set. If the pair-specific
LJ parameters for atom types present in the test set had been
optimized, then the molecules containing these atoms types
could no longer have been considered as part of the test set.
It is anticipated that in future work where new pair-specific
LJ parameters are required, such parameters would be
obtained using the full optimization method outlined above.
All parameters other than pair-specific LJ parameters had
the standard CHARMM Drude polarizable force field values
for alkanes, alcohols, and ethers.26,27,30 A small number of
dihedral and angle parameters that did not already exist
within the CHARMM Drude polarizable force field were
obtained by analogy to existing force field parameters. Again,
such an approach is unlikely to yield high quality parameters
but was deemed sufficient for the current test.

With the parameters in place, for each molecule, five
independent calculations were performed to evaluate ∆Ghyd

using the FEP method described above. The final, average,
value of ∆Ghyd was then compared to the relevant experi-
mental value, with a good reproduction of the experimental
value taken to signify that the parameters are broadly
transferable across a range of molecules.

The results of the calculations of hydration free energies
on the test compounds are shown in Table 5. In all cases,
the inclusion of the pair-specific LJ parameters results in a
significant improvement in the calculated ∆Ghyd, with the
largest error being -0.65 kcal/mol for both MTHF and
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CPOH. In the calculations without any pair-specific LJ
parameters, the error in the calculated value of ∆Ghyd for
MTHF is -1.74 kcal/mol, the error in the calculated value
for CPOH is -1.38 kcal/mol, and the largest error is -2.33
kcal/mol, obtained for DIOX. Overall, the average error
across the whole set of test molecules is -0.14 kcal/mol
(rmsd ) 0.38 kcal/mol) when pair-specific LJ parameters
are included, compared to -1.59 kcal/mol (rmsd ) 1.63 kcal/
mol) in their absence. Performing a Student’s t test71 at a
significance level of 0.05 results in rejection of the null
hypothesis that the mean error in the ∆Ghyd values calculated
with pair-specific LJ parameters is the same as the mean
error in the ∆Ghyd values without pair-specific LJ parameters
(P value e 0.0001). From this it can be concluded that the
inclusion of pair-specific LJ parameters results in a statisti-
cally significant improvement in the reproduction of hydra-
tion free energies. It should also be noted that the worst
performing of the test set molecules, MTHF and CPOH, both
include an atom type for which pair-specific LJ parameters
have not been optimized but rather selected by analogy to
the corresponding THF atom types. This approach is not
necessarily valid, and it is likely that, by optimizing the pair-
specific LJ parameters associated with this atom type, some
improvement in the calculated value of the MTHF and CPOH
hydration free energies could be obtained. It is also worth
considering the issue of sampling. As noted above, adequate
sampling of conformational space is essential if accurate
∆Ghyd values are to be obtained for any molecule. It is also
something that is increasingly difficult for molecules with
increased flexibility, requiring multiple, long simulations. For
a molecule such as HEPT, it is extremely unlikely that the
entirety of conformational space has been well sampled using
the approach outlined above, and the presented values of
the hydration free energies should be treated with some
caution. For the purpose of this study, however, where the
calculations on these longer, more flexible molecules are not
targeted at the production of highly accurate hydration free

energies, but rather an assessment of whether the pair-specific
LJ parameters have resulted in an improvement in the
calculated ∆Ghyd values, these calculations are considered
adequate.

When developing optimized force field parameters such
as this, it is important to be aware of the risk of overfitting:
the situation that occurs when a statistical model describes
the data within a training set extremely well, but fails in
external test cases. The failure, which occurs when a model
possess too many degrees of freedom in relation to the
amount of data used for optimization, is often indicative of
a model that is not correctly accounting for the underlying
physics. In a case such as this study, where 14 pair-specific
LJ parameters are fitted to 19 experimental data points, the
risk of overfitting is considerable. As a first test for
overfitting, the performance of the pair-specific LJ parameters
can be compared between the training set and the test set.
To do this, a Student’s t test71 was performed to assess
whether the mean error observed in the training set was
significantly different from the mean error observed in the
test set; i.e., whether the fitted parameters are having a
differential impact on the training versus the test set of
molecules, which would indicate overfitting. From this
analysis, a P value of 0.3260 was obtained suggesting that
the two means may be the same, and it is concluded that
there is no significant difference between the mean error
observed in the training set and the mean error observed in
the test set. Thus, there is no evidence that the pair-specific
LJ parameters perform any differently in the training set than
they do in the test set. This supports the conclusion that the
data is not overfitted. As a second test for overfitting, the
modified Akaike Information Criterion (AICC)72 was con-
sidered. AICC is a method that can be used to assess the
relative information content in competing models of the same
data. It works by rewarding accurate reproduction of refer-
ence data but penalizing the inclusion of additional param-
eters. AICC is evaluated via eq 19

Table 5. Free Energies of Hydration of Test Set Molecules

molecule
experimental

∆Ghyd

without pair-specific
LJ parameters ∆Ghyd error

with pair-specific
LJ parameters ∆Ghyd error

Alkanes
PENT 2.36a 1.24 ( 0.09 -1.12 2.61 ( 0.08 0.25
HEXA 2.48a 0.85 ( 0.12 -1.63 2.39 ( 0.12 -0.09
HEPT 2.62a 0.34 ( 0.10 -2.28 2.81 ( 0.08 0.19
BU2M 2.38b 0.55 ( 0.09 -1.82 2.24 ( 0.05 -0.14
BU22M 2.51b 0.53 ( 0.15 -1.98 1.95 ( 0.14 -0.56
BU23M 2.34b 0.87 ( 0.22 -1.47 2.69 ( 0.12 0.36
CPNM 1.59b 0.34 ( 0.07 -1.25 1.64 ( 0.12 0.05
CHXM 1.70b 0.31 ( 0.15 -1.39 1.17 ( 0.08 -0.53

Alcohols
PEO1 -4.57b -5.73 ( 0.07 -1.16 -4.66 ( 0.06 -0.09
HXO1 -4.40b -5.79 ( 0.25 -1.39 -4.81 ( 0.14 -0.41
PEO2 -4.39b -5.66 ( 0.11 -1.27 -4.02 ( 0.10 0.37
B3MO1 -4.42b -5.74 ( 0.16 -1.32 -4.94 ( 0.08 -0.52
CPOH -5.49b -6.87 ( 0.06 -1.38 -6.14 ( 0.09 -0.65

Ethers
MTHF -3.34c -5.09 ( 0.13 -1.74 -3.99 ( 0.10 -0.65
DIOX -5.06b -7.39 ( 0.13 -2.33 -5.30 ( 0.16 -0.24
MPET -1.69c -2.36 ( 0.11 -1.69 -1.60 ( 0.06 0.09
EPET -1.84c -2.88 ( 0.08 -1.84 -1.59 ( 0.04 0.25

overall average -1.59 -0.14

a Experimental data from ref 68. b Experimental data from ref 82. c Experimental data from ref 67.
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where k is the number of free parameters, n is the number
of observations, and RSS is the residual sum of squares.
When comparing models, the model having the lowest AICC

score is accepted as the best performing model. Here, there
are two competing models: the model without pair-specific
LJ parameters, which has no free parameters, and the model
with pair-specific LJ parameters, which has 17 free param-
eters (14 from the original training set, with another 3 added
for the test set molecules). Considering all molecules (training
set + test set) together, the model without pair-specific LJ
parameters has AICC ) 21.70 and the model with pair-
specific LJ parameters has AICC ) -18.40. This result
indicates that the inclusion of pair-specific LJ parameters
results in a better model for the calculation of hydration free
energies and further supports the conclusion that the model
is not overfitted. In theory, it would also be possible to extend
this AICC analysis to include the entire body of data used in
the development of the CHARMM Drude polarizable force
field, not just the solvation free energies. In practice,
however, determining the number of free parameters and
constructing a RSS with contributions from a variety of
different properties would be difficult. What is clear is that
the total number of parameters used in each model will be
identical, apart from those introduced here, and that both
models will give identical results in all areas that do not
involve interactions with water. The total AICC values would
depend on the magnitude of the contribution to the RSS
arising from the additional data points: let us assume that
the contribution to the RSS, per data point, would be the
same as the average contribution to the RSS, per data point,
from the solvation free energy values obtained using the
model including pair-specific LJ parameters. If this assump-
tion were correct, then as long as the number of data points
increases by more than about 1.3 times the number of
parameters, the AICC value for the model including pair-
specific parameters will be lower than that of the model
without pair-specific LJ parameters.

3.5. Testing the Need for Pair-Specific LJ Parameters.
The question remains as to whether it is necessary to include
pair-specific LJ parameters within the CHARMM Drude
polarizable force field for the accurate calculation of hydra-
tion free energies. To address this, the pair-specific LJ
parameters obtained here were inverted to back-generate a
new set of type-specific LJ parameters, as described in the
methods section. Using these new LJ parameters, simulations
were performed on the bulk neat liquids to calculate
thermodynamic properties for a number of alkane and ether
molecules. For each of these molecules, the results of these
calculations were compared to experimental results, and the
results of calculations performed using the standard CHARMM
Drude polarizable force field parameters (Table 2). In the
initial development of CHARMM Drude polarizable models
of small molecules, the reproduction of liquid (or crystal)
phase thermodynamic data is considered to be of paramount
importance, with parameter optimization performed to yield
Vm and ∆Hvap that are both within 2% of the experimental
value. As Table 2 shows, this target is almost always

achieved. When the corresponding values are calculated
using the pair-specific LJ parameters, however, the agreement
is considerably worse. Specifically, none of the calculated
values are within the 2% target, with the majority of ∆Hvap

differing from the experimental target by more than 20%.
Overall, using the LJ parameters obtained from the pair-
specific LJ parameters, the average error in Vm is 11.2% and
the average error in ∆Hvap is -25.0%, compared to average
errors of 0.4% and -0.4% in the calculated values of Vm

and ∆Hvap, respectively, obtained using the standard LJ
parameters. Notably, there are systematic differences in the
pure solvent properties obtained with the pair-specific
parameters, where the Vm values are too large and the ∆Hvap

values are all too small. These results, combined with the
systematic overestimation of the ∆Ghyd values with the
parameters based on the combining rules (Table 1), strongly
indicate that the need for additional optimization of the LJ
parameters is not associated with limitations in the optimiza-
tion procedure but rather an inherent limitation in the energy
function.

To better quantify the physical underpinnings of the need
for the pair-specific LJ parameters, the results of the FEP
calculations were analyzed in greater detail. The free energy
decomposition approach used to calculate ∆Ghyd (eq 8) allows
for the individual contributions to ∆Ghyd due to the WCA-
repulsive, WCA-dispersive, and electrostatic interactions to
be quantified separately. By examining the change in these
contributions upon going from LJ parameters obtained from
the combining rules, to pair-specific LJ parameters, a more
complete picture can be obtained. The results of this analysis
are shown in Table 6 (complete details of the contributions
are shown in Table S4 of the Supporting Information). A
fascinating trend is revealed: the contribution that is the most
affected by the introduction of pair-specific LJ parameters
is always associated with the dispersion interaction, with this
term always becoming less favorable with the pair-specific
LJ parameters. Even with the polar species, the ethers and
alcohols, the dispersion term dominates, typically overriding
a more favorable electrostatic contribution associated with
the pair-specific LJ parameters. These trends allow for several
observations. First, the repulsive term, which is dominated
by the 1/r12 portion of the LJ potential, has the smallest
contribution. This is reassuring, as this aspect of the LJ
treatment of vdW interactions is known to be a fairly poor
approximation of a physically more accurate exponential
repulsion.73 While criticism of the 1/r12 repulsion is still valid,
this term does not adversely impact the free energies of
aqueous solvation, suggesting that its use in the energy
function is not having a significant adverse impact on force
field calculations in general. Second, the observation that
the electrostatics are not leading to systematic problems
validates the inclusion of polarization in the model and
suggests that its inclusion is satisfactorily modeling the
change in the electronic response of the system in environ-
ments of different polarities. Finally, the analysis of the free
energy decomposition points to some limitations in the
treatment of the dispersive interactions. As the functional
form of the dispersive interaction, ∼1/r6, is physically

AICC ) 2k + nln(RSS
n ) + 2k(k + 1)

n - k - 1
(19)
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correct,73 this indicates that the major limitations arise from
the LJ combining rules.

To investigate a possible limitation in the LJ combining
rule, the graphical approach of Waldman and Hagler74 has
been applied, focusing on the aliphatic carbon parameters
in which the pair-specific parameters only included changes
in ε. The plots, which are based on a reduced representation
of the change in εij as a function of εjj with normalization
based on εii, the well depth of the water oxygen, are shown
in Figure 8. Included are the εij/εjj values for the aliphatic
carbons based on the data in Table 4 along with curves
associated with different types of combining rules. Compar-
ing the pair-specific ε values obtained in this work to those
that would be obtained using either an arithmetic combining
rule or the geometric combining rule, eq 3, which is used in
CHARMM for the ε term, shows the limitation in these
simple combining rules. The arithmetic mean is clearly
inappropriate for ε, as previously discussed,74 and it is clear
that the geometric mean combining rule overestimates the
magnitudes of the ε values required to give an accurate
reproduction of experimental data, consistent with the
observation of Halgren that “the geometric-mean rule
consistently overestimates the well depth for unlike-pair
interactions.”75 This leads to the overestimation of the ∆Ghyd

values based on the combining rules (Table 1) and is
consistent with the free energy decomposition (Table 6).
Applying the combining rules of Waldman and Hagler or
of Halgren (Figure 8) results in ε values that are of smaller
magnitude compared to those from the geometric rule, but
still too large to reproduce accurately the parameters obtained
in this study.

Although none of the tested combining rules are able to
reproduce the pair-specific ε values, the results of the
graphical analysis are encouraging. The ε parameters ob-
tained in this work behave in a very similar manner to those

investigated by Waldman and Hagler for the noble gases.
They lie on one single curve and, as Waldman and Hagler
note, “if there is a valid combination rule g that correlates
a, b, and c, then a plot of c/a Vs b/a should lie on a single
curVe.”74 This suggests that there should be some combining
rule that is able to generate the ε parameters obtained from
the fitting performed in this work. Deriving that combining rule
remains a nontrivial task, but an empirical fitting based on the
geometric mean rule yields a combining rule (eq 20) that gives
an acceptable reproduction of the data shown in Figure 8.

While eq 20 adequately models the data in Figure 8, it has
no sound theoretical basis and does not fulfill the basic
mathematical requirements of a combining rule.76 Accordingly,
further analysis of the data was performed from which a
preliminary combining rule with a more physical basis was
empirically determined (eq 21). Based around the ε combining
rule proposed by Halgren,75 eq 21 also incorporates a term based
on the geometric mean rule for εRmin

6 as proposed by Waldman
and Hagler.74 The whole expression is then multiplied by an
additional term that facilitates an accurate reproduction of the
steeper gradient observed for the pair-specific ε parameters.
While this equation is highly preliminary, being specific for
only alkane carbons, and unlikely to be the ultimate solution
to the problem, it does demonstrate that it is possible to find a
combining rule that provides a good representation of the
empirically fitted parameters obtained in this work. It also lends
further support to the idea that improved combining rules would
facilitate an improved force field. Considered in combination
with previous studies that have shown that the combining rules
used in CHARMM are suboptimal,77,78 and that the use of
alternative combining rules can give improved reproduction of
experimental data,78,79 these results becomes even more
persuasive.

Table 6. Variation in the Free Energy Contributions to
∆Ghyd upon the Introduction of Pair-Specific LJ Parameters
(all values in kcal/mol)

molecule WCA-repulsion WCA-dispersion electrostatic

Alkanes
CPEN -0.16 1.18 -0.01
CHEX -0.05 0.78 0.00
ETHA -0.09 0.19 -0.01
PROP 0.05 0.67 -0.06
BUTA -0.14 1.01 -0.05
IBUT -0.01 1.01 -0.28
NEOP 0.16 1.25 0.00

Alcohols
MEOH 0.00 0.00 0.00
ETOH -0.13 0.58 -0.17
PRO2 -0.29 0.98 -0.64
BUO2 0.08 1.31 -0.09
PRO1 -0.20 1.03 -0.62
BUO1 -0.05 1.39 -0.54

Ethers
THF -0.09 1.19 0.11
THP 0.26 1.84 0.15
DEE -0.11 1.17 -0.29
DMOE -0.23 1.25 -0.48
DME 0.05 0.34 -0.40
MEET 0.00 0.76 -0.06

Figure 8. Waldman-Hagler graphical analysis of εij param-
eter values. Only εij values corresponding to interactions
between C atoms and water O atoms are considered. i
corresponds to the O water atom and j to the C atom.

εij ) 1.6√εiiεjj - 0.09 (20)
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The inability of available combining rules to treat the
present results for the aliphatic carbons is suggested to be
associated with the target data used in development of those
rules. Combining rules to date have targeted experimental
potential energy curves for rare gas homo- and heterodimers.
Such data is limited in that it only includes binary interactions
of nonpolar atoms whose interactions are dominated by
dispersion interactions. The present data are based on
complex mixtures of nonpolar and polar molecules, in which
significant electrostatic contributions occur. The presence of
these contributions is suggested to yield the trend shown in
Figure 8; smaller ε values are required as the value of ε
becomes smaller than that predicted by the standard com-
bining rules. Such small ε values lead to a decrease in the
dispersion contribution to ∆Ghyd, which may be required due
to favorable electrostatic contributions on the more polar
systems being investigated. While speculative, these results
clearly emphasize the importance of the target data in
determining an appropriate combining rule for condensed
phase studies of polar systems. In the present study this data
has been generated on the basis of extremely careful and
systematic optimization of LJ parameters initially obtained
on the basis of a well-defined set of target data (i.e., based
on pure solvent or crystal properties and rare gas interactions)
followed by additional optimization to obtain pair-specific
LJ parameters to reproduce a second set of well-defined target
data (experimental ∆Ghyd data). The resulting sets of LJ
parameters allowed for the development of the preliminary
combining rules presented in eqs 20 and 21.

3.6. Implementing the New Parameters within the
CHARMM Drude Polarizable Force Field. The analysis
presented above indicates that the standard combining rule
for ε is not adequate. This problem can be solved by either
changing the form of the combining rule or applying the
derived pair-specific parameters in the context of the present
energy function. Following the former course of action is
daunting and would require several steps. First, systematic
optimization of the pair-specific LJ parameters would need
to be performed in the context of the current combining rules
for all the molecules in the force fields for which experi-
mental ∆Ghyd data are available. Once those values are
obtained, a novel combining rule, similar to that in eq 21,
would need to be developed, taking into account the full
range of molecules in the force field. Once this combining
rule is decided upon, new LJ parameters for the entire force
field would be required on the basis of the new combining
rule, starting with water, through the alkanes and onto the
polar molecules and ions. Such a task, while possible, would
take several years to complete; to indicate the timeline of
such efforts, the first water model for the Drude polarizable
force field was published in 2003.21 The alternative is to
apply the pair-specific parameters presented in this study.
While this represents a compromise, it is an improvement

over the current combining rule based LJ parameters, leading
to a better representation of the balance of energetics in bulk
systems (e.g., the interior of a protein or lipid bilayer) and
in aqueous solution. Such an approach is not unprecedented
as Shirts and Pande,37 for example, have demonstrated (for
an additive force field) that it is possible to modify the
standard TIP3P water model80 so as to eliminate the
systematic error in hydration free energies without sacrificing
the properties of liquid water. In practice, we plan to follow
both paths. Over the long-term we anticipate systematically
optimizing pair-specific LJ parameters, leading to a new LJ
combining rule for ε. In the short term we will extend the
small molecule Drude force field to macromolecules using
the current combining rule along with the pair-specific LJ
parameters. Such an extension to macromolecules is not a
trivial process, and it is anticipated that additional limitations
in the model will be identified. Corrections to those limita-
tions will then be combined with an improved LJ combina-
tion rule to yield a second generation polarizable force field.

4. Conclusions

Pair-specific LJ parameters have been developed to describe
the interactions between solute heavy atoms and water O
atoms. These new parameters yield accurate calculated
hydration free energies of alkanes, alcohols, and ethers that
provide a good reproduction of experimental reference
values. The changes introduced are small in magnitude
relative to the LJ parameters obtained using the standard
CHARMM parameter combining rules, with the calculated
results highly sensitive to these small magnitude changes.
They have also been implemented in a hierarchical fashion
beginning from the alkanes, and a parametrization protocol
has been developed. This will allow for the addition of pair-
specific LJ parameters to new functional groups as they are
added to CHARMM Drude polarizable force field, in a
fashion that is as straightforward and systematic as possible.

The LJ parameters developed in this work have also been
used to calculate hydration free energies for a test set of
alkane, alcohol, and ether molecules not considered as part
of the parametrization process. In these cases, the new
parameters yield an acceptable reproduction of experimental
properties that is significantly improved compared to that
obtained with the combining rule based LJ parameters. This
suggests that the pair-specific LJ parameters are broadly
transferable across the alkane, alcohol, and ether molecules.

The pair-specific LJ parameters were also used to generate
(via the inverse of the standard CHARMM combining rules)
a new set of LJ parameters for use in liquid phase calculations
of alkane and ether molecules. These parameters were found
to give significant, systematic errors in the calculated values
of Vm and ∆Hvap. This result suggests that it will not be
possible, within the existing framework of the CHARMM
Drude polarizable force field, to find a single set of LJ
parameters capable of producing both liquid phase thermo-
dynamic data and hydration free energies in good agreement
with experimental results.

The systematic optimization of pair-specific LJ parameters
in the present study allowed for additional observations to
be made. Decomposition of the calculated ∆Ghyd results

εij ) (2 -
2εiiεjj

(εii + εjj)
2)0.25[ 4εiiεjj

(εii
1/2 + εjj

1/2)2
-

1
4(1 -

2Rmin,ii
3 Rmin,jj

3

Rmin,ii
6 + Rmin,jj

6 )] (21)
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exploiting the WCA free energy methodology (eq 8) allowed
for the identification that the impact of the pair-specific LJ
parameters was on the dispersion term. This result indicates
the utility of the treatment of the repulsive aspect of the vdW
interactions using the 1/r12 term and the suitability of the
treatment of electronic polarizability using the classical Drude
oscillator model. It also indicates limitations in the LJ
combining rule leading to the overestimation of the free
energies of solvation. This limitation was investigated in the
context of the aliphatic carbons and a systematic difference
between LJ parameters from the geometric combining rule
used in CHARMM (eq 3) as well as other published
combining rules for ε. On the basis of this difference, new
combining rules were proposed. These rules, while prelimi-
nary, indicate that improvements in the treatment of the vdW
interactions in empirical force fields are possible, although
significant additional work will be required to achieve such
a goal.
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Abstract: A reasonable description of the conformation energies of each of the amino acids is
crucial for modeling protein structures and dynamics. We here used 20 tetrapeptides (ACE-
ALA-X-ALA-NME, X ) one of 20 amino acids) in 5 conformations (right-handed helix (RR), left-
handed helix (RL), �-sheet (�), antiparallel �-sheet (�a), and polyproline II (PPII)) as structural
models to investigate the relative conformation energies at the MP2/cc-pVTZ//B3LYP/6-31G**
level. The results indicate that the energetic pattern (the order and the energy gap) of the five
conformations bears certain resemblances among the amino acids in the same class but is
quite different among the amino acids in the different classes (e.g., hydrophobic, aromatic, polar
and charged classes). The MP2 energies are then used to statistically evaluate the overall
performance of various methods including density functional methods (M05-2X, PBE, and
B3LYP), semiempirical methods (AM1, PM3, and PM3MM), empirical polarizable force fields
(AMOEBA and AMBER), additive force fields (AMBER, CHARMM, GROMOS, OPLS-AA), and
united-atom force fields (AMBERUA and GROMOS). In general, M05-2X obviously outperforms
PBE and B3LYP. The semiempirical methods are not able to reach the accuracy as expected.
Some of the additive force fields are more accurate than the semiempirical methods. The
AMOEBA polarizable force field has accuracy comparable with (or better than) the B3LYP and
PBE methods. AMBER99, OPLS-AA, CHARMM27 (excluding RL), and AMBERUA (excluding
RL) reach reasonable accuracy. However, further improvements, in particular on left-handed
helical (RL) and some residues such as Pro, Asp, and Glu, are necessary.

1. Introduction

A reliable description of conformation energy is crucial for
modeling structures and dynamics of biological systems (e.g.,
proteins, RNA and DNA). To obtain conformation energy
accurate enough for biological applications, the weak non-
bonding interactions must be properly taken into account.

This requires a high degree of electron correlation energy
to be accounted. The quantum mechanics (QM) CCSD(T)
approach,1 coupled-cluster with single and double and
perturbative triple excitations, is often considered to be
reliable in describing such weak nonbonding interactions.
But CCSD(T) is extremely time-consuming at the scale of
O(N7) where N is the number of basis functions, which limits
its applications to large molecular systems. The second-order
Møller-Plesset perturbation (MP2)2 method is much less
expensive (at a scale of O(N5)) than CCSD(T) and can reach
reasonable accuracy in describing the nonbonding interac-
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tions. The methods based on density functional theory (DFT)
such as the widely used B3LYP3,4 and PBE5 functional have
a better scale of O(N4) than the former two molecular-orbital-
based methods, but they are generally not reliable in
accounting for nonbonding interactions. Recently, Zhao and
Truhlar6 have developed the M05-2X/M06-2X functionals
that account for medium-range correlation energies and thus
provide a better description of nonbonding interactions.7,8

A further compromise between accuracy and computational
cost is provided by semiempirical methods (e.g., AM1,9 PM3,
and PM3MM10,11). These methods are simplified versions
of Hartree-Fock theory by using empirical parameters
derived from experimental data, which bring the possibility
to study large molecules (up to hundreds of atoms). However,
the quality of the DFT and the semiempirical methods in
estimating conformation energies is unclear.

Large sizes of biological molecules (e.g., protein, RNA,
and DNA) and long time scales of dynamic processes of
biological systems (e.g., protein and RNA folding) severely
limit the applications of the QM methods. Alternatively,
molecular mechanics (MM) modeling provides a tractable
approach to describe large biological molecules and make it
possible to study the dynamics of biological processes. MM
methods describe molecular systems at the atom or united-
atom particle level (e.g., aliphatic hydrogen atoms are
combined to the connected carbons). Instead of solving the
time-consuming Schrödinger equation, MM methods simplify
the total potential energy of a molecular system into the sum
of several physically meaningful interaction terms (harmonic
bond stretching, angle bending, Fourier series for torsion
distortion, and Coulomb and Lennard-Jones terms for non-
bonding interactions). Anharmonic and cross-terms may be
added to improve the accuracy of the force fields.12 The
function of the potential energy and the involved parameters
constitute a so-called force field. The force field is the
cornerstone of any MM molecular modeling.

Considerable research efforts have been dedicated to
developing reliable force fields. The conventional force fields,
which have been widely used in studying biological systems,
include AMBER,13 CHARMM,14 GROMOS,15,16 and
OPLS.17,18 One of the major defects for the conventional
force fields is using fixed partial charges to account for the
electrostatic interactions, which neglects the atomic charge
changes due to intra- and intermolecular polarization effects.
As a consequence, developments of polarizable force fields
have been pursued as the next generation of force fields. On
the basis of their conventional framework, AMBER,
CHARMM, GROMOS, and OPLS have further been devel-
oped to implicitly or explicitly include polarization effects.19–26

In addition to those, the ABEEM developed by Yang’s
group,27 AMOEBA developed by the Ponder group,28 and
SIBFA force field developed by Gresh et al.29 are polarizable
force fields for biological systems. In spite of the progress
made in developing polarizable force fields, polarizable force
fields have not been widely used for studying biological
systems due to an elevated computational cost and lack of
benchmarking studies to show the benefits.

Force fields were often parametrized to fit the geometric
and energetic data of small model molecules from experi-

ments and QM calculations. Although the force fields
developed by different groups use very similar energy
functions, the parameters may differ significantly due to the
different parametrization strategies. For example, the AM-
BER force fields obtained atomic partial charges by fitting
to the QM electrostatic fields of model molecules,30,31 while
OPLS-AA and GROMOS derived the charges by molecular
dynamics (MD) simulations to reproduce the experimental
data of model molecules.15,18 Thus, the empirical nature of
force fields and the variations between different force fields
make it necessary to benchmark them. Although the aspects
for a sufficient benchmark remain under debate (e.g.,
energetics versus thermodynamic properties), as an important
aspect, it has been widely adopted to directly compare MM
energies/structures of model molecules or larger systems with
those obtained by high quality QM calculations.

During the past decades, a large number of QM calcula-
tions on the small molecules that may be regarded as model
units for proteins have been reported.32–53 Böehm et al.54

and Gould et al.55 independently show that AMBER force
fields overestimate the stability of the C7 conformation of
alanine and glycine dipeptides when compared with their
QM results. Beachy et al.56 optimized 10 conformers of
alanine tetrapeptides (ACE-(Ala)3-NME) at the HF/6-31G**
level, and the relative conformation energies at the level of
local MP2 (LMP2) with the basis set of cc-pVTZ were used
to evaluate the popular force fields AMBER (AMBER3,
AMBER4.1, and AMBER94), CHARMM (CHARMM19
and CHARMM22), and OPLS (OPLS-AA(2,2), OPLS/A-
UA(2,8), OPLS-UA(2,2)), and GROMOS. Their results
showed that OPLS-AA(2,2) is the best force field in terms
of structure and relative conformation energies. The 10
alanine tetrapeptides were then used by Gresh et al.29 to
evaluate their SIBFA force field which explicitly takes
polarization into account via multipole interactions. They
showed that the relative energies calculated at the LMP2/
6-311G** level could be reproduced by their SIBFA force
field with a root-mean-square deviation (RMS) of about 1.3
kcal/mol. Recently, Kaminsky and Jensen57 calculated dipep-
tide conformational energies of four amino acids (Gly, Ala,
Ser, and Cys) using different QM methods and MM force
fields. They found that the B3LYP/6-31G** calculations
could not reproduce all the minima found at the MP2/aug-
cc-pVDZ(MP2) level, but for the minima that actually exist
on the B3LYP potential energy surface, the geometries and
relative energies are in good agreement with the MP2 results.
For the polarizable force fields, they found that the AMOEBA
polarizable force field performs as well as the B3LYP method
for ∼80% of the conformations but produces ∼20% artificial
energy minima which are not present on the MP2 energy
surface. The fixed charge force fields were only able to
reproduce the geometries of approximately half of the
conformations, and OPLS_2005 force fields (slightly modi-
fied version of the OPLS58 force fields in the MacroModel
program) perform best among their examined force fields.
Some authors also have calculated the infinite long polypep-
tide chain by DFT methods,59–64 and the comparison with
the force fields65 showed that all force fields overestimate
the stability of the helical conformations except for AM-
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BER99/AMBER99SB which satisfactorily reproduce all
three helical conformations (π, R, and 310 helix).

These benchmarking studies have contributed greatly to
force field developments. Nevertheless, the following limita-
tions motivated the present study: (i) The validations were
limited to a few amino acids in the limited secondary
structure types. In a force field, three sets of main chain
torsion parameters are often used: glycine and proline have
their own main chain parameters; the parameters obtained
by fitting to the potential energy surfaces of alanine dipeptide
or analogues66,67 are often extended to all remaining amino
acids under the assumption of transferability. Yet, the
transferability remains elusive, and the errors in these torsion
parameters could be one of reasons leading to an imbalance
of force fields over the major secondary structure types.68,69

In addition to the common right-handed helix (RR) and �
secondary structures, a peptide can also adopt a left-handed
helix (RL) and polyproline II conformation (PPII), while the
latter conformations are rarely considered in the force field
parametrization and assessment. Therefore, evaluations over
the complete chemical space of 20 amino acids and over
the major secondary structure types could bring us a better
understanding of the sequence-dependent conformational
energetics and the overall behavior of force fields. (ii) Most
of the evaluations were limited to alanine and glycine
dipeptides. However, this leads to an additional problem:
even if a force field can reproduce the relative energies of
dipeptides at different conformations, it does not necessarily
imply that the force field is adequate for longer polypeptides
because the long-range nonadditive interactions in larger
systems that are not present in the dipeptides may play an
important role in determining the conformation energy of
the longer polypeptides. For example, dipeptides are not able
to form intramolecular hydrogen bonds (H-bond) like those
in helix secondary structures.

In this study, using tetrapeptides as models, we perform a
systemic study to investigate the energetic features of the
major conformations of amino acids in the common protein
secondary structures at the MP2/cc-pVTZ//B3LYP/6-31G**
level and then use the MP2 energies as a “standard” to
examine the accuracy of various QM and MM methods (see
below for the examined methods). Tetrapeptides are the
smallest peptides that can contain H-bonds similar to those
in the helix secondary structures. We focus on the five major
secondary structures of peptides (i.e the right-handed helix
(RR), left-handed helix (RL), �-sheet (�), anti-� sheet (�a),
and polyproline II conformation (PPII)). In total, 100
tetrapeptide structures (20 amino acids × 5 conformations)
were used in this study. To our knowledge, this is the first
time a study of the energetic features of all amino acids in
the major secondary structures has been done at levels
ranging from MP2/cc-pVTZ to the MM-based molecular
mechanics model. These results could provide invaluable
information to both method developers and users for future
development and method selection.

2. Computational Methods

For a tetrapeptide (Figure 1), ACE-ALA-X-ALA-NME (X
is one of the 20 amino acids and ACE and NME are
respectively acetyl and methylamide groups which cap the
tetrapeptide; in comparison with dipeptide models, the
tetrapeptide models using two additional ALAs can reduce
the errors due to terminal groups in force field assessment),
the five typical conformations have the backbone (φ/Ψ) and
side chain dihedral angles defined as below. The backbone
dihedral angles of the five conformations are the right-handed
helix (RR; φ ) -57.0°, Ψ ) -47°), left-handed helix (RL;
φ ) 57.0°, Ψ ) 47°), �-sheet (�; φ )-119.0°, Ψ ) 113.0°),
anti-� sheet (�a; φ ) -140.0°, Ψ ) 135°), and polyproline
II conformation (PPII; φ ) -79.0°, Ψ ) 150.0°). These
(φ/Ψ) angles are applied to the three sets of backbone φ/Ψ
pairs of the tetrapeptides. The rotamer library developed by
Dunbrack’s group,70 was used to determine the side chain
dihedral angles (except for �3 and �4 of proline, which are
not available from the rotamer library and were obtained from
the geometry optimization at B3LYP/6-31G** with �1 and
�2 fixed to the library values). Given the main-chain dihedral
angles, the side chain dihedral angles were chosen to be the
values in the most populated rotamers. The dihedral angles
for the five conformations of each amino acid are provided
in the Supporting Information (Table S1 in Supporting
Information A (SIA)). All the QM and MM geometric
optimizations in the gas phase were carried out with the
backbone and side chain dihedral angles fixed to the
predefined values. The reason for using these restraints is to
prevent the geometric optimizations from producing struc-
tures that rarely exist in the peptide/protein structures in
aqueous solution (for example, the C7eq conformation is the
most stable conformation of alanine dipeptide, but it is rarely
seen in protein structures) or from producing divergent
structures under different methods, which make the com-
parisons of conformational energies inconsistent. In other
words, the restraints of dihedral angles make it possible to
focus our benchmarking on the common protein secondary
structures for different methods. The solvation effect is
critical in determining protein structures;71 its influence on
the benchmark is under investigation and will be reported
in the future.

The structures of the tetrapeptides were optimized at either
B3LYP/6-31G** (the optimized structures are drawn in
Figure S1 of SIA) or M05-2X/6-31G** levels. The single
point energies were then obtained at MP2/cc-pVTZ. Because
the two sets of MP2 energies are very close, which is due to
the restraints used in the geometry optimizations leading to
very similar structures, we only present the data set with
the B3LYP/6-31G** optimized structures in the main text,

Figure 1. Tetrapeptide model (R ) side chain of 20 amino
acids).
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and the other set of results are provided in Supporting
Information B (SIB).

The MP2/cc-pVTZ energies are used as the “standard”
values to evaluate the performance of all other methods. The
examined QM methods include M05-2X/cc-pVTZ//M05-2X/
6-31G**, M05-2X/6-31G**//M05-2X/6-31G**, PBE/cc-
pVTZ//PBE/6-31G**, PBE/6-31G**//PBE/6-31G**, B3LYP/
cc-pVTZ//B3LYP/6-31G**, B3LYP/6-31G**//B3LYP/6-
31G**, AM1//AM1, PM3//PM3, and PM3MM//PM3MM
(PM3 + the optional molecular mechanics correction for
HCON linkages), where the calculation levels behind “//”
indicate the levels used in the structural optimizations. All
QM calculations were carried out by using the Gaussian 03
program.72 Note that the M06-2X functional is not available
in Gaussian 03 and should be studied in future work. MM
calculations were carried out with the Tinker program73 using
different force fields, including AMOEBA,28 AMBER94,13

AMBER96,74 AMBER99,30 CHARMM27,14 OPLS-AA,17

and OPLS-AA/L.18 AMBER03,31 AMBER99SB,75 AM-
BEREP,19 AMBERPOL,20 and AMBERUA76 were carried
out using the Amber 9 package.77 GROMOS96 force fields
(for versions G43b1, G45a3,15 and G53a6,16 COOH was
used as C-terminal due to lack of NME) were calculated
using the GROMACS 3.3 simulation package.78 The MM
energies were obtained on the basis of the reoptimized
structures at the corresponding level. A dielectric constant
of 1.0 and an infinite cutoff for Lennard-Jones interactions
was used in MM calculations. All conformation energies
relative to the RR conformation are provided in Tables S2
of SIA and the Table S1 of SIB).

To statistically evaluate the performance of the examined
methods, two types of root-mean-square deviations (RMS)
of conformation energies were calculated either for each
amino acid, averaged over the five conformations (RMS),
or for each conformation type, averaged over 20 amino acids
(RMS-C). The first type of RMS is calculated by using eqs
1-3:

where n is the total number of the conformations (i.e., n )
5), Ebi and Eai are respectively the relative energies (i.e.,
setting the energy of RR to be zero) of the reference method
(i.e., MP2) and a given method, error is a signed error using
the MP2 energy as the “true” value, and Ec is a constant to
minimize the rms for each amino acid type, which fixes the
issue that, if the relative energies are defined relative to a
given conformation, the rms values will depend on the
reference conformation. As indicated by eqs 2 and 3, the
use of Ec is actually equivalent to using the mean value of
all conformations as the reference. The second type of rms

is the signed rms-C of each conformation type averaged over
20 amino acids for a given method and calculated by using
eqs 4 and 5:

where m is the total number of the amino acid type (i.e., m
) 20), Ebj and Eaj are respectively the relative energies (i.e.,
setting the energy of RR to be zero) of the MP2 and a given
method for a particular conformation, and Ec is the energy
offset obtained from eq 2 in minimizing the RMS for each
amino acid type. The reason for not directly using the Ec

obtained from eq 4 in minimizing RMS-C for each confor-
mation type (using 20 amino acids) is that such an energy
reference Ec should not depend on conformation type. SIGN
is determined from eq 5, which determine the sign of the
averaged signed error over the 20 amino acids. On the basis
of the definition of RMS/RMS-C, one can see that the RMS/
RMS-C can provide statistical information of the perfor-
mance of a given method on an individual amino acid over
all five conformations/on individual conformations over all
20 amino acids, respectively.

In addition, RMS and RMS-C are also calculated on the
basis of four conformations (i.e., excluding the left-handed
helix conformation), because the RL conformation is only
adopted by short peptides and is rarely presented in protein
structure modeling. To distinguish them from those calculated
over all five conformations, we refer to them as RMS-NRL

and RMS-C-NRL, where NRL is the abbreviation for “not
including RL”.

To evaluate the overall performance of the examined
methods, the means (µ) of RMS/RMS-NRL were calculated
as the averages over 20 amino acids by taking five/four
conformations into account. The means (µ) of unsigned
RMS-C/RMS-C-NRL were calculated as the averages over
five/four conformations by taking 20 amino acids into
account. The standard deviations (σ) of RMS/RMS-NRL and
unsigned RMS-C/RMS-C-NRL were calculated correspond-
ingly, which provide information on whether a given method
has a balanced performance on 20 amino acids or on five/
four conformations.

3. Results and Discussion

For brevity, we use the amino acid name to refer the whole
tetrapeptide hereafter. The energies at the MP2/cc-pVTZ//
B3LYP/6-31G** level relative to the R-helix conformation
are listed in Table 1 and are plotted in Figure 2.

From left to right in Figure 2, we order the results by
following the common classifications of 20 amino acids:
hydrophobic (Pro-Met), aromatic (Phe-Trp), polar (Cys-Gln),
and charged (Asp-Arg) classes. As expected, the pattern in
terms of energy order and gaps of the five conformations

RMS ) �∑
i)1

n

(error)2

n
(1)

error ) Eai - Ebi + Ec (2)

Ec )
∑
i)1

n

(Ebi - Eai)

n
(3)

RMS-C ) �∑
j)1

m

(Eaj - Ebj + Ec)
2

m
(4)

SIGN ) sign( ∑
j)1

m

Eaj - Ebj + Ec

m
) (5)
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for each amino acid shows certain similarity within the class
(e.g., Gly vs Ala, Phe vs Tyr) and more obvious differences
between the classes (e.g., aromatic and charged classes vs
hydrophobic and polar classes). The main features are
summarized as below: (1) RR conformations are the lowest
in the hydrophobic (except for Met) and polar classes (except
for Asn and Gln), but this is not the case in the charged
(except for Lys) and aromatic classes. This data may indicate
the following: when the interaction between the side chain
and backbone is weak, as in the hydrophobic and polar
classes, the backbone interactions (e.g., H-bond) dictate the
conformation energy, but when the side chain-backbone
interaction is strong, as in the charged and aromatic classes,
it may overtake the backbone interactions and change the
energetic pattern. (2) In the aromatic class, the energy of RL

is close to or less than that of RR (-0.62, -0.43, -0.19,
and 0.05 kcal/mol energy difference for Phe, Tyr, Trp, and
His, respectively). This might be caused by the ring-backbone
interactions. (3) In the charged class, the energy gaps between
different conformations become large except for Lys. For
example, the energy gaps between the lowest energy

conformation and the highest energy conformation is 7.83,
17.14, and 18.48 kcal/mol for Glu, Asp, and Arg, respec-
tively. In addition, Arg has an extremely favorable �a

conformation, at least 13.58 kcal/mol lower than other
conformations; this is caused by H-bond interaction between
the N-H of the side chain and the CdO of the backbone
for �a (Figure S1 in SIA). (4) Although RL appears to be
“mirror” image of RR in a reduced ribbon representation,
their energies are not close to each other. In fact, RL has a
higher energy than RR for 13 amino acids (except for the
whole aromatic class, Met, Asn, and Arg) by at least 1.0
kcal/mol; this can be attributed to the stronger steric effect
between CdO groups and side chains in RL than that between
N-H groups and side chains in RR. However, in the case of
Arg, RL has a lower energy than RR by -4.06 kcal/mol,
which might stem from the different side chain torsions in
the two conformations. In short, no two amino acids have
the exact same conformation energy profile, highlighting the
sequence dependent features. From the perspective of
secondary structure propensity, the conformation energy
profile determines the intrinsic preference toward certain
secondary structure types (extended conformation versus
helical conformation) for each amino acid. Thus, it is critical
for lower level methods to reproduce these energetic
signatures of each amino acid as accurately as possible. The
errors may lead to the wrong secondary structure propensity
for each amino acid.

In the following, we use the MP2 energies as the
“standard” to assess the other methods. It should be pointed
out that the MP2 energies may have a deviation of about
0.5 kcal/mol with respect to the “true” values calculated at
the more sophisticated QM level. For brevity, we mainly
discuss the overall performance of the examined methods
and place the details in the Supporting Information. Tables
2 and 3 list only the signed RMS-C values and the RMS-
NRL values, respectively. The means (µ) and standard
deviations (σ) of the unsigned RMS-C’s and the RMS-NRL’s
are plotted in Figures 3 and 4 for visualization, respectively.
The RMS-C-NRL values are given in Table S4c of SIA and
included in Figure 3. The RMS values are given in Table
S3d of SIA but not included in Figure 4 for brevity.

The RMS-C values in Table 2 and its mean in Figure 3
demonstrate the M05-2X functional obviously outperforms
the PBE and B3LYP functional in predicting the relative
conformation energies. The mean RMS-C values (µ) of M05-
2X/cc-pVTZ (0.79 kcal/mol) and M05-2X/6-31G** (0.84
kcal/mol) are substantially less than those of PBE/cc-pVTZ
(2.60 kcal/mol), PBE/6-31G** (1.45 kcal/mol), B3LYP/cc-
pVTZ (3.24 kcal/mol), and B3LYP/6-31G** (1.90 kcal/mol).
This can be attributed to the better description of nonbonding
interactions by the M05-2X functional. As shown in Table
2, at both levels of PBE (PBE/6-31G** and PBE/cc-pVTZ),
B3LYP (B3LYP/6-31G** and B3LYP/cc-pVTZ), and M05-
2X/cc-pVTZ, the RR and RL conformations which contain
intramolecular H-bonds have positive RMS-C values, while
the RMS-C’s of extended conformations (�, �a, and PPII)
which do not have intramolecular H-bonds are negative. In
other words, these DFT methods overestimate the energies
of the compact helical conformations but underestimate the

Table 1. Relative Energies (kcal/mol; with reference to the
RR conformation) of the 100 Tetrapeptide Structures at the
MP2/cc-pVTZ//B3LYP/6-31G** Level

RR RL � �a PPII

Pro 0.00 2.24 4.26 5.29 1.76
Gly 0.00 1.55 3.67 1.74 2.85
Ala 0.00 2.23 3.44 1.01 2.91
Val 0.00 3.61 2.15 0.18 3.17
Leu 0.00 3.24 3.37 0.79 3.01
Ile 0.00 4.15 1.97 0.13 2.27
Met 0.00 -0.12 3.05 0.87 1.53
Phe 0.00 -0.62 0.55 -0.91 2.69
Tyr 0.00 -0.43 0.37 -0.97 2.51
His 0.00 0.05 1.28 0.13 2.32
Trp 0.00 -0.19 2.54 -0.27 2.40
Cys 0.00 0.95 1.78 1.15 4.06
Ser 0.00 1.33 3.90 1.13 3.62
Thr 0.00 1.99 5.44 4.22 4.00
Asn 0.00 -0.84 1.36 1.53 3.52
Gln 0.00 2.06 2.63 0.43 -1.74
Asp 0.00 16.70 -0.44 7.01 12.97
Glu 0.00 5.34 -0.63 2.91 7.20
Lys 0.00 2.92 3.51 0.42 0.78
Arg 0.00 -4.06 -1.33 -18.48 -4.90

Figure 2. Relative energies of five conformations of 20 amino
acids using MP2/cc-pVTZ//B3LYP/6-31G**.
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energies of the extended conformations with respect to the
corresponding MP2 energies. This can be attributed to the
fact that the DFT methods (in particular the B3LYP
functional) are not able to account for the nonbonding
interactions properly (e.g., underestimation of the dispersion
and H-bonding interactions in the compact conformations).
Similarly, Table 2 can be used to examine the performance
of other methods on the individual conformations.

Because the MP2 energies were computed using the cc-
pVTZ basis set, one may assume that the cc-pVTZ basis set
could give better agreement than the 6-31G** basis set.
However, the mean RMS-C values indicate that the cc-pVTZ
basis set only marginally improves the agreement of the
M05-2X functional from 0.84 kcal/mol (6-31G** basis set)
to 0.79 kcal/mol, but it even worsens the agreement of the
B3LYP (and PBE) functional from 1.90 (and 1.45) kcal/
mol (6-31G** basis sets) to 3.24 (and 2.60) kcal/mol. This
can be attributed to the larger basis set superposition error
(BSSE) of the 6-31G** basis set than that of the cc-pVTZ
basis set. With respect to the cc-pVTZ basis set, the 6-31G**
basis set leads to larger BSSE values for more compact
conformations than for the extended conformations, which
compensates more for the dispersion that is intrinsically
underestimated by DFT methods in the compact conforma-
tions than in the extended conformations. Because of the
defect of the PBE and B3LYP functionals in accounting for
the nonbonding interactions, we simply added the MM
dispersion energies obtained from AMBER99 calculations
to the PBE and B3LYP energies (denoted by adding suffix

“D” in the tables and figures); the agreements of the PBE
and B3LYP functionals are improved by about 0.4-0.7 kcal/
mol; the mean RMS-C’s of the cc-pVTZ basis set are reduced
from 2.60 and 3.24 kcal/mol to 1.90 and 2.45 kcal/mol for
PBE and B3LYP, respectively; the mean RMS-C’s of the
6-31G** basis set are decreased from 1.45 and 1.90 to 1.09
and 1.28 kcal/mol for PBE and B3LYP, respectively. This
implies that the PBE and B3LYP functional can be moder-
ately improved by adding the Lennard-Jones potential,
indicating that the accuracy of DFT methods can be further
improved by treating dispersion interactions in a more
systematic way, as exemplified by the M05-2X and M06-
2X density functionals. Due to the double counting of the
medium-range dispersion effect, such corrections worsen
the M05-2X performance by about 0.1-0.8 kcal/mol. The
standard RMS-C deviations (σ) pronounce that the M05-
2X/cc-pVTZ method (σ ) 0.24 kcal/mol) has more consistent
descriptions of the five conformations than do PBE/cc-pVTZ
(σ ) 0.87 kcal/mol) and B3LYP/cc-pVTZ (σ ) 0.80 kcal/
mol), which is in agreement with the above discussion.

The examined semiempirical methods are less accurate
than both DFT methods. Their mean RMS-C’s are larger
than those of DFT methods (see Table 2). AM1 (µ ) 2.91
kcal/mol) outperforms PM3 (µ ) 5.55 kcal/mol). The signed
RMS-C values of AM1 and PM3 indicate that the semiem-
pirical methods may share the same reasons for their poor
performance as the B3LYP methods but with larger errors.
The poor performance of PM3 cannot be rescued by adding
a MM correction of the pyramidalization of the amide

Table 2. Signed RMS-C (kcal/mol) of Each Conformation over 20 Amino Acids for All Considered Methods

RR RL � �a PPII mean (µ) 1SD (σ)

M05-2X/cc-pVTZ 1.22 0.62 -0.52 -0.79 -0.78 0.79 0.24
M05-2X-Da/cc-pVTZ -1.09 0.86 0.92 0.89 0.54 0.86 0.18
M05-2X/6-31G** 0.48 -1.79 0.93 0.31 0.70 0.84 0.52
M05-2X-Da/6-31G** -1.81 -1.97 1.54 1.24 1.59 1.63 0.25
PBE/cc-pVTZ 3.22 3.18 -3.02 -2.66 -0.91 2.60 0.87
PBE-Da/cc-pVTZ 1.21 3.16 -2.55 -2.05 0.51 1.90 0.94
PBE/6-31G** 2.19 0.95 -1.85 -1.69 0.58 1.45 0.60
PBE-Da/6-31G** 0.48 1.08 -1.39 -1.19 1.31 1.09 0.32
B3LYP/cc-pVTZ 3.89 4.12 -3.30 -3.06 -1.83 3.24 0.80
B3LYP-Da/cc-pVTZ 1.85 4.09 -2.83 -2.42 -1.04 2.45 1.02
B3LYP/6-31G** 2.75 1.87 -2.11 -2.08 -0.68 1.90 0.68
B3LYP-Da/6-31G** 0.81 1.91 -1.63 -1.50 0.56 1.28 0.51
AM1 2.11 4.68 -3.20 -1.74 -2.83 2.91 1.02
AM1-Da -1.17 4.70 -2.81 1.74 -1.98 2.48 1.23
PM3 5.54 8.01 -3.93 -3.01 -7.27 5.55 1.90
PM3-Da 3.48 7.99 -3.54 -2.44 -6.39 4.77 2.08
PM3MM 5.73 8.74 -4.98 -3.45 -6.71 5.92 1.77
PM3MM-Da 3.67 8.69 -4.56 -2.76 -5.83 5.10 2.06
AMOEBA 1.21 -1.61 1.67 1.78 -1.54 1.56 0.19
AMBEREP -4.11 10.24 -1.89 -2.59 -2.68 4.30 3.06
AMBERPOL -3.17 5.91 1.29 -1.45 -2.54 2.87 1.67
AMBER94 -4.60 4.80 1.45 1.81 -2.22 2.98 1.43
AMBER96 1.04 9.55 -3.15 -4.20 -3.09 4.21 2.86
AMBER99 -2.86 3.78 1.90 -2.28 -1.02 2.37 0.93
AMBER99SB 2.72 2.98 -1.25 -2.16 -3.53 2.53 0.78
AMBER03 -1.89 9.11 -1.83 -3.28 -4.79 4.18 2.69
CHARMM27 -2.99 14.55 -4.10 -2.87 -6.02 6.11 4.37
OPLS-AA 2.60 4.58 -3.20 -2.57 -2.96 3.18 0.74
OPLS-AA/L 2.54 5.70 -2.31 -3.02 -3.97 3.51 1.23
AMBERUA -3.50 13.86 -2.54 -3.32 -5.54 5.75 4.17
GROMOS(G43b1) 4.33 10.65 -5.63 -3.79 -4.53 5.79 2.50
GROMOS(G45a3) 3.59 9.60 -5.68 -3.66 -4.05 5.32 2.27
GROMOS(G53a6) 5.14 10.36 -6.51 -4.06 -4.87 6.19 2.23

a AMBER 99 dispersion energies are applied (see text for details).
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nitrogen in PM3MM (µ ) 5.92 kcal/mol). The additions of
MM-dispersion interactions slightly improve their perfor-
mance by 0.43 kcal/mol for AM1 and 0.78 kcal/mol for PM3
and PM3MM. Note that the mean RMS-C of AM1, 2.91
kcal/mol, is comparable with that (3.24 kcal/mol) of the least
accurate B3LYP/cc-pVTZ method. The standard RMS-C
deviations (σ(AM1) ) 1.02 kcal/mol and σ(PM3) ) 1.90
kcal/mol) also indicate that the examined semiempirical
methods have less consistent descriptions of the five con-
formations than DFT methods which have σ values ranging
from 0.2-0.8 kcal/mol.

Remarkably, the polarizable force field, AMOEBA (µ )
1.56 kcal/mol), performs better than the B3LYP/cc-pVTZ
(µ ) 3.24 kcal/mol), B3LYP/6-31G** (µ ) 1.90 kcal/mol),
and semiempirical AM1 (µ ) 2.91) and PM3 (µ ) 5.55 kcal/
mol) but less accurate than M05-2X with both cc-pVTZ or
6-31G** (µ ≈ 0.8 kcal/mol). The standard RMS-C deviation
(σ ) 0.19 kcal/mol) of AMOEBA reaches the value of M05-
2X, indicating that the force field has a consistent description
over all five conformations. These are encouraging signs for
developing such a polarizable force field to simulate biologi-
cal molecules. However, the performance of the two versions

Table 3. RMS-NRL (kcal/mol) over the Four Conformations (RR, �, �a, and PPII) of Each Amino Acid for Each Method

Pro Gly Ala Val Leu Ile Met Phe Tyr His Trp Cys Ser Thr Asn Gln Asp Glu Lys Arg Mean SD

M05-2X/cc-pVTZ 0.83 0.98 0.84 0.83 0.77 0.77 0.68 0.99 1.05 0.88 1.15 1.05 0.77 0.67 0.74 0.77 0.30 0.85 0.84 0.92 0.83 0.17
M05-2X-Da/cc-pVTZ 2.34 0.58 0.62 0.50 0.48 0.49 0.52 0.59 0.87 0.63 0.82 1.27 0.64 0.55 0.35 0.68 0.91 1.08 0.42 0.54 0.74 0.43
M05-2X/6-31G** 0.34 0.50 0.14 0.38 0.44 0.33 0.25 0.30 0.58 0.22 0.26 1.11 0.34 0.46 0.27 0.48 0.79 0.40 0.41 0.40 0.42 0.21
M05-2X-Da/6-31G** 2.72 1.46 1.43 1.31 1.42 1.26 1.37 1.14 1.35 1.21 1.58 1.99 1.43 1.49 1.14 1.50 1.43 1.38 1.11 0.88 1.43 0.37
PBE/cc-pVTZ 2.51 2.80 2.74 2.56 2.63 2.50 2.53 2.40 2.31 2.56 2.84 2.44 2.60 2.68 2.37 2.59 1.35 2.32 2.70 2.08 2.48 0.31
PBE-Da/cc-pVTZ 1.12 1.62 1.54 1.59 1.61 1.45 1.52 1.86 1.82 2.12 1.68 1.31 1.36 1.59 1.50 1.34 0.28 1.03 2.15 1.94 1.52 0.40
PBE/6-31G** 1.86 1.94 1.84 1.60 1.66 1.56 1.65 1.51 1.47 1.62 1.84 1.59 1.70 1.57 1.55 1.89 1.18 1.91 1.70 1.64 1.66 0.18
PBE-Da/6-31G** 1.33 1.18 0.99 0.90 0.99 0.61 0.98 1.30 1.38 1.50 1.12 0.88 0.72 0.68 0.96 1.15 0.75 0.98 1.43 1.76 1.08 0.29
B3LYP/cc-pVTZ 2.92 3.16 3.20 3.00 3.11 2.94 2.94 2.88 2.81 3.02 3.41 2.92 3.15 3.18 2.84 2.96 1.54 2.61 3.19 2.46 2.91 0.38
B3LYP-Da/cc-pVTZ 1.47 1.82 1.87 1.90 1.97 1.86 1.85 2.13 2.08 2.37 2.08 1.64 1.85 2.02 1.86 1.61 0.53 1.32 2.48 2.09 1.84 0.40
B3LYP/6-31G** 2.06 2.15 2.25 2.01 2.05 1.95 2.02 1.89 1.81 1.98 2.28 1.98 2.21 2.02 1.96 2.16 1.20 1.86 2.09 1.72 1.98 0.23
B3LYP-Da/6-31G** 1.14 1.00 1.06 1.01 1.06 0.87 1.09 1.32 1.27 1.52 1.18 0.84 0.98 0.90 1.09 1.08 0.56 0.66 1.52 1.53 1.08 0.25
AM1 2.20 2.39 2.14 1.91 2.31 1.95 1.50 2.62 2.56 2.52 2.80 1.62 2.17 1.62 1.37 1.67 1.61 2.59 2.14 3.90 2.18 0.57
AM1-Da 1.70 1.22 1.07 1.14 1.24 1.49 1.02 1.70 1.63 1.81 1.16 0.57 1.95 0.94 0.44 1.16 1.39 1.58 1.76 4.18 1.46 0.74
PM3 4.85 4.63 4.84 4.85 5.48 4.79 3.90 5.24 5.22 5.19 5.45 4.42 3.82 5.38 4.17 3.56 4.88 5.13 4.83 4.69 4.77 0.54
PM3-Da 2.85 3.37 3.58 3.64 4.35 3.99 2.85 4.10 4.06 4.20 3.96 3.26 2.91 4.27 3.23 2.37 4.24 3.93 4.04 4.35 3.68 0.58
PM3MM 4.92 4.92 4.84 4.76 5.40 4.70 3.96 5.22 5.15 5.11 5.40 4.55 4.64 5.78 4.37 3.85 4.82 4.64 5.28 4.96 4.86 0.46
PM3MM-Da 2.77 3.55 3.50 3.54 4.23 3.83 2.84 4.14 4.04 4.16 3.84 3.25 3.68 4.59 3.33 2.54 4.22 3.43 4.48 4.58 3.73 0.58
AMOEBA 3.92 0.70 0.70 1.62 0.83 1.07 0.53 0.46 0.27 1.56 1.01 0.90 0.51 1.94 1.58 0.23 2.50 2.10 1.38 0.91 1.24 0.87
AMBEREP 2.91 1.35 0.72 0.42 0.93 0.54 1.30 0.73 0.78 0.50 1.42 1.96 0.95 1.07 1.66 0.68 1.66 2.94 0.31 1.73 1.23 0.73
AMBERPOL 3.92 0.58 1.29 0.99 1.23 1.40 1.38 1.12 1.00 0.70 1.91 1.89 1.00 1.56 1.21 1.40 1.44 2.96 0.76 2.40 1.51 0.78
AMBER94 4.03 1.37 2.16 1.75 2.11 2.09 2.18 2.05 1.87 2.19 2.40 2.94 2.41 1.87 1.35 2.42 2.87 3.99 2.27 3.98 2.42 0.77
AMBER96 1.18 2.49 1.79 2.15 1.75 2.37 1.71 1.81 1.98 1.72 1.67 1.89 1.88 2.02 2.59 1.60 1.77 2.22 1.99 2.09 1.93 0.32
AMBER99 2.47 1.38 1.47 1.29 1.24 1.30 1.81 1.44 1.30 1.25 1.90 2.47 1.72 1.62 0.60 1.74 2.87 3.92 1.23 2.22 1.76 0.72
AMBER99SB 2.29 2.32 2.35 2.59 2.02 3.16 1.94 2.24 2.36 2.25 2.28 2.70 2.65 2.42 2.65 1.91 2.00 2.57 2.72 3.02 2.42 0.33
AMBER03 2.43 1.48 1.57 1.87 1.39 2.81 1.16 1.23 1.30 1.76 1.12 2.27 1.73 2.72 1.18 2.34 2.01 3.03 3.72 4.13 2.06 0.84
CHARMM27 2.38 1.86 1.35 1.49 1.71 1.86 0.91 1.97 1.99 2.30 1.53 1.82 0.64 1.26 1.69 0.99 4.22 2.64 2.03 3.53 1.91 0.82
OPLS-AA 4.13 2.00 2.00 2.13 2.33 2.65 2.29 2.71 2.75 2.42 1.94 2.21 2.24 2.57 3.59 2.11 1.86 2.16 3.23 3.36 2.53 0.59
OPLS-AA/L 4.78 4.02 1.97 2.04 2.36 1.80 1.79 2.69 2.71 2.42 1.75 2.59 3.11 2.49 2.74 2.13 1.95 1.70 2.77 3.37 2.56 0.77
AMBERUA 2.56 1.53 1.22 1.94 1.01 1.54 0.92 1.28 1.91 1.37 1.59 2.16 0.96 0.83 1.30 1.83 1.44 2.62 1.36 3.47 1.64 0.64
GROMOS(G43b1) 2.33 3.31 3.18 3.14 3.34 3.07 2.92 3.14 3.22 2.95 2.06 3.00 2.65 3.15 3.24 2.71 7.60 5.63 3.75 6.22 3.53 1.33
GROMOS(G45a3) 2.47 3.48 3.38 3.25 3.54 3.11 3.09 3.40 3.43 3.10 2.25 3.15 2.83 3.30 3.40 2.83 5.24 5.66 3.62 5.32 3.49 0.88
GROMOS(G53a6) 7.15 4.68 4.56 4.34 4.80 4.22 3.72 4.60 4.62 4.25 3.52 4.17 3.87 4.24 4.24 3.85 4.33 4.71 4.47 5.13 4.47 0.72

a AMBER99 dispersion correction.

Figure 3. Mean (µ) and standard deviation (σ) of RMS-C of
each conformation calculated over 20 amino acids for each
method.

Figure 4. Mean (µ) and standard deviation (σ) of RMS of
each amino acid calculated without RL conformations for each
method.
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of AMBER polarizable force fields (with/without extra
points) is not improved in comparison with their nonpolar-
izable AMBER versions (see Table 1). A systematic param-
etrization is necessary to improve the accuracy.

Unexpectedly, some of the additive all-atom force fields
outperform semiempirical methods (see Table 2 for compar-
ing the mean RMS-C of these force fields with the semiem-
pirical methods). Large standard deviations of RMS-C are
observed for AMBER96 (2.86 kcal/mol), AMBER03 (2.69
kcal/mol), and CHARMM27 (4.37 kcal/mol), indicating that
these force fields have imbalanced descriptions on some
conformations. Indeed, these three force fields have larger
RMS-C’s for the RL conformation, being 9.55, 9.11, and
14.55 kcal/mol, respectively, than the other four conforma-
tions. This defect is probably caused by the less attention
paid to the RL conformation in the force field parametrization.
The OPLS-AA/OPLS-AA/L and AMBER99/AMBER99SB
force fields suffer such a defect less severely; their σ values
are 0.74/1.23 and 0.93/0.78 kcal/mol, respectively. If exclud-
ing the RL conformation, the mean RMS-C-NRL of AM-
BER96/99 and CHARMM27 are respectively 1.82/1.81 and
2.05 kcal/mol (Table S4c of SIA), which are smaller than
the best semiempirical AM1 method (2.18 kcal/mol of AM1)
but are still larger than the polarizable AMOEBA force field
(1.50 kcal/mol). We emphasized that the tetrapeptide models
used in this study are no longer the alanine dipeptide which
is often used in force field parametrization, and they can
mimic the H-bonds in protein helix secondary structures. For
the AMBER series, the AMBER99 and AMBER96 perform
slightly better than the others in the gas phase after excluding
the RL data. However, caution should be taken that
AMBER99SB and AMBER03 were developed to implicitly
include the solvent effect. Further evaluation in the con-
densed phase is necessary. For the OPLS series of force
fields, it is unexpected that OPLS-AA/L performs slightly
worse than OPLS-AA, because the torsion parameters of the
former were refined using QM-based conformational energies
of a large amount of different conformations in the gas phase.
Again, further evaluation in the condensed phase is necessary
to provide a more reasonable assessment.18

In the category of the united atom force fields, AMBERUA
is comparable to the GROMOS96 series when all five
conformations are included. But when RL is excluded,
AMBERUA performs much better than the GROMOS series
(∼1.7 kcal/mol vs ∼4.0 kcal/mol of mean RMS-C). Since
the versions of G45a3 and G53ab were optimized in the
solution phase, further evaluation in the solution phase is
necessary. In addition, we argue that other important aspects
are needed to be considered for a comprehensive assessment
of the force fields (especially for the additive ones): inter-
peptide interactions,66,79,80 peptide-water interactions,14,71

thermodynamic properties,15,16 even kinetic properties, etc.
In fact, the GROMOS force fields, which perform worse than
others in this study, have been successfully applied to many
protein simulations.

The means (µ) of RMS (Table S3d, Supporting Infor-
mation) and RMS-NRL (Table S4d/Table 3) give the same
information on the overall performance of the examined
methods as those of RMS-C (Table S3c/Table 2) and

RMS-C-NRL (Table S4c) because they originate from the
same data sets. However, the individual RMS/RMS-NRL

can tell us the performance of the examined methods on
the individual amino acid. It is well-known and we also
confirmed that the MM methods are not able to describe
the RL conformation properly. We thus use RMS-NRL

(Table 3 and Figure 4) for the following discussion, since
RL is not important for modeling the native protein
structure. Understandably, the QM methods (M05-2X,
PBE, B3LYP, AM1, and PM3) are generally more
consistent in describing all 20 amino acids, although some
of them (e.g., PBE/cc-pVTZ, B3LYP/cc-pVTZ, PM3, and
PM3MM) have poor overall performance. The polarizable
AMOEBA, which has overall good performance, is
unsatisfied with some amino acids such as Pro, Asp, and
Glu in particular. The developer needs to pay attention to
these problematic amino acids. For the additive force
fields, AMBER96 gives more consistent descriptions to
all the amino acids than the other additive force fields.
Its standard deviation, 0.32 kcal/mol, is comparable with
those of the M05-2X methods, although the overall
performance of the force field is not as good as those of
the M05-2X methods. The readers can refer the Table 3
to identify the problematic amino acids for other force
fields.

4. Conclusions

Using 100 tetrapeptide structures which cover all 20 amino
acids and five major conformations (RR, RL, �, �a, and PPII),
we estimated their conformation energies in the gas phase
at the MP2/cc-pVTZ//B3LYP/6-31G** level. The results
indicate that the energetic patterns (the order and the energy
gap) of the five conformations bear certain resemblances
among the amino acids in the same class but is quite different
among the amino acids in the different classes (e.g.,
hydrophobic, aromatic, polar, and charged classes). Using
these MP2 energies of 100 tetrapeptide structures as “stan-
dard”, we further evaluated the performance of various
methods in terms of RMS and RMS-C and draw the
following conclusions: (1) The M05-2X DFT functional
outperforms PBE and B3LYP. (2) The semiempirical meth-
ods (AM1, PM3, and PM3MM) are not accurate enough to
describe the relative energies of the conformations. (3) The
AMOEBA polarizable force field outperforms the semiem-
pirical methods and the B3LYP method. However, the
current AMBER polarizable force fields do not improve the
accuracy with respect to the related additive versions, which
suggest a systematic parametrization is necessary to improve
the accuracy. (4) The additive force fields are less accurate
than the three DFT methods, but some of them are more
accurate than the semiempirical methods. (5) If excluding
the RL conformation, the examined force fields have com-
parable performance; the RMS-C means are 2.4 kcal/mol
for AMBER94, 1.8 kcal/mol for AMBER96/99, 2.3 kcal/
mol for AMBER99SB, 2.2 kcal/mol for AMBER03, 2.0 kcal/
mol for CHARMM27, and 2.5 kcal/mol for OPLS-AA and
OPLS-AA/L. However, it should be pointed out that some
of the force fields are parametrized to include the solvent
effects implicitly, while our calculations were carried out in
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the gas phase. (6) If excluding the RL conformation, the united
atom force field (AMBERUA) with a 1.7 kcal/mol of mean
RMS-C, has an accuracy comparable with that of the all-atom
force field. (7) With respect to the MP2 energies, overestimating
the energies of the compact helical conformations (RR and RL),
but underestimating those of the extended conformations (�,
�a, and PPII), is a general error trend for methods M05-2X/
cc-pVTZ, PBE and B3LYP, AM1, AMBER99SB, OPLS-AA,
and OPLS-AA/L and GROMOS. (8) Semiempirical and
empirical force field methods perform poorly on Pro and the
charged amino acids.

The structures and energies of the 100 tetrapeptide
structures can serve as a database to systematically develop/
calibrate force fields for modeling proteins. In addition to
the data provided in the Supporting Information, other
preliminary data such as the Cartesian coordinates of the 100
tetrapeptides are available upon request.
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and side-chain dihedral angles adopted in the calculations
(Table S1 of SIA). The relative energies of RL, �, �a, and
PPII to RR at all considered levels (Table S2 of SIA and
Table S1 of SIB). The reference energy offsets (EC/EC -
NRL) to minimize RMS/RMS-NRL (Table S3a/Table S4a of
SIA and Table S2a/Table S3a of SIB). The signed energy
errors (error ) Eai - Ebi + Ec) and errors (Table S3b of
SIA and Table S2b of SIB)/error-NRL (Table S4b of SIA
and Table S3b of SIB). The signed RMS-C/RMS-C-NRL

values (Table S3c/Table S4c of SIA and Table S2c and Table
S3c of SIB). The unsigned RMS/RMS-NRL values (Table
S3d/Table S4d of SIA and Table S2d/Table S3d of SIB).
Representative geometries for five conformations of each
tetrapeptide (Figure S1 of SIA). Relative energies of the
MP2/cc-pVTZ//M05-2X/6-31G** method (Figure S1 of
SIB). The signed energy errors, signed RMS-C/RMS-C-NRL

values, and RMS values of each method are plotted in Figure
S2-S34 of SIA and Figure S2-S34 of SIB. Mean and stand
deviation of RMS-C of each conformation calculated over
20 amino acids relative to MP2/cc-pVTZ//M05-2X/6-31G**
method (Figure S35 of SIB). Comparison of the RMS-NRL

using two set of geometries (B3LYP/6-31G** and M05-2X/
6-31G**; Figure S36 of SIB). This material is available free
of charge via the Internet at http://pubs.acs.org.
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Abstract: Collagen is the most abundant protein in the human body, providing mechanical
stability, elasticity, and strength to connective tissues such as tendons, ligaments, and bone.
Here, we report an extension of the MARTINI coarse-grained force field, originally developed
for lipids, proteins, and carbohydrates, used to describe the structural and mechanical properties
of collagen molecules. We identify MARTINI force field parameters to describe hydroxyproline
amino acid residues and for the triple helical conformational structure found in collagen. We
validate the extended MARTINI model through direct molecular dynamics simulations of Young’s
modulus of a short 8-nm-long collagen-like molecule, resulting in a value of approximately 4
GPa, in good agreement with earlier full atomistic simulations in explicit solvent as well as
experimental results. We also apply the extended MARTINI model to simulate a 300-nm-long
human type I collagen molecule with the actual amino acid sequence and calculate its persistence
length from molecular dynamics trajectories. We obtain a value of 51.5 ( 6.7 nm for the
persistence length, which is within the range of earlier experimental results. Our work extends
the applicability of molecular models of collagenous tissues by providing a modeling tool to
study collagen molecules and fibrils at much larger scales than accessible to existing full atomistic
models, while incorporating key chemical and mechanical features and thereby presenting a
powerful approach to computational materiomics.

1. Introduction

Collagen (or tropocollagen) molecules represent the most
abundant protein building block in the human body, where
they provide primarily mechanical stability, elasticity, and
strength to connective tissues such as tendons, ligaments,

and bone.1 Collagen’s primary structure is formed by a
sequence of triplets (glycine-X-Y)n, where X and Y can
represent any amino acids, but mostly proline and hydroxy-
proline. In particular, the presence of glycine every three
amino acids guarantees the stability of the tertiary molecular
structure, characterized by a right-handed triple helix2 with
an overall length of ∼300 nm and diameter of ∼1.5 nm,
leading to a great aspect ratio of ∼200.

Collections of collagen molecules form well-defined
hierarchical structures in tissues that give rise to fibrils and
fibers, which universally represent the basis of most con-
nective tissues.3 Collagen provides mechanical integrity to
connective tissues through, above all, a great resistance to
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stretching along the main direction of molecules, fibrils, and
fibers. Moreover, collagen is capable of providing outstand-
ing mechanical features as it interacts with other biological
molecules and minerals, such as glycosaminoglycans or
hydroxyapatite in bone. For example, in bone tissue, the
toughness is much greater than that of collagen or hydroxya-
patite alone. This is due to the fact that collagen, with its
capacity to yield and dissipate energy, contributes to the
material’s enhanced toughness by providing an effective
means to confer shear stresses between hydroxyapapite
crystals and to dissipate mechanical energy through molec-
ular unfolding and intermolecular shear.4 The previous
examples underline that, physiologically, collagen cannot
solely be considered as a single molecule but must be studied
in the context of functional networks that are formed on the
basis of a large number of collagen molecules and other
biopolymers. The significance of collagen in controlling key
material properties in connective tissues is further evident
from mutations in collagen, which result in incorrect protein
folding that causes several severe pathologies, such as
Ehlers-Danlos syndrome, Alport syndrome,5 or osteogenesis
imperfecta.6

Great efforts have been put forth in recent years focused
on characterizing the mechanical properties of collagen
molecules and fibrils using both experimental and compu-
tational (theoretical) approaches. Some of the earliest experi-
ments analyzed type I collagen molecules in terms of their
stiffness. For example, Sasaki and Odajima7 estimated the
Young’s modulus of collagen molecules by using X-ray
diffraction techniques. Bozec and Horton8 used an AFM
setup to evaluate both the topographical and mechanical
properties of the collagen molecules. Optical trapping
methods have also been used for the assessment of collagen’s
mechanical properties, as reported by Sun and co-workers.9

A review of the global efforts in the understanding of the
structure and properties of collagen-based tissues are nicely
illustrated in recent works.10 Nonetheless, a persistent
limitation of experimental analyses is the lack of details about
nanoscale phenomena, and limitations in sample preparation.
To complement experimental approaches, molecular simula-
tion provides an alternative approach to describe the mo-
lecular mechanics of collagen from a bottom-up perspective.
Most earlier studies, often based on collagen-like peptides
obtained from X-ray crystallography,11 focused on relatively
short collagen molecules12–17 limited to ∼10 nm length.
However, the contour length of collagen molecules is ∼300
nm, which represents a scale that is not yet accessible to
full atomistic molecular modeling. Further, the study of
collagen fibrils and fibers is currently not feasible with full
atomistic simulation, which represents an important limitation
since this scale in the structural hierarchy of collagen is most
relevant for physiological function. Other limitations exist
with respect to the accessible time scale, where most full-
atomistic simulations are limited by a few hundred nano-
seconds. However, many relevant materials phenomena such
as tissue deformation and failure (e.g., under disease condi-
tions) emerge at much longer time scales.

A promising strategy to overcome these limitations is to
decrease the number of degrees of freedom by grouping

atoms into pseudoatoms (or particles) referred to as beads.
This represents the basis of the so-called coarse-grained
approach,18,19 where, starting at the nanoscale, it is possible
to derive parameters for higher hierarchical levels, up to the
macroscale by systematically feeding information from
smaller, more accurate to larger, more coarse levels. The
development of a coarse-grained model provides a powerful
path toward reliable modeling of full-length collagen mol-
ecules and its higher-level hierarchical structures. Specifi-
cally, coarse-grained models allow the study of more
complex systems, up to micrometer dimension and mil-
lisecond duration.20 Earlier work of coarse-graining collagen
molecules grouped hundreds of atoms into particles or
beads.14,15 This level of coarse-graining, however, is at a
relatively coarse level where information about biochemical
features (e.g., amino acid sequence) cannot be represented
directly. However, the incorporation of biochemical features
is crucial in a computational materiomics approach where
material properties are elucidated at multiple scales, including
the level of amino acid sequence that links to genetic level
information.

Several other coarse-grained models suitable for proteins
have been developed and successfully applied in earlier
works.21 Particularly, the MARTINI coarse-grained model,22

developed by Marrink and co-workers, was initially applied
to membrane lipids, later extended to proteins,23 and recently
also to carbohydrates.24 It has been successfully applied to
gain insights into different biological molecules such as
membrane proteins,25,26 ion channels,27 and liposomes.28

The MARTINI model provides a suitable level of coarse-
graining, as it retains information about the chemistry specific
to the amino acid sequence (as side chains are modeled
depending on the type of the amino acids). All amino acids
in the MARTINI force field are modeled with a number of
beads that varies depending on the steric volume of each
amino acid.23 The general mapping rule is that four heavy
atoms (that is, non-hydrogen atoms) are grouped together
into one bead. Further, one bead describes the backbone,
while others are added to represent the side chain. The
number of beads used to model a specific residue therefore
varies depending on the dimensions of the side chain of the
amino acid. Small amino acids such as glycine or alanine
are described by just one bead, while larger amino acids,
like phenylalanine, tyrosine, and tryptophan are modeled with
up to five beads. The model also takes in account the polarity
of every bead, described by a letter (P, polar; C, apolar; N,
nonpolar; Q, charged) and a number (from 1, low polarity,
to 5, high polarity). Further, a letter is used to characterize
a residue’s hydrogen bonding capability (d, donor; a,
acceptor; da, donor and acceptor; 0, none). These bead types,
which correspond to atom types in the atomistic modeling
framework, are used to describe the nonbonded interactions
between beads. For each pair of bead types, a set of
parameters for electrostatic and van der Waals potentials is
defined. The best choice of particle types for amino acids
was obtained by the authors of the original MARTINI force
field for proteins by comparing simulation results and
experimental measurements of water/oil partitioning coef-
ficients of the amino acid side-chain analogues.23
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However, although the MARTINI force field is suitable
for a wide number of applications and its validity has been
proven through several simulations and comparisons both
with atomistic and with experimental data, it cannot be
applied to model collagen molecules in the presently avail-
able formulation. This is because of two reasons. First, the
existing formulations of MARTINI lack parameters for
hydroxyproline (a nonstandard amino acid, found solely in
collagen and formed through post-translational modification
of proline). Second, it lacks parameters to describe the triple
helical configuration of a collagen molecule. The work
reported here overcomes these limitations and addresses two
major points. First, we extend the MARTINI model to enable
the modeling of collagen molecules by including parameters
for hydroxyproline and by adding parameters to describe the
collagen triple helix. Second, the extended MARTINI force
field is applied to perform coarse-grained molecular dynamics
simulations of a full-length model of a collagen type I
molecule, used to calculate mechanical parameters such as
Young’s modulus and the persistence length, which allows
us to validate the new model through a comparison with
earlier computational and experimental results.

2. Materials and Methods

We use a computational multiscale approach to generate an
atomistic-informed coarse-grained model of tropocollagen
in the framework of the MARTINI force field. The param-
eters of the coarse-grained model are obtained through a
combination of experimental and full-atomistic modeling data
to identify the parameters for hydroxyproline residues, as
well as through a statistical analysis of collagen-like PDB
entries to assess the geometrical features of the coarse-
grained tropocollagen triple helix. The results of the param-
etrization are fed into the coarse-grained tropocollagen model
in the spirit of a multiscale simulation approach.

All full atomistic simulations are carried out using the
GROMACS code29,30 and the GROMOS96 43a1 force field,
which includes also parameters for the hydroxyproline
residue. The protein molecules are entirely solvated in
periodic water boxes with single point charge (SPC) water
molecules as the solvent model. SETTLE (for water) and
LINCS algorithms are used to constrain covalent bond
lengths involving hydrogen atoms, thus allowing a time step
of 2 fs. Nonbonding interactions are computed using a cutoff
for the neighbor list at 1 nm, with a switching function
between 0.8 and 0.9 nm for van der Waals interactions, while
the Particle-Mesh Ewald sums (PME) method is applied to
describe electrostatic interactions. In the case of charged
peptides, counterions (Cl- or Na+) are added in order to keep
the system neutral. The preliminary system energy minimiza-
tions are performed by using a steepest descent algorithm
until convergence. The systems are then equilibrated through
NPT molecular dynamics simulations at a temperature of 310
K (37 °C). In order to assess the elastic constants of the
coarse-grained model, simple atomistic oligopeptides are
considered. A pulling force is applied along the molecular
axis, where one molecular end is held fixed using a rigid
constraint while the other is pulled through the use of a
virtual spring with a known elastic constant. This setup

corresponds to the steered molecular dynamics setup used
in similar atomistic works.13,31 In particular, the value of
the spring elastic constant is chosen to be 4000 kJ mol-1

nm-2, while the deformation rate is set at 0.1 m/s. The steered
molecular dynamics simulations performed on the atomistic
systems provide the reference force-extension behaviors.

Coarse-grained molecular dynamics simulations are carried
out using the GROMACS code and the MARTINI force filed
with the inclusion of the parameters found in this work for
tropocollagen. The models are entirely solvated in periodic
water boxes using the coarse-grained water model provided
within the MARTNI force field. In the case of charged
molecules, counterions (Cl- or Na+) are added in order to
keep the system neutral. The preliminary system energy
minimizations are performed by using a steepest descent
algorithm until convergence. The systems are then equili-
brated through NPT molecular dynamics simulations at a
temperature of 310 K (37 °C) using a time step of 20 fs.
Steered molecular dynamics simulations are performed using
the same setup as described for atomistic simulations. Finally,
the whole structure of the heterotrimeric type I collagen
molecule is studied. The primary structure is obtained from
PubMed (entry number NP_000079 for R1 chain and
NP_000080 for R2 chain), and the atomistic triple helical
structure is built using the software THeBuScr32 (Triple-
Helical collagen Building Script). The atomistic representa-
tion is then coarse-grained and divided into five 60-nm-long
segments, which are energy minimized and simulated in
explicit solvent at finite temperature for 350 ns each.

3. Results

3.1. Extension of the MARTINI Force Field to
Include Hydroxyproline. The existing MARTINI protein
force field represents all 20 naturally occurring amino acids
but lacks hydroxyproline, an amino acid produced in collagen
synthesis via post-translational modification of proline
(Figure 1A). In order to extend the MARTINI model for
the study of collagen molecules, hydroxyproline parameters
must be introduced. In the MARTINI model, proline is
modeled through the use of two beads, one for the backbone
(bead type C5) and one for the side-chain (bead type AC2),
as shown in Figure 1A. Hydroxyproline derives directly from
proline via the addition of a hydroxyl group on its side-chain.
Therefore, hydroxyproline is also modeled using two beads
in the extended MARTINI model. For the backbone bead,
we maintain the same bead type as for proline. The side
chain, however, due to the presence of the hydroxyl group,
shows a higher polarity level than proline. This aspect was
already demonstrated in the work of Black and Mould,33 who
calculated an index that takes into account the hydrophobicity
of all amino acid side-chains, including hydroxyproline.
Matching the bead types assigned by Marrink and the
hydrophobicity values derived from Black and Mould, the
hydroxyproline side-chain bead polarity, in the MARTINI
notation, is determined. This parameter ranges from 0 to 1,
where 1 is the most hydrophobic amino acid (phenylalanine),
while 0 is the most hydrophilic one (arginine). The value
reported for hydroxyproline is 0.527, which is found between
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the threonine (0.450) and cysteine (0.680) values. In the
MARTINI force field, the threonine side chain is modeled
as a P1 bead, while cysteine is modeled as a C5 bead.
Considering this result, hydroxyproline is assigned a P1 value
for the hydroxyproline side-chain, since its hydrophobicity
value is closer to the value for threonine.

3.2. Extension of the MARTINI Force Field to
Describe the Triple Helical Structure of Collagen
Molecules. The MARTINI model also takes into account
the secondary structure of a protein, such as the R-helix,
�-sheet, extended turns, or bends. The characteristic triple
helical structure of collagen molecules cannot be described
by any of the secondary structure parameters currently
included in the MARTINI model. Therefore, it is necessary
to determine additional parameters for the triple helical
collagen structure. To achieve this, we assess the bond
distances, angles, and dihedral parameters specific to the
collagen triple helix. The MARTINI bond potential forms
are maintained in our extended formulations, which are
described as follows:

where Vb, Va, and Vd are the potential energy terms of bond
stretching, angle deformation, and dihedral deformations,
respectively. Bonded interactions act between bonded sites
i, j, k, and l with a distance at the equilibrium of db, angle

�a, and dihedral angles Ψd and with elastic stiffness of Kb,
Ka, and Kd (for bond, angle, and dihedral, respectively).

The triple helical geometrical parameters of the collagen
triple helix (that is, db, �a, and Ψd) are obtained by
performing a statistical analysis on a set of five collagen-
like molecules available in the Protein Data Bank34 (iden-
tification codes: 2DRT, 1K6F, 1QSU, 1CAG, and 1V6Q).
The bond lengths between backbone beads, bonding angles,
and dihedral angles are computed on the basis of these five
crystallographic structures. From a statistical analysis of
different collagen molecules, we determine a bond reference
length (db) of 0.365 ( 0.07 nm, a bonding reference angle
(�a) of 119.2 ( 8.72°, and a dihedral reference angle (Ψd)
of -89.3 ( 9.76°. Figure 1B shows the details of a coarse-
grained model of a collagen chain with the angular geo-
metrical parameters.

In order to assess the stiffnesses of bonds, angles, and
dihedrals (respectively, Kb, Ka, and Kd), simple atomistic
oligopeptides are considered, as shown in Figure 2A. In order
to derive the bonding constant Kb, a glycine-proline structure
is chosen. In order to derive the angle elastic constant Ka, a
glycine-proline-hydroxyproline oligopeptide is considered.
Finally, to obtain the dihedral elastic constants Kd, a
glycine-proline-hydroxyproline-glycine molecule is stud-
ied. These structures are considered both in their atomistic
form and in their coarse-grained form, and the parameters
of the coarse-grain model (i.e., Kb, Ka, and Kd) are identified
matching force-extension curves obtained from atomistic and
coarse-grained simulations.

Steered molecular dynamics simulations are performed on
the three atomistic systems to obtain reference force-
extension behaviors. For the coarse-grained models, the

Figure 1. Parameterization of the force field of the MARTINI force field including the hydroxyproline residue (panel A) and
geometrical features (angles) of the coarse-grained collagen triple helix (panel B). Hydroxyproline directly derives from proline,
adding a hydroxil group to its side chain, giving rise to an increased polarity level. Atomistic structures of both proline and
hydroxyproline are shown on the left side of panel A, while the bead representation using MARTINI model notation is shown on
the right side of panel A. Panel B shows the analysis of the angle between backbone beads of collagen-like peptides. The
statistical analysis is performed on five collagen PDB entry (2DRT, 1K6F, 1QSU, 1CAG, 1V6Q). These collagen-like peptides
are coarse-grained, and the bond lengths, angles, and dihedrals between backbone beads are analyzed.

Vb ) 1
2

Kb(dij - db)
2 (1)

Va )
1
2

Ka[cos(�ijk) - cos(�a)]
2 (2)

Vd ) Kd[1 + cos(nψijkl - ψd)] (3)
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spring constants (that is, the parameters Kb, Ka, and Kd) are
initially set equal to the values adopted in the original
MARTINI force field for an R helix secondary structure23

and then gradually changed in order to best fit the atomistic
force-extension curves so that they show the same stiffnesses.
The procedure is first performed on the dipeptide (glycine-
proline) in order to find the optimal value of Kb. Once this
parameter is set, we consider a glycine-proline-hydroxy-
proline peptide in order to find the value of Ka that best
approximates the behavior of the corresponding atomistic
system. Finally, having fixed Kb and Ka, the glycine-proline-
hydroxyproline-glycine peptide is modeled in order to
determine the value of Kd (see Figure 2A). Figure 2B shows
a plot of force versus deformation in the case of the two
amino acid peptides, used to calculate the bonding elastic
constant Kb between two beads. The values that best replicate
the atomistic behavior are Kb ) 1250 kJ mol-1 nm-2, Ka )
150 kJ mol-1, and Kd ) 100 kJ mol-1. Table 1 shows an
overview of all model parameters.

Due to coupling of bonded and nonbonded force field
terms, the equilibrium geometrical features may in general
differ from force field reference values. However, to address
this issue, we monitor the equilibrium values and find no
significant difference with respect to the reference values.

3.3. Validation of the Extended MARTINI Model:
Young’s Modulus and Persistence Length of the
Collagen Molecule. In order to validate the extended
MARTINI force field model, an 8-nm-long collagen-like

molecule (similar to the PDB entry used to assess the
geometrical features) is pulled under the same conditions
previously described. The chosen molecule is
[(glycine-proline-hydroxyproline)10]3, which represents an
“ideal” reference collagen molecule that was used in several
earlier molecular dynamics works.14,17 The RMSD of the
coarse grain peptide during equilibration is compared with
the equivalent atomistic counterpart, showing that the models
reach similar and stable configurations (see Figure 3A).
Figure 3B shows a snapshot of both atomistic and coarse-

Figure 2. Schematic of the setup used to calculate elastic constants for the coarse-grain force field (panel A) and force-
extension plot of atomistic and coarse-grain peptides used to find the optimal value of bonding elastic constant (panel B), varying
Kb from 1250 kJmol-1 nm-2 up to 3000 kJ mol-1 nm-2. The bonding elastic constant (Kb) is obtained by pulling a glycine-proline
peptide, the angle elastic constant (Ka) from a glycine-proline-hydroxiproline peptide, and the dihedral elastic constant (Kd)
from a glycine-proline-hydroxiproline-glycine peptide. The molecules are considered both in coarse-grained and in atomistic
forms and are subjected to steered molecular dynamics simulations. The values of the bond, angle, and dihedral elastic constant
are then optimized in order to match the behavior of the atomistic model.

Table 1. Backbone Bonded Parameters for the Collagen Triple Helix (Present Work) and for the Other Secondary
Structures, as Included in the Original MARTINI Force Field23

backbone db [nm]
Kb

[kJ mol-1 nm-2] �a [deg]
Ka

[kJ mol-1] Ψd [deg]
Kd

[kJ mol-1]

collagen triple
helix [present work]

0.365 1250 119.2 150 -89.3 100

R-helix 0.35 1250 96 700 60 400
coil 0.35 200 127 25
extended 0.35 1250 134 25 180 10
turn 0.35 500 100 25
bend 0.35 400 130 25

Figure 3. Comparison of the atomistic and coarse-grained
structures of a collagen molecule. Panel A displays the root
mean squared displacement (RMSD) with respect to the
starting structure during 10 ns of simulation time. Panel B
shows snapshots of stable collagen triple helical structures
in the coarse-grained (CG, left) and atomistic (right) repre-
sentations. The images show that the triple helical structure
is well-maintained in the CG representation.
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grained collagen peptides. The equilibrated coarse-grained
collagen peptide is pulled using a deformation rate of 1 m/s.
The Young’s modulus of the coarse-grain collagen molecule
is then calculated from the slope of the force-deformation
plot, as described in previous works.17,31 Force-extension
plots similar to one performed on a coarse-grained molecule
are shown in Figure 4A, together with a linear regression
analysis used to obtain the stiffness of the collagen molecule
(1052.78 ( 51.23 pN/nm) up to 15% strain. Assuming a
cylindrical geometry, and considering a collagen molecular
radius of 0.8 nm, the Young’s modulus is obtained equal to
4.62 ( 0.41 GPa. Table 2 shows the values of Young’s
modulus obtained through different approaches, showing that
our result agrees well with earlier findings.

Finally, the whole structure of the heterotrimeric type I
collagen molecule is investigated in order to derive the
persistence length. The full-length coarse-grained tropocol-
lagen model is divided into five 60 nm peptide strands to
reduce the computational cost. Then, the flexibility of the
structures is analyzed from molecular dynamics trajectories

of 350 ns each, obtaining the persistence length through the
following expression:35

As shown in the inlay in Figure 4B, the variable θ denotes
the angle between two segments along the molecule separated
by contour length s (that is, the sum of the segment lengths),
and Lp is the persistence length, which provides information
about a molecule’s flexibility. In order to evaluate the
expression defined in eq 4, the molecule is divided into
several smaller segments. Each segment (as shown in the
inlay in Figure 4B), is delimited by the center of mass of
the three equivalent glycine residues belonging to the three
different collagen chains. The plot of -log 〈cos(θ)〉 versus
s is obtained, where the average of cos(θ) is calculated over
the full molecular dynamics simulations trajectories. Figure
4B shows the plot of -log 〈cos(θ)〉 versus the contour length
s. The value of the persistence length Lp is then obtained
from the inverse of the slope after a linear regression of all
data, giving a value of Lp ) 51.5 ( 0.6.7 nm.

The persistence length found based on the coarse-grained
model is close to the value obtained by Hofmann and co-
workers,36 who found a value of 57 ( 5 nm for collagen
type I molecule through an electron microscopy analysis.
On the other hand, a literature analysis shows that great
variability in persistence length value can be found consider-
ing different kinds of experimental tests. The pioneering work
in this analysis is represented by Utiyama and co-workers,37

who considered sedimentation constants and the intrinsic
viscosity of purified collagen molecules and calculated a
value for the persistence length close to 130 nm. Saito and
co-workers,38 considering the hydrodynamic properties of
collagen, derived the intrinsic viscosity and the sedimentation
constant of collagen and, from these values, the persistence
length, equal to 160-180 nm. In another experiment, Nestler
and co-workers39 measured the dynamic viscoelastic proper-
ties of dilute solutions of collagen molecules. From the
obtained values of intrinsic viscosity and rotational relaxation
time, they found a value for the persistence length of about
170 nm. In more recent work, Sun and co-workers9 used
optical tweezers in order to obtain, from force-extension plots
fitted to the Marko-Siggia entropic elastic model,40 the
collagen persistence length, which was found to be 14.5 (

Figure 4. Mechanical analysis of collagen molecules. Panel
A: Force-deformation plot up to 15% strain (1.2 nm) for the
pulling test of a [(glycine-proline-hydroxyproline)10]3 col-
lagen-like peptide (straight line) and linear regression (dashed
line) used to obtain the molecular elastic constant. Panel B:
Plot of -log <cos(θ)> versus contour length calculated for the
coarse-grain model of the first strand (≈ 60 nm) of the human
collagen type I molecule. The linear regression of the data
for the five different strands leads to an average persistence
length of ∼51.5 nm for human type I collagen. The inlay in
panel B shows a schematic of the data analysis approach
used to determine the collagen persistence length. The
molecule is divided into segments (red lines) which are
delimited by the center of mass (red balls) of the three
equivalent glycine residues on the three collagen chains.
The angle θ(s) is the angle between two segments that are
separated by a contour length s (where s is the sum of the
segments’ lengths). The value of the angle θ(s) is obtained
averaging over the 350 ns trajectory.

Table 2. Comparison of Young’s Modulus of the Single
Collagen Molecule Calculated Using Different Experimental
and Computational Analysis

type of analysis
Young’s

modulus (GPa)

X-ray diffraction7 ∼3
Brillouin light scattering45 ∼5.1
estimate based on

persistence length9
0.35-12

estimate based on
persistence length36

∼3

single molecule stretching-
atomistic modeling13

∼4.8

single molecule stretching-
reactive atomistic modeling14

∼7

single molecule stretching-
atomistic modeling12

∼2.4

log 〈cos θ〉 ) - s
Lp

(4)
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7.3 nm. Finally, earlier molecular simulation studies were
used to perform bending tests on a collagen-like peptide,
predicting the bending stiffness of the collagen molecule and,
from this result, evaluate the persistence length of collagen
to be in the range of 16-24 nm.16 The variability that can
be found in the literature for the collagen persistence length
value depends on the used experimental setup, for example,
electron micrographs or optical tweezers, on the experimental
conditions (how the sample is extracted and prepared), on
the method applied and the parameters used to fit experi-
mental data with theoretical models. Despite the large
variability of experimental values, the value obtained in the
present work is in good agreement with the consideration
of collagen as a semiflexible molecule with a rodlike
configuration. A comparison with other biomolecules shows
that the persistence length of biomolecules spans several
order of magnitudes (see Table 3) and that, as for collagen,
in some other cases, a very precise value cannot be
established, but rather a range. In the case of microtubules,
Pampaloni et al.41 found that the persistence length value
ranges from a few hundred micrometers up to a few
millimeters. Soictin shows a certain variability depending
on the kind of setup used to derive the persistence length,
with values from 0.5 µm up to 15 µm.42 Table 3 shows the
values of the persistence length of collagen molecules
obtained through different approaches, showing that our
result agrees reasonably well with earlier findings, albeit
tending to be larger than what has been computed on the
basis of earlier full atomistic modeling.

The calculation of Lp provides an alternative way to
estimate the Young’s modulus Y, since

where Lp is the persistence length, kB is Boltzmann’s constant,
T is the absolute temperature, r is the molecular radius, and
Y is the Young’s modulus. Considering a temperature of 300
K, r ) 0.8 nm, and applying eq 5, the Young’s modulus Y
results to be 0.66 ( 0.08 GPa. The deviation between direct
stretching and the estimation of Young’s modulus via the
persistence length data suggests that eq 5 may not hold,
which may reflect the fact that a collagen molecule is not a

structurally homogeneous molecule as assumed in the
underlying continuum theory.

4. Discussion and Conclusion

The most important contribution of this article is the
extension of the MARTINI coarse-grained force field to
include parameters that allow the modeling of collagen
molecules. The original MARTINI protein force field lacks
parameters for hydroxyproline, which is a nonstandard amino
acid but is found frequently in natural collagen molecules.
Furthermore, the MARTINI force field can describe a variety
of protein secondary structures but lacks some peculiar cases
of secondary structures, such as the collagen triple helix, in
its original form. These limitations are overcome in the
extended MARTINI coarse-grained force field reported here,
now enabling the application of coarse-grained MARTINI
models to model collagenous protein materials. Due to the
broad significance of collagenous tissues in biomechanics,
biochemistry, and biology in general, the new model could
find wide applicability in many future studies.

Several validation computations have been carried out to
ensure that the extended MARTINI model can accurately
describe key mechanical and biophysical parameters of
collagen molecules. First, we considered the Young’s
modulus of a collagen molecule by simulating a short
collagen-like peptide with the sequence [(glycine-proline-
hydroxyproline)10]3. The collagen molecule was subjected
to axial load by using steered molecular dynamics, and the
study resulted in a Young’s modulus value of 4.62 GPa,
which is in good agreement with those obtained both through
atomistic setups12,13,15,43 and experimental analysis44,7,8 (see
Table 2). Second, we have computed the persistence length
of collagen molecules, leading to Lp ) 51.5 ( 0.6.7 nm.
We find reasonable agreement with results from earlier
studies (see Table 3).

Due to its contour length of 300 nm, all-atom simulations
with explicit solvent are prohibitive since they would require
excessive computational resources due to the very large
number of particles. The reduction by roughly a factor of
10 in the coarse-grained description provides a significant
speedup that facilitates the direct simulation of much longer
molecules. Furthermore, the typical time step used in classical
molecular dynamics simulations (1-2 fs) allows the model-
ing only on the nanosecond time scale. However, the coarse-
grained model enables one to use much longer time-scales
on the order of 20-40 fs. Considering the combined effect
of the reduction of the number of particles and the increased
time step, the coarse-grained approach leads to a total
speedup of 200-400 with respect to atomistic simulations.

With this significant computational speedup, the modeling
framework reported here opens many possibilities for future
studies, particularly at the scale of collagen fibrils and
possibly fibers. We note that the MARTINI coarse grain
approach is only valid when the phenomena under study do
not involve changes of the secondary structure. In the context
of collagen, only events that do not involve unfolding of
the collagen triple helix can be correctly modeled using the
MARTINI force field formulation presented here. While
unfolding of molecules is likely to play an important role in

Table 3. Comparison of the Persistence Length (Lp) of
Several Biopolymers

polymer configuration Lp

titin46 linear protein
with two domains

∼15 nm

spectrin47 double-strand
filament

10-20 nm

collagen [optical tweezers]48 triple helix 14.5 ( 7.3 nm
collagen [MD bending

simulations]16
triple helix 23.4 nm

collagen [present work,
coarse-grain model]

triple helix 51.5 ( 6.7 nm

collagen [electron
microscopy]3

triple helix 57 ( 5 nm

collagen [hydrodynamic
properties]37,39,49

triple helix 130-180 nm

DNA50 double helix ∼50 nm
F-actin35 Filament 0.5-15 µm
intermediate filaments51 32 strands filament ∼1 µm
microtubules52 13 protofilaments 0.1-10 mm

Y )
4LpkBT

πr4
(5)
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large deformation and the fracture of collagenous tissues,
the mechanical stresses experienced by collagen tissues under
small mechanical loads may not lead to unfolding at the
molecular level. This is because strain is distributed over
several hierarchical levels (i.e., fibers, fibrils, molecules) and
involves several concurrent mechanisms (fiber uncrimping,
proteoglycan-mediated fibril sliding, molecular slippage, and
molecular elongation).

The new method could be particularly useful to predict
and analyze the structure of collagen fibrils and even collagen
fibers. For example, the coarse-grain approach may facilitate
the computational investigation of how changes in the
sequence would influence the packing of collagen fibril,
helping the understanding of the mechanisms underlying
collagen-related diseases, such as osteogenesis imperfecta.
This, together with the study of the interaction with other
relevant biomolecules such as proteoglycans, will provide
useful details for the understanding of structure-property
relationships in the broader class of collagen materials and
as such makes an important contribution to materiomics.
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Abstract: The energy transition from the ground state to the first excited singlet of four organic
dye candidates to be used as sensitizers in solar cells, D5, D7, D9, and D11, has been
computationally explored and compared to experimental results with TDDFT (B3LYP, ωB97,
and ωB97X functionals) and the CIS(D) and SOS-CIS(D) wave function based methods. The
second-order perturbation correction to CI singles’ excitation energies are superior to any TDDFT
functional employed here. The performance of SOS-CIS(D) is especially interesting, being in
good agreement with absorption spectra and having important computational savings. The best
TDDFT results are obtained by the ωB97X functional. Solvation effects on the excitation energies
have been studied with three different models, i.e., the Onsager reaction field model, SS(V)PE,
and SM8.

Introduction

Dye-sensitized solar cells are alternatives to conventional
semiconductor photovoltaic devices. With ruthenium poly-
pyridyl dyes, up to 11% conversion efficiency at standard
AM 1.5 sunlight has been achieved.1,2 Metal-free organic
dyes are promising alternatives because of their high extinc-
tion coefficients. With such compounds, efficiencies of
∼4-8% have been reached so far.3–6 To improve their yield,
the light-absorption maximum needs to be shifted to the red,
and the interaction of the excited (injecting) state of the dye
with the conduction band of the semiconductor, on whose
surface the dye is anchored, has to be improved.

One of the most recent studies in this direction corresponds
to the analysis of four organic dye-sensitizers, e.g., 3-(5-(4-
(diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid
(D5),6 3-(5-bis(4-(diphenylamino)styryl)thiophen-2-yl)-2-cy-
anoacrylic acid (D7), 5-(4-(bis(4-methoxyphenylamino)-
styryl)thiophen-2-yl)-2-cyanoacrylic acid (D9), and 3-(5-
bis(4,4′ -dimethoxydiphenylamino)styryl)thiophen-2-yl)-2-
cyanoacrylic acid (D11). These molecules (Figure 1) were

synthesized, anchored onto TiO2, and tested in dye-sensitized
solar cells, showing promising photon-to-current conversion
efficiencies.7

From the experimental point of view, the syntheses of such
sensitizers are quite demanding. Therefore, one would like
to predict beforehand the potential properties of possible
candidates in order to screen out molecules without the
desired qualities and find those systems worth testing
experimentally. To do that in a comprehensive and systematic
manner, one could try to find some answers using the
available quantum chemistry methods. Computational studies
can be really helpful in providing some hints about the
important aspects of the studied molecules, like the prediction
of transition energies, oscillator strengths, or the electronic
nature of the ground and excited states. But, first of all, these
methods must be validated in the computation of the target
molecules, and the comparison to experimental measurements
is mandatory. These results should provide a standardized
procedure to be applied in the study of similar sets of organic
dyes.

In the computation of electronic excited states, a large
variety of molecular quantum chemistry methods is available.
The hierarchy of the approximations defines the properties
of the models, classifying them at different levels of
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complexity. Of course, the chosen computation level will
directly affect on the accuracy of the computed energy, but
it also determines its computational cost. Although quite high
accuracy is desired in the calculation of transition energies
of organic dyes (ideally, one would like to achieve an
accuracy better than ∼0.05 eV), computational demands are
rather worrisome, especially due to the size of the molecules
with the targeted properties. Thus, accurate models in the
determination of single electron character excitation energies
like the equation-of-motion coupled cluster (EOM-CC)8–12

family of methods, the closely related linear response
coupled-cluster (LR-CC),13,14 or the symmetry-adapted
cluster configuration interaction (SAC-CI)15–17 methods
cannot be considered in routine screenings of transition
energies of such large molecules. These limitations become
even stronger in multiconfigurational-based wave function
methods, like multireference configuration interaction (MR-
CI),18 mutlireference coupled-cluster (MRCC),19,20 or second-
order perturbation correction to the complete active space
self-consistent field (CASPT221 or MCQDPT2,22,23 for
example), which seem, in general, computationally prohibi-
tive. Methods allowing for larger active spaces for the
multiconfiguration SCF wave function (MCSCF) reference
are available, in particular, second-order perturbation theory
(PT2) based on restricted active space SCF (RASPT2)24 or
PT2 based on general MCSCF (GMCPT2).25–27

On the other hand, although time-dependent density
functional theory (TDDFT)28,29 represents a very attractive
alternative, the standard density functionals exhibit a sizable
delocalization and static correlation error,30 as well as the
self-interaction31 error. The latter is responsible for large
errors in long-range charge transfer transition energies32–36

and becomes rather relevant in the kind of excitations
occurring in molecular dyes. Therefore, one has to be very
careful in drawing some conclusions derived from the
application of such a methodology.

The present article reports on the computation of the
lowest-energy electronic singlet-to-singlet transitions of

metal-free organic dyes (Figure 1) used in dye-sensitized
solar cells. These electronic excitations have been explored
within the configuration interaction singles (CIS),15 its
second-order perturbation correction CIS(D)37,38 and the
scaledoppositespinversionSOS-CIS(D),39 andbyTDDFT28,29

using the popular B3LYP40,41 functional and the recently
developed long-range corrected (LC) ωB97 and ωB97X
hybrid density functionals of Chai and Head-Gordon,42 which
substantially reduce standard long-range errors. The com-
puted values are compared to experimental spectra. The
available experimental UV-vis spectra were measured in
ethanol solution. Since the charge transfer absorption bands
can be very sensitive to the solvent polarity and hydrogen
bonding, the effect of the solvent on excitation energies of
D5, D7, D9, and D11 sensitizers was also taken into account.

The exposition of the present study is as follows. First, a
detailed description of the computational tools employed is
introduced. Second, a discussion of the obtained results based
on the comparison to the available experimental data is
presented. Finally, the main conclusions are exposed.

Computational Details

Geometry optimizations of the D5, D7, D9, and D11 organic
sensitizers (Figure 1) in the ground state and in ethanol
solution have been performed with no symmetry restrictions
at four different computational levels: B3LYP, ωB97, and
ωB97X and at the scaled opposite spin MP2 (SOSMP2).43,44

All geometry optimizations were computed in ethanol
solution using the SM8 solvation model,45 and with the
6-31G(d) basis set.46,47 The discussed results correspond to
B3LYP/6-31G(d) geometries unless indicated. The vertical
excitation energies were calculated for all geometries by
CIS,15 CIS(D),37,38 and SOS-CIS(D)39 wave-function-based
methods, and by the B3LYP, ωB97, and ωB97X function-
als42 within the TDDFT methodology. The 6-31+G(d) basis
set has been used for all of the cases. The resolution-of-the-
identity (RI) approximation48,49 and the adoption of the

Figure 1. Molecular structures of D5, D7, D9, and D11 dye sensitizers.
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Laplace transform50 in the integral evaluations were used in
the CIS(D) and SOS-CIS(D) calculations. TDDFT energies
were obtained within the Tamm-Dancoff (TDA) approxi-
mation.51 All transitions were computed at the gas phase and
ethanol solution. Three different solvation models were
compared in the computation of transition energies: the
Onsager reaction field model52 up to the 15th multipole order
expansion, Surface and Simulation of Volume Polarization
for Electrostatics (SS(V)PE),53–55 and the SM8 solvation
model. In the Onsager and SS(V)PE cases, the solute-solvent
interaction was described through the definition of a spherical
cavity for the solute molecule. The radius of the cavities was
defined as half the distance between the two outermost atoms
of the solute molecule plus 1.4 Å to ensure that it was fully
contained in the cavity. In the SM8 model, the solute cavities
are defined by the superposition of nuclear-centered spheres
whose sizes are determined by intrinsic atomic Coulomb
radii. The employed value of the static dielectric constant
for ethanol solvent was 24.85. Vertical excitation energies
in solution have been computed within the equilibrium
solvation approach. The 6-31G(d) basis was used in the
comparison of the solvation models. Vibronic couplings have
been neglected throughout the present study. All calculations
were performed with the Q-Chem program.56

Results and Discussion

The chemical structure of the studied dyes, i.e., D5, D7, D9,
and D11, is composed of three modules: a triarylamine group
acting as an electron donor, a thiophene which can be seen
as an electron conductor, and an acceptor carrying the
anchoring group, the cyano-acrylate fragment. This composi-
tion determines the general electronic properties of the Dn
molecules, and it further draws the boundaries of their
spectroscopic behavior. In the D5 dye optimized geometry,
the fragment constituted by the cyano-acrylate, the thiophene,
and the chemically bonded benzene ring of the triarylamine
group presents a planar space disposition, while the two
benzene rings at one end of the molecule lie out of the plane
(with dihedral angles to the plane between 60° and 90°).
Besides the methoxy substitution in D9, there are almost no
geometrical differences between D5 and D9 molecules, and
only the dihedral angle between the two out of plane benzene
rings of the triarylamine slightly increases from D5 to D9
(∼78° and ∼86°, respectively). The introduction of a second
triarylamine group in D7 with respect to the D5 dye implies
some relatively important structural modifications. The
planarity observed in D5 and D9 cases is no longer preserved;
i.e., any of the benzene rings appear coplanar to the thiophene
and cyano-acrylate fragments. It is also worth mentioning
the fact that, while one of the triarylamine groups has a rather
linear disposition with respect to the thiophene and cyano-
acrylate fragments, the second one appears in a quite
perpendicular orientation with respect to the main molecular
direction. As in the D5/D9 case, there are no relevant
geometrical differences between D7 and D11 optimized
geometries, and only a similar dihedral aperture between the
two end benzene rings (in both triarylamine groups) is
appreciated. In what follows, we will see how these different

structural patterns induce slightly different spectroscopic
properties between the studied sensitizers.

The most interesting excited electronic state of the Dn dyes
as molecular sensitizers is the lowest excited singlet. The
ground to first excited state transition has a πfπ* nature
with an important charge transfer character. Thus, although
other allowed low-lying electronic transitions are present in
the Dn family,7 we focus our efforts on the understanding
of the mentioned lowest excited state.

The One Electron Picture. Before analyzing the set of
results obtained with the several methodologies announced
in the Computational Details section, we believe it is worth
it to set a general frame that will help to understand the
results. To that purpose and to qualitatively explain the role
of different chemical substitutions, we analyze the properties
of the molecular orbitals of the Dn family. We are especially
interested in understanding the different energy gaps between
the frontier orbitals, which should give us some hints about
the subtle differences in their spectroscopic behavior. In order
to avoid redundancies, we restrict this discussion to the
results obtained with the ωB97X functional and the 6-31G(d)
atomic basis set. Similar qualitative conclusions could be
reached if we would pick the molecular orbitals obtained
with another approach. We will also compare orbitals
obtained from gas phase and ethanol solution within the SM8
model calculations.

Although the π-like HOMO of D5 is mainly localized at
the triarylamine group, it noticeably expands toward the
thiophene, probably due to the coplanarity of the fragments
(Figure 2). On the other hand, the LUMO is basically
localized at the thiopene and cyano-acrylate fragments, and
only some small π* contribution on the closer benzene ring
is obtained.

The p-electrons from the two methoxy oxygen atoms in
D9 extend the π-system conjugation in the HOMO and
HOMO-1, adding some extra antibonding interaction, which
slightly destabilizes the two highest occupied orbitals.
Meanwhile, the LUMO is basically unaffected by the
methoxy substitution, resulting in an appreciable decrease
of the energy gaps with respect to D5 (Figure 2).

The main part of the electronic density in the D7 (and
D11) HOMO orbital is disposed along the triarylamine group,
which is collinear to the thiophene and cyano-acrylate groups,
and like in the D5 (D9) case, it delocalizes over the
thiophene. On the other hand, the second triarylamine, almost
perpendicular to the main molecular direction, has a less
important contribution to the orbital. In addition, the small
loss of planarity in D7 (D11) explained above seems to only
very mildly affect the energies of the occupied orbitals,
slightly pushing them to higher values. The strong localiza-
tion of the LUMO orbital in D7 (and D11) avoids any major
difference with respect to the D5 (D9) LUMO caused by
the nonplanarity effect. This would explain the energy
similarities between D5 and D7 (D9 and D11). Finally, the
methoxy substitution in D7 to D11 conduces to a reduction
of the HOMOs to LUMO energy separation, very similarly
to the D5/D9 case. The present HOMOs and LUMOs
resemble those of the similar DS-3, DS-4, and DS-5 dyes
explored in a recent study.57
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When the molecular orbitals are computed within the SM8
model (ethanol as the solvent), very similar results are
obtained. The most significant difference in the presence of
the solvent is a ∼0.1 eV stabilization of the LUMO due to
the localized character of the orbital, which arises from
hydrogen bonding and the polarity of the ethanol solvent (ε
) 24.85).

S0 to S1 Vertical Transition Energies. Computed vertical
energy gaps in the gas phase and ethanol are shown and
compared to experimental absorption maxima in ethanol
solution7 in Table 1.

The solvent-solute interaction has been included at the
structural level through geometry optimization of Dn dyes
within the SM8 model, and also at the electronic structure
level, incorporating the environment effects in the computa-
tion of the ground and excited states. The computation of
Dn dyes in ethanol results in a moderate shift to lower
absorption frequencies with respect to the gas phase calcula-
tions for all methods. This shift is almost constant for the
CIS, ωB97, and ωB97X energies, about 0.05, 0.08, and 0.07
eV on average, respectively. The solvent effect in B3LYP
is less constant but of similar magnitude (∼0.10 eV). On
the other hand, maybe due to the fact that the wave function
has not been relaxed in the excited state in the presence of
the solvent, the solvation redshift is considerably larger, about
0.15-0.21 eV, when CIS is corrected to the second-order
perturbation theory in the CIS(D) and SOS-CIS(D) methods.

Although the small redshift (about 0.1 eV) of the absorp-
tion band due to methoxy substitution between D5/D9 and

D7/D11 is well recovered by B3LYP, as a result of the
charge transfer nature of these πfπ* transitions, vertical
energygapstothefirstsingletaredramaticallyunderestimated.58–60

The loss of planarity in the larger D7 and D11 dyes decreases
the delocalization of the orbitals, especially the HOMO,
increasing the charge transfer character of the transition. This
is reflected as a more severe underestimation of the transition
by B3LYP (>0.7 eV) in the computation of D7 and D11
dyes. On the other hand, the LC functionals improve this ill
behavior of standard functionals, and the computed energies
are closer to experimental results. In this case, ωB97 and
ωB97X overcorrect the long-range charge transfer transition
failure of the standard functionals. The ωB97 functional
systematically overestimates the lowest πfπ* transitions in
Dn dyes by approximately 0.20 eV, while this effect is less
pronounced with the inclusion of a small fraction of short-
range Hartree-Fock exchange in ωB97X (the overestimation
is reduced to 0.15 eV on average). As with B3LYP, both
LC functionals are also able to correctly obtain the 0.1 eV
redshift by methoxy substitution in D9 and D11.

CIS satisfactorily reproduces the 0.1 eV redshift by
methoxy substitution, but as a result of the lack of dynamical
correlation, all CIS transition energies present a systematic
overestimation with a mean absolute error (MAE) of 0.40
eV with respect to experimental absorption maxima, which
is a common feature of the CIS method in the computation
of valence excitations of organic molecules. The inclusion
of dynamical correlation through second-order perturbation
theory noticeably corrects the overestimation in CIS, de-
creasing the transition energies in CIS(D) and SOS-CIS(D)
by 0.48 and 0.67 eV on average, respectively. This correction
drives to CIS(D) energies which are very close to experi-
mental absorption maxima (MAE ) 0.08 eV) but is a bit
large in SOS-CIS(D). These results seem to indicate that,
although it was previously shown39 that only considering
the scaled opposite spin component of the second order

Figure 2. Isodensity surface plots of HOMO (down) and
LUMO (up) orbitals at the ωB97X/6-31G(d) computational
level in the gas phase for the D5 (left) and D9 (right) molecular
dyes. A 0.03 cutoff has been used in all cases.

Table 1. Transition Energies (in eV) of the Dn Dyes in the
Gas Phase and Ethanol Solution (SM8 solvation model) for
All Studied Excited State Methods, Computed for the
B3LYP/6-31G(d) SM8 Optimized Geometries with the
6-31+G(d) Basis Set

method D5 D7 D9 D11

Vacuum
B3LYP 2.28 2.06 2.18 1.96
ωB97 3.10 3.09 3.03 2.96
ωB97X 3.04 3.01 2.96 2.88
CIS 3.24 3.23 3.19 3.13
SOS-CIS(D) 2.75 2.72 2.64 2.53
CIS(D) 2.92 2.89 2.82 2.72

Ethanol, SM8
B3LYP 2.16 2.07 1.98 1.88
ωB97 3.04 3.01 2.95 2.88
ωB97X 2.97 2.94 2.87 2.81
CIS 3.20 3.18 3.13 3.07
SOS-CIS(D) 2.59 2.56 2.43 2.35
SOS-CIS(D)a 2.72 2.68 2.59 2.48
CIS(D) 2.77 2.75 2.62 2.54
CIS(D)a 2.89 2.84 2.77 2.66
experimental 2.81 2.81 2.68 2.71

a The solvent effects in CIS second-order corrected methods
were obtained from the gas phase vs SM8 differences obtained in
CIS.
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correction of CIS slightly increases the perturbation correc-
tion and improves the accuracy of the computed valence
πfπ* transitions in the gas phase with respect to CIS(D),
the large solvatochromic redshifts (∼0.2 eV) in the pertur-
bationally corrected methods compensate for the slight to
high excitation energies in CIS(D) but result in a systematic
underestimation in SOS-CIS(D) (MAE ) 0.27 eV). When
the solvation correction coming from CIS is added to the
SOS-CIS(D) in gas phase (Table 1), excitation energies are
obtained in substantially better agreement with the experi-
mental values, with a MAE ) 0.14 eV underestimation. The
same treatment of the solvation effects slightly improves
CIS(D) energies (MAE ) 0.06) in CIS(D). Both second-
order corrected methods keep, in general, the same transition
energy shift to lower frequencies between D5/D9 and D7/
D11 obtained by CIS.

S0 to S1 Transition Amplitudes. The transition amplitudes
obtained from the TDDFT and CIS methods give a quantita-
tive description of the orbital contributions in the excited
state wave function. In the Dn family, the energetically
lowest absorptions stem from πfπ* transitions and can be
mainly described as HOMO to LUMO electronic promotions
(see isodensity surface plots in Figures 2 and 3). For all
explored methods but B3LYP, this amplitude, in the gas
phase, constitutes about 60-70% of the final state, whereas
HOMO-1 to LUMO in D5 and D9 and HOMO-2 to
LUMO in D7 and D11 are responsible for 20-25%. Other
possible contributions like HOMO to LUMO+1 are much
less important. These compositions do not suffer any
significant modification when obtained in ethanol, either

using the Onsager, SS(V)PE, or SM8 solvation models
analyzed below.

On the other hand, the HOMO to LUMO contribution in
B3LYP accounts for ∼95% of the transition of D5 and D9
dyes, whereas in D7 and D11, the electronic transit is built
up from similar weights of the HOMO-1 and HOMO to
LUMO excitations. When the ethanol effects are introduced,
D5 and D9 transition amplitudes remain very similar to the
gas phase, while becoming ∼70% and ∼30% for HOMO-1
and HOMO to LUMO for D7 and D11 molecules. This
different behavior in B3LYP is symptomatic of the failures
already present in the important underestimation of excitation
energies.

Transition Energy Dependence on the Basis Set. The
election of a basis set in the computation of molecular
electronically excited states becomes crucial if one intends
to obtain accurate results.61–63 In this section, we explore
how excitation energies to the lowest singlet in Dn dyes vary
with the employed basis. We do not pretend to produce a
benchmark study, but we rather want to provide some hints
of the importance of the basis set in computing the S0 to S1

transitions. Because of the failure of B3LYP to quantitatively
capture the lowest singlet excited state of Dn dyes, we have
not included it in this study. The interested reader in the
B3LYP excitation energies dependence on the basis set is
referred to the Supporting Information (Tables S1 and S2).

As a result of the lack of polarization and diffusion
functions, the excitations computed with the 6-31G basis
(Table 2) are substantially higher compared to those with
the larger 6-31+G(d) basis. This difference is on the order
of 0.1 eV for CIS and TDDFT and even larger for CIS(D)
and SOS-CIS(D), about 0.2 and 0.3 eV, respectively. When

Figure 3. Isodensity surface plots of HOMO (down) and
LUMO (up) orbitals at the ωB97X/6-31G(d) computational
level in the gas phase for the D7 (left) and D11 (right)
molecular dyes. A 0.03 cutoff has been used in all cases

Table 2. Basis Set Dependence of the Transition Energies
(in eV) of the Dn Dyes in Gas Phase for All Studied
Excited State Methodsa

method 6-31G 6-31G(d) 6-31+G 6-31+G(d)

D5
ωB97 3.24 3.18 3.16 3.10
ωB97X 3.16 3.11 3.08 3.04
CIS 3.35 3.32 3.28 3.24
SOS-CIS(D) 3.05 2.85 2.95 2.75
CIS(D) 3.13 3.02 3.02 2.92

D7
ωB97 3.21 3.16 3.14 3.09
ωB97X 3.13 3.08 3.06 3.01
CIS 3.33 3.29 3.28 3.23
SOS-CIS(D) 3.02 2.81 2.92 2.72
CIS(D) 3.09 2.98 3.00 2.89

D9
ωB97 3.16 3.11 3.09 3.03
ωB97X 3.08 3.04 3.01 2.96
CIS 3.31 3.27 3.23 3.19
SOS-CIS(D) 2.94 2.74 2.84 2.64
CIS(D) 3.03 2.92 2.92 2.82

D11
ωB97 3.07 3.02 3.01 2.96
ωB97X 2.99 2.95 2.93 2.88
CIS 3.23 3.19 3.17 3.13
SOS-CIS(D) 2.82 2.62 2.72 2.53
CIS(D) 2.91 2.81 2.81 2.72

a All energies were computed on the B3LYP/6-31G(d) optimized
geometries in ethanol (SM8).
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polarization functions are included, the excitation energies
are systematically shrunk. This lowering is about 0.05 eV
for all transitions computed by CIS and TDDFT, whereas
this effect is twice as large in CIS(D) and four times larger
(0.20 eV) in SOS-CIS(D). The reduction of transition
energies by diffuse functions, i.e., the 6-31+G column in
Table 2, has a similar magnitude to the one obtained in
6-31G(d), except in SOS-CIS(D), where, as in CIS(D), the
effect accounts for a ∼0.1 eV decrease in the excitation
energies. These comparisons from Table 2 indicate that both
polarization and diffuse functions substantially contribute to
the final states, diminishing the S0 to S1 gaps by 0.10 to 0.30
eV.

Very similar results are obtained when excitation energies
are computed for the different basis sets and in the presence
of ethanol as a solvent (see Table S2 of Supporting
Information).

Transition Energy Dependence on the Geometry
Optimization. The molecular geometry used in electronic
structure calculations can be a key factor when computing
energies for ground and excited states. In Table 3, we

compare the Dn vertical transition energies in ethanol
obtained from four different geometry optimization levels,
i.e., B3LYP, ωB97, ωB97X, and SOSMP2.

The best performance of computed vertical energies is
obtained when B3LYP is employed in the optimization of
the ground state. Meanwhile, ωB97, ωB97X, and SOSMP2
geometries produce too large excitation energies in all cases.
Compared to B3LYP-geometry results, transitions from
ωB97X geometries are 0.30 to 0.50 eV higher. This
difference is slightly increased (∼0.05 eV) when ωB97
geometries are employed. Excitations from SOSMP2 opti-
mized geometries are very similar to the ones obtained from
ωB97X. These results have to be (only) seen as a conse-
quence of a more favorable error compensation in B3LYP/
6-31G(d) optimized geometries in the computation of Dn
S0 to S1 transitions.

Gas phase and ethanol solution (including B3LYP transi-
tions) energy comparisons are presented as Supporting
Information (Tables S3 and S4).

Transition Energy Dependence on the Solvation
Model. Here, we perform a systematic analysis over three
possible approaches to account for the solute-solvent
interaction, i.e., the Onsager reaction field model52 up to the
15th multipole order expansion, Surface and Simulation of
Volume Polarization for Electrostatics (SS(V)PE),53–55 and
the SM8 solvation model,45 in the computation of the Dn
dyes’ excitation energies in ethanol solution. The larger
energy stabilization of the LUMOs when the Dn electronic
structure is computed in solution makes us expect smaller
energy gaps when the ethanol presence is modeled. The
comparison of Dn transition energies computed in the gas
phase and with the three different solvation models is shown
in Table 4.

In the Onsager model, specific electrostatic solute-solvent
interactions are not treated, and the solute is enclosed in a
spherical cavity. Most likely due to the neglect of specific
electrostatic interactions, the excitation energies are very
close to the gas phase results. In general, there is a small
redshift (e0.07 eV) with respect to gas phase energies for
D5, D7, and D11. On the other hand, the D9 transition
energies suffer similar magnitude frequency displacement
but to larger energies. This behavior is common to all wave
function-based and TDDFT explored methods. The SS(V)PE
model treats electrostatic solute-solvent interactions by
solving Poisson’s equation at the cavity surface defined as
the isodensity surface or a spherical cavity (dispersion and
cavitation are neglected). Since the computations could not
be converged for isodensity surfaces, solvation had to be
computed using a spherical cavity. In this case, the electro-
static interactions are not localized properly. Surprisingly,
SS(V)PE transition energies for the smaller dyes (D5 and
D9) are slightly higher, between 0.03 and 0.28 eV, than the
gas phase computed energies. Meanwhile, there is a small
decrease in the D7 and D11 molecules, although the
difference from the gas phase values is no larger than 0.07
eV. Since hydrogen bonding (with the ethanol solvent) is
mainly electrostatic, the neglect of electrostatic interactions
(Onsager) or its approximate treatment (SS(V)PE with a
spherical cavity) is responsible for the errors. In contrast,

Table 3. Molecular Geometry Dependence of the
Transition Energies (in eV) of the Dn Dyes in Ethanol
Solution (SM8 model) for All Studied Excited State
Methodsa

optimized geometry

method B3LYP ωB97 ωB97X SOSMP2

D5 (∆Eexpt ) 2.81 eV)
ωB97 3.04 3.39 3.35 3.36
ωB97X 2.97 3.29 3.26 3.27
CIS 3.20 3.57 3.53 3.53
SOS-CIS(D) 2.59 3.09 3.03 3.03
SOS-CIS(D)b 2.72 3.15 3.11 3.10
CIS(D) 2.77 3.19 3.15 3.15
CIS(D)b 2.89 3.25 3.21 3.21

D7 (∆Eexpt ) 2.81 eV)
ωB97 3.01 3.39 3.35 3.32
ωB97X 2.94 3.31 3.28 3.24
CIS 3.18 3.60 3.56 3.52
SOS-CIS(D) 2.56 3.06 3.02 2.98
SOS-CIS(D)b 2.68 3.16 3.11 3.05
CIS(D) 2.75 3.18 3.15 3.11
CIS(D)b 2.84 3.25 3.22 3.17

D9 (∆Eexpt ) 2.68 eV)
ωB97 2.95 3.32 3.27 3.27
ωB97X 2.87 3.22 3.18 3.18
CIS 3.13 3.53 3.48 3.47
SOS-CIS(D) 2.43 2.99 2.93 2.91
SOS-CIS(D)b 2.59 3.07 3.01 3.00
CIS(D) 2.62 3.09 3.04 3.03
CIS(D)b 2.77 3.16 3.12 3.10

D11 (∆Eexpt ) 2.71 eV)
ωB97 2.88 3.28 3.24 3.26
ωB97X 2.81 3.19 3.15 3.18
CIS 3.07 3.49 3.46 3.47
SOS-CIS(D) 2.35 2.90 2.85 2.88
SOS-CIS(D)b 2.48 2.98 2.94 2.94
CIS(D) 2.54 3.01 2.97 3.01
CIS(D)b 2.66 3.08 3.04 3.06

a All energies were computed with the 6-31+G(d) basis on the
(B3LYP, ωB97, ωB97X, SOSMP2)/6-31G(d) optimized geometries
in ethanol (SM8). b The solvent effects in CIS second-order
corrected methods were obtained from the gas phase vs SM8
differences obtained in CIS.
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electrostatic interactions are treated with SM8, which is based
on the generalized Born method for electrostatics augmented
with atomic surface tensions for first-solvation-shell effects,
and the deviation of the electrostatics from what can be
calculated using only the bulk dielectric constant. Further-
more, cavitation and dispersion are included. Thus, all SM8
computed transition energies show a moderate redshift with
respect to gas phase values. This behavior is almost constant
(between 0.06 and 0.08 eV) for all transitions computed by
TDDFT with the ωB97 and ωB97X functionals and the CIS
method, and a little bit larger in B3LYP (∼0.15 eV). As has
been discussed above, the solvation redshift is considerably
larger, about 0.25 eV, when CIS is corrected to the second
order in the CIS(D) and SOS-CIS(D) methods. When the
solvation correction coming from CIS is added to the SOS-
CIS(D) in the gas phase, excitation energies are obtained in
much better agreement with the experimental values.

The more accurate results obtained with SM8 are due to
the approximate treatment of hydrogen bonding with the
solvent. The present organic dyes are far from being
spherically shaped, but the Onsager and SS(V)PE solvation

models employed here require the dyes to be surrounded by
a spherical cavity. As shown, computations with shape-
adapted cavities, as it is done in SM8, seem much more
convenient in these cases.

Conclusions

The ground and first excited singlet states of the D5, D7,
D9, and D11 molecular dyes have been studied. Computed
excitation energies between them within TDDFT and wave-
function-based methods have been compared to experimental
absorption maxima, and the roles of different geometrical
features and chemical substitutions have been discussed.

The smaller D5 and D9 dyes have a rather linear geometry
and present localized HOMOs and LUMOs, especially the
latter, at the two different molecular ends. The electron-hole
separation in the electronic transition to the excited singlet
results in a charge transfer nature of the excitation. The
substitution of a second triarylamine group in D7 and D11
does not change the general picture of the electronic
transition. The methoxy substitution in D9 and D11 produces
a decrease of the excitation due to an extra antibonding
interaction in the HOMO caused by the p-orbital of oxygen
atoms with the benzene ring.

As far as the agreement with experimental results of
transition energies to the first excited singlet is concerned,
the CIS(D) method is superior to the LC ωB97 and ωB97X
functionals. The scaled opposite spin version of CIS(D)
represents an attractive alternative to CIS(D), especially due
to its lower computational cost, although one must be careful
when the solute-solvent interactions are included. Within
the TDDFT realm, the ωB97X approach is the most
promising tested functional in the computation of this kind
of molecular dyes. On the other hand, B3LYP should not
be the chosen method for routine screening of excitation
energies of such molecules. The charge transfer nature of
the first excited singlet produces catastrophic results when
standard functionals, such as B3LYP, are used, which could
drive us to wrong conclusions. Moreover, the magnitude of
this underestimation, as has been shown between D5/D9 and
D7/D11, strongly depends on the molecular characteristics,
making this functional inappropriate for general comparisons.

The variation in the computed energy gaps due to different
basis sets has been studied for all wave function-based and
TDDFT employed methods. Similar contributions were found
from polarization and diffuse functions when comparing
6-31G, 6-31+G, 6-31G(d), and 6-31+G(d) results. Transition
energy dependence on the molecular geometry has been
explored using four different optimization approaches. The
best results were obtained when ground state geometries were
optimized by the B3LYP functional. The use of ωB97,
ωB97X, or SOSMP2 geometries drives to overestimation
of the energy gaps. Finally, the role of ethanol as a solvent
has been taken into account in the computation of optimized
geometries and electronic structure calculations for three
different solvation models. SM8 reproduces the expected
solvent-induced redshift in the vertical excitation energies
correctly. The deficiencies in the two other explored solvation
models, i.e., Onsager and SS(V)PE, are due to the neglect

Table 4. Transition Energies (in eV) of the Dn Dyes in
Ethanol Solution for All Studied Excited State Methodsa

method vacuum Onsager SS(V)PE SM8

D5 (∆Eexpt ) 2.81 eV)
B3LYP 2.34 2.31 2.42 2.20
ωB97 3.18 3.19 3.25 3.12
ωB97X 3.11 3.12 3.18 3.04
CIS 3.32 3.31 3.35 3.25
SOS-CIS(D) 2.85 2.84 2.96 2.59
SOS-CIS(D)b 2.84 2.88 2.78
CIS(D) 3.02 3.01 3.13 2.79
CIS(D)b 3.02 3.05 2.96

D7 (∆Eexpt ) 2.81 eV)
B3LYP 2.11 2.05 2.06 1.97
ωB97 3.16 3.13 3.13 3.09
ωB97X 3.08 3.05 3.05 3.01
CIS 3.29 3.27 3.27 3.23
SOS-CIS(D) 2.81 2.74 3.02 2.57
SOS-CIS(D)b 2.79 2.79 2.75
CIS(D) 2.98 2.91 2.91 2.76
CIS(D)b 2.96 2.96 2.92

D9 (∆Eexpt ) 2.68 eV)
B3LYP 2.23 2.27 2.46 2.08
ωB97 3.11 3.16 3.26 3.05
ωB97X 3.04 3.09 3.19 2.97
CIS 3.27 3.29 3.35 3.20
SOS-CIS(D) 2.74 2.81 3.02 2.48
SOS-CIS(D)b 2.76 2.82 2.67
CIS(D) 2.92 2.99 3.18 2.69
CIS(D)b 2.94 3.00 2.86

D11 (∆Eexpt ) 2.71 eV)
B3LYP 2.01 1.96 1.97 1.83
ωB97 3.02 2.99 2.99 2.95
ωB97X 2.95 2.92 2.91 2.87
CIS 3.19 3.17 3.16 3.12
SOS-CIS(D) 2.62 2.56 2.55 2.38
SOS-CIS(D)b 2.60 2.64 2.56
CIS(D) 2.81 2.75 2.74 2.58
CIS(D)b 2.79 2.78 2.74

a Solvation model dependence computed for the B3LYP/
6-31G(d) SM8 optimized geometries with the 6-31G(d) basis set.
b The solvent effects in CIS second order corrected methods were
obtained from the gas phase vs SS(V)PE and SM8 differences
obtained in CIS, respectively.
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or too approximate treatment of specific electrostatic
solute-solvent interactions.
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Abstract: Benchmark CCSD(T) 15N NMR calculations are performed for 35 experimentally
known 15N shifts of 29 molecules. For the eight known gas phase experimental values of N2,
HCN, CH3CN, NNO, NH3, NNO, (CH3)3N, and CH3NH2, CCSD(T) with a basis set previously
calibrated for 13C shifts is accurate to 0.2-3 ppm except for the NNO shift, which shows a
deviation of 6 ppm. However, the differences between the computed and experimental values
in solution due to solvent and finite temperature effects can be as large as ∼25 ppm and must
be estimated to relate gas phase 0 K computed values to experiment. An empirical correction
is obtained by studying the variations between the estimated solvent effects and the absolute
shielding constant. It is shown that the average deviation of computed shifts falls to 3.6 ppm
from 12.6 ppm when the correction is applied.

Introduction

Gauge origin independent NMR shielding calculations1-15

with electron correlation effects reported at the second order
many body perturbation theory (MBPT(2))16-18 have been
extended to the predictive infinite order coupled cluster (CC)
methods18 including some triple excitation effects at various
levels (CC single doubles and triples, CCSDT) and
CCSD(T).18-22 Also, multiconfiguration self-consistent field
(MCSCF) methods have been applied for special cases with
large nondynamic correlation effects.23,24 Density functional
theory (DFT) methods,25-30 which are applicable for large
molecules,10-14 still suffer from accuracy and reliability
issues which prohibit offering a truly predictive tool.

The accuracy of computed values, a prerequisite for
validating experimental assignments or making new assign-
ments, or in some cases supplanting the experiments, are
customarily assessed by comparing the computed results
either to experiment or to the full configuration interaction
results. The latter gives an unambiguous measure of the
errors associated with the theoretical approximations for a
giVen basis set and geometry. However, the full CI NMR
shielding calculations are only available for the H2 mol-
ecule.31 Comparisons with reliable experimental data are far
more important to gauge the accuracy of the computed data.

However, these are complicated by the fact that the theory
cannot account for the solution and the other conditions of
most experiments.

In practice, a judicious choice has to be made for what
experimental data is best used for the property under
consideration, since the experiments are done in conditions
that are far from ideal (noninteracting isolated molecules at
0 K) as assumed in calculations. For example, shielding
constants are known to be highly influenced by the nature
of the solvent effects.32-35

Another matter of concern in comparisons with experiment
is the inability to choose the geometry and the basis sets.
For example, which geometry, optimized, experimental, or
in solution, is the most appropriate. Since there are no clear-
cut choices, this step is best done by using a series of basis
sets and geometries to establish the accuracy of the method
compared to experiment for a given geometry and basis set.

Gauss and co-workers presented a systematic study of the
accuracy of the 13C NMR shielding constants computed by
CC methods.36 The results from this paper and from a series
of papers published earlier by Gauss, Stanton, and co-wor-
kers4,10-12,14,16-22 form the basis for the current knowledge
of the accuracy of computed NMR shielding constants for
the widely used NMR isotopes by CC and MBPT methods.
In this paper our focus is on the accuracy of the computed
15N NMR shielding constants in solutions.* Corresponding author e-mail: bartlett@qtp.ufl.edu.
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In the context of the accuracy of computed 15N chemical
shifts in the present work, two recent papers are of great
interest. One of them is the widely publicized work on the
synthesis and the identification of the N5

+ molecule,37 the
only other homoleptic polynitrogen species that is known
beside N2 and the azide anion (N3

-). Among the spectro-
scopic techniques used, the 15N NMR is regarded as the most
definitive, and the agreement between the computed chemical
shifts for the N5

+ molecule at its optimized geometry and
the measured shifts is quoted as the strongest evidence to
support the presence of N5

+. The computed values are
obtained at the CCSD(T) level by Stanton38 and are expected
to be within 1-2 ppm from the gas phase measurements
analogous to the accuracy of the computed values of 1H and
13C NMR chemical shifts. However, the experiments are done
in highly polar solvents, and only after an empirical
correction is applied to account for the condensed phase
effects can the agreement between scaled and measured
values be considered adequate to support the conclusion that
the observed NMR corresponds to N5

+. While this is a
successful application of computational methodology, we
note that the correction for the condensed phase effects is
chosen with severely inadequate numerical support and the
accuracy of the CCSD(T) 15N shifts for the geometry and
basis set used needs further assessment.

The recent report of the potential isolation of the long
predicted39-41 pentazole anion (N5

-) in solution by Butler
et al.42 is another example that employs the computed 15N
NMR chemical shifts to assign the measured spectra. In this
case, the computations use DFT levels of theory. Despite
large error bars ((20 ppm), a match between the computed
and measured shifts is one of the two pieces of evidence
quoted as indicating the presence of N5

-. However, Schroer
et al.43 who attempted to independently verify these findings
by replicating the experiments of Butler et al.42 argue that
the 15N NMR signal that Butler et al.42 assigned to the
nitrogen atoms in N5

- is actually due to the nitrogen atom
in NO3

- which is abundant in the reaction mixture. Hence,
Schroer et al.43 question the validity of the claim that the
N5

- had been observed. Since the accuracy of the DFT level
NMR chemical shifts are known to vary from case to case,
a match between the DFT values with the measured ones
may not be used as prima facie evidence to establish the
presence of N5

-
. We also recognize that Schroer et al.’s

arguments are exclusively based on the published NMR shifts
of the primary species present in the experiment and are not
further supported by computations. Part of the resolution of
these conflicting experiments rests upon having reliable and
also highly accurate 15N NMR calculations of all the primary
species involved in the experiment, in solution. We have
pursued such a study, and the details are presented in a
separate paper44 devoted to the theoretical evaluation of the
experimental findings of the Butler et al. and Schroer et
al.42,43 experiments and the findings in another follow up
paper by Butler et al.67 In that paper we also address the
scalar spin-spin coupling constants.

In this study our focus is on the accuracy of the computed
15N NMR shielding constants. When reliable gas phase
experimental 15N shielding data are available, analysis similar

to the 13C work of Gauss and co-workers for 13C NMR can
be performed to augment the computed data set to include
the 15N results. However, practical problems such as those
involving N5

+ and N5
- described above raise additional

concerns that need to be addressed. First and foremost
experiments are done in solution (most cases highly polar),
and a practically viable, justifiable scheme to obtain a
measure of the solvent effects must be established. Moreover,
since it has been noted that the solvent effects are more
pronounced for 15N shielding than those for 13C, correcting
for the solvent effects is even more relevant in the case of
15N NMR chemical shielding calculations.45 It is impractical
to assume that we can incorporate the solvent effects on a
first principle basis in the reasonable future for complicated
solutions, though certainly electrostatic cavity models could
be used,46,47 as well as classical water force fields48,49 for
some cases. Lacking this capability, we advocate looking at
the differences between the measured shifts in any solution
and the very accurately computed gas phase values for a
series of molecules to possibly identify systematic variations.

Another issue that needs attention is the molecular size,
since it is not always possible to do a large basis set CCSD(T)
calculation for the individual molecules that are of interest
in experiments. For example, in the case of the above
experiments, the precursors and the decomposition products
in the synthesis are also 15N NMR active, and they are larger
molecules than the N5

- itself; a full resolution of the
measured spectra might require knowledge of their NMR as
well. It is now generally accepted that electron correlation
effects must be included, preferably at least at the CCSD(T)
level with large basis sets, but when such high level
calculations are impractical, at a minimum a small basis
MBPT(2) (or DFT) result at the best possible geometry
(preferably experimental) must be obtained (minimum
threshold). The difference between the minimum threshold
and the best possible calculations (CCSD(T) with large basis
sets) must be known with some certainty.

While mindful of these special requirements for the
problem we plan to address, the following concerns are
significant: (1) We consider the accuracy of the 15N
CCSD(T)/pz3d2f shielding constants when gas phase ex-
perimental data is available and the corresponding CCSD(T)
calculations that can be performed. The geometries are
optimized at the CCSD(T) level using cc-pVQZ or aug-cc-
pVQZ basis sets. (2) We assess the variation of the difference
between the MBPT(2) and CCSD(T) 15N shieldings for a
given geometry with respect to basis set choice. We want to
explore the possibility of estimating CCSD(T)/pz3d2f values
for larger systems for which such calculations are impractical
by first computing the MBPT(2)/pz3d2f results followed by
adding the difference between CCSD(T) and MBPT(2)
shieldings computed using a much smaller basis set such as
cc-pVTZ. In order to be successful the difference between
the CCSD(T) and MBPT(2) shielding must be insensitive
to basis set. If successful, this will expand the range of
molecules that we can access since there are many cases
where the MBPT(2)/pz3d2f calculations are practical but not
those for CCSD(T)/pz3d2f. We use cc-pVTZ or cc-pVDZ
optimized geometries for larger molecules. (3) We consider
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the difference between the computed or estimated CCSD(T)/
pz3d2f and the condensed phase experimental results to
quantify our averaged condensed phase effects and possibly
identify correlations.

The details of all the NMR calculations and geometry
optimizations, including a description of various basis sets
used, the calculation level, and the molecules considered,
are presented in the Theoretical Calculations section. It is
followed by sections devoted to results, their analysis, and
conclusions.

Theoretical Calculations

Both the ACES II UF50 and ACES II MAB51 versions of
the ACES II program system are used for the calculations.
The geometries are optimized at the CCSD(T) level employ-
ing Dunning et al.52 correlation consistent polarized valence
and augmented basis sets: CCSD(T)/aug-cc-pVQZ level
optimizations for N5

- and N2O; CCSD(T)/cc-pVQZ level
for N3

-, N5
+ NO3

-, NH3, NH4
+, N2, HCN, HCNH+, CH2NN,

CH3CN, and ClCN; CCSD(T)/cc-pVTZ level for CH3NO2,
CH3NC, HNCO, CH3NCO, CH3CNH+, CH3NH2, CH3NH3

+,
CH3NNN, HN3, and N5H; and CCSD(T)/cc-pVDZ level for
the others. All the CCSD(T)/cc-pVQZ and CCSD(T)/aug-
cc-pVQZ optimized geometries are confirmed to be minima
by computing the harmonic frequencies. The 15N NMR
chemical shielding constants are computed at the MBPT(2)
and CCSD(T) levels by employing gauge-including atomic
orbitals (GIAOs). The basis sets, pz3d2f (pz3p2d for
hydrogen), cc-pVTZ, and cc-pVQZ, are selected. As dis-
cussed earlier, the pz3d2f and pz3p2d (H) basis sets are
shown to provide 13C NMR chemical shielding in close
agreement with experimental results for a set of 16 molecules
(standard deviation of CCSD(T)/pz3d2f shielding from
experiment is 1.3 ppm)36 and are chosen as our benchmark
basis sets. The pz3d2f and pz3p2d (H) basis sets are derived
from the original basis set of Ahlrichs and co-workers53 using
polarization function exponents from ref 54. The two other
sets, cc-pVTZ and cc-pVQZ, are used whenever the pz3d2f
and pz3p2d (H) series are beyond the level of available
computer resources. Nitromethane is used as the external
reference (experimental absolute shielding) to obtain the 15N
NMR chemical shifts. We have also used NH3 as an internal
standard (absolute shielding at CCSD(T)/pz3d2f level) for

those molecules for which the gas phase experimental results
are available.

Results and Discussions

Before proceeding to present our results, let us briefly
summarize the points discussed previously about the nature
of various calculations and their purpose and the organization
of the results. Our primary target is to compute CCSD(T)/
pz3d2f quality 15N chemicals shifts for a series of nitrogen
containing molecules. For the cases where such direct
calculations are impractical, they are obtained indirectly. The
molecules whose results can be obtained directly at the
CCSD(T)/pz3d2f level are labeled as set-A. Similarly, set-B
consists of molecules for which the highest level NMR
calculations currently possible are the CCSD(T)/cc-pVTZ
and MBPT(2)/pz3d2f, and set-C consists of molecules for
which the highest level NMR calculations currently possible
are the MBPT(2)/cc-pVDZ, MBPT(2)/cc-pVTZ, and CCS-
D(T)/cc-pVDZ. As a consequence, for those molecules in
both set-B and set-C, the CCSD(T)/pz3d2f quality values
must be estimated. The individual molecules in each category
follow: set-A, CH2NN, NO3

-, CH3NO2, N2, N5
+, HCN, N3

-,
CH3CN, CH3NNN, HNNN, ClCN, NNO, CH3NC, HCNH+,
CH3NH3

+, HNCO, NH4
+, CH3NCO, CH3NH2, NH3, N5

-, and
N5H; set-B, C3H4N2 (12-diazole), C4H4NH (pyrrole),
CH3CNH+, (CH3)3N, and CH3CH2NH2; set-C, MeOC6H4N5

and MeOC6H4N3.
The first series of data presented is to establish the

proposed scheme to estimate the CCSD(T)/pz3d2f quality
results for the systems that are not directly amenable to the
CCSD(T)/pz3d2f calculations, i.e., molecules in set-B and
set-C. Then, a comparison of our calculated values with the
gas phase experimental values will be presented. Finally, the
computed results are compared with the available experi-
mental data irrespective of the nature of the medium of the
experiments. The purpose of this comparison is to see
whether a justifiable empirical correction can be established
that in general can apply to the computed values to account
for the medium effects which are absent in the theoretical
models that we have used to make valid comparisons with
the condensed phase experiments.

Variation of the Difference between CCSD(T) and
MBPT(2) Shielding Constants with Basis Sets. Figure 1
shows the difference of the CCSD(T) and the MBPT(2) 15N
shielding constants for nitrogen atoms in 28 molecules

Figure 1. Differences between CCSD(T) and MBPT(2) calculated 15N NMR chemical shifts (ppm). Different colors represent
various basis set results for the molecules from set-A.
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obtained with the cc-pVTZ, cc-pVQZ, and pz3d2f basis sets.
Note that most of the molecules in this set have multiple
nitrogen atoms and hence the corresponding multiple shield-
ing constants. For convenience, unless it becomes necessary
within the context of the discussion, no reference to
individual nitrogen atoms in a given molecule is made.

As we can see, the difference between CCSD(T) and
MBPT(2) shielding constants is nearly invariant with respect
to basis sets for a given nitrogen atom. Also, we note that
this difference can be as large as 200 ppm (CH2NN) or as
small as 1-2 ppm while the average is 18 ppm (the average
is computed using CCSD(T)/cc-pVTZ results36). Another
observation is that the difference is largest for NN-X, where
X ) C, N, O, etc., systems. Further analysis of the results
for the NN-X type systems included in this selection of
molecules shows that the largest difference occurs for the
terminal nitrogen atom, and it is positive while for the central
nitrogen the error is smaller (compared to that of the terminal
nitrogen) and often negative. The association of the relative
change in the density to the shielding constant is the basis
for all the empirical rules which have been used very
successfully in relating the structures to the corresponding
NMR spectra.55,56 While it is an interesting point to further
investigate the nature of the larger difference between
CCSD(T) and MBPT(2) for certain bonding situations, that
is left for a future study.

The pertinent observation here is that the MBPT(2) and
CCSD(T) shielding constant differences are insensitive to
basis set, since that provides a mechanism to reliably estimate
the CCSD(T)/pz3d2f results for the molecules in set-B and
set-C (for molecules in set-A, the CCSD(T)/pz3d2f level
shielding constants can be computed directly). For the
molecules in set-B, we first compute the MBPT(2) and
CCSD(T) shielding constants with the cc-pVTZ basis set and
the MBPT(2) shielding constants with the pz3d2f basis set.
The difference between MBPT(2) and CCSD(T) computed
with the cc-pVTZ basis set is used to correct the computed
MBPT(2)/pz3d2f basis set results to obtain an estimate for
the CCSD(T)/pz3d2f results using the fact that the difference
is relatively insensitive to the basis sets. For the molecules
in set-C, we can directly compute shielding constants at the
CCSD(T)/cc-pVDZ, MBPT(2)/cc-pVDZ, and MBPT(2)/cc-
pVTZ levels. The basis set independence of the shielding
constant difference between the CCSD(T)/cc-pVDZ and
MBPT(2)/cc-pVDZ results is used to scale the MBPT(2)/
cc-pVTZ values to obtain an estimate for the CCSD(T)/cc-
pVTZ shielding constants.

Comparison of the CCSD(T)/pz3d2f Results with
Gas Phase Experimental Results. As we have pointed out
earlier, it is best to compare computed shielding constants
(or shifts) to gas phase experimental shielding constants (or
shifts). To the best of our knowledge there are only eight
gas phase experimental 15N NMR chemical shifts reported
in the literature. They are shown in Table 1 along with the
computed values at the CCSD(T)/pz3d2f level and the
corresponding liquid phase experimental results. The CCSD-
(T)/pz3d2f chemical shifts using NH3 as an internal standard
are also included in Table 1 for comparison. It can be seen
that, with respect to NH3, internal standard computed shifts
for polar N atoms are in closer agreement with the gas phase
experiment than with respect to the CH3NO2 external
standard. However, for less polar or nonpolar N atoms, the
gas phase experimental and theoretical chemical shift dif-
ferences is larger. Therefore, while discussing the results in
Table 1, we use chemical shifts with NH3 as an internal
standard for polar molecules and CH3NO2 as an external
standard for N atoms in less polar or nonpolar molecules.
The absolute deviations of such defined CCSD(T)/pz3d2f
computed values are within 0.2-3 ppm of the gas phase
experimental results, which is slightly higher than the Gauss
and co-workers findings for the 13C NMR shielding constants
using the same level of theory.36 The biggest deviation (6
ppm) occurs for the terminal nitrogen atom of NNO. This
may be an indication that the terminal nitrogen in NN-X
type systems may need correlation effects that go beyond
the CCSD(T) level. We note that the CCSDT/qz2p calcula-
tions of NMR chemical shifts for NNO reported by Gauss61

are in very good agreement with our CCSD(T)/pz3d2f results
(they are within 0.2 and 0.6 ppm for terminal and central
nitrogen atom in NNO, respectively).

As discussed previously, we have also noted that the
terminal nitrogen in other NN-X systems shows the largest
difference between CCSD(T) and MBPT(2) results irrespec-
tive of the basis set size. It would be interesting to further
evaluate the special nature of the terminal nitrogen in the
NN-X type systems.

Note that the gas phase experiments are conducted at finite
temperatures and the molecules can vibrate and rotate freely.
In this work, we have not considered the ro-vibrational effects
or the relativistic effects. The prior work done with the
13C NMR shielding constants reported that on the average
ro-vibrational effects amount to 1-2 ppm.

Table 1. Comparison of the Gas and Liquid Phase Experimental 15N NMR Chemical Shifts (ppm) with Those Calculated at
CCSD(T)/pz3d2f Level

nitrogen position N2 HCN CH3CN NNO NNO (CH3)3N CH3NH2 NH3

gas phase expt chem shift (ppm) -75.3a -115.4b -126.7a -148.0a -232.3a -372.8c -385.4c -400.1a

liquid phase expt chem shift (ppm) -70.2a -127.5 -137.1d -140.0c -225.0d -363.1d -377.3d -380.2d

CCSD(T)/pz3d2f chem shift (ppm) -77.5 -123.0 -132.3 -149.9 -244.9 -370.0e -392.8 -407.2
CCSD(T)/pz3d2f chem shift (ppm) with

NH3 as internal standard
-70.7 -116.1 -125.4 -143.1 -238.1 -363.1 -385.9 -400.3

a Reference 57. b Reference 58. c Reference 60. d Reference 59. e CCSD(T)/pz3d2f chem shift for (CH3)3N was estimated using
MBPT(2)/pz3d2f, CCSD(T)/cc-pVTZ, and MBPT(2)/cc-pVTZ results, and the constant basis set correction (see detailed explanation in the
text for set-B molecules).
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Comparison of the CCSD(T)/pz3d2f Results with
Experimental Results: Set-A and Set-B. Most of the 15N
NMR experimental values in the literature are obtained in
liquid phase at finite temperatures, far from the ideal
conditions that we assume in computations. Hence, com-
parisons of computed values with experiments are meaningful
only when the solvent and finite temperature effects are
incorporated. Furthermore, it is important to point out that
not having a uniform set of well established experimental
data due to the fact that different experiments use different
conditions (different concentrations of solutions, temperature,
etc.) makes comparisons with experiment even more difficult.

The experimental 15N data for 28 molecules considered
here are published by three different groups. The experi-
mental values along with the conditions under which they
are obtained are presented in Table 2. For the most part the
results of Jameson and co-workers are obtained in neat
liquids57 while the results of Levy and co-workers45 and
Berger and co-workers59 are obtained mainly in solution. A
plot of the difference of CCSD(T)/pz3d2f computed values
(for the molecules in the set-B CCSD(T)/pz3d2f values are
estimated according to the schemes presented earlier)
compared to the experimental values is shown in Figure 2.
In contrast to the uniform 0.2-3 ppm deviation of computed
results with the gas phase experiment, deviation of the
computed values from the measured values of experiments
in solution shows a wide variation. For example, in some
cases it is as small as 1 ppm and in others it is as large as 28
ppm and can be either positive or negative. The mean
absolute deviation from experiment is 12.6 ppm while the
mean absolute deviations of the positive and negative
chemical shielding taken separately are 15.9 and 5.2 ppm,
respectively. As discussed previously, besides a couple of
ppm error due to vibrational and relativistic effects, the
remaining difference between the computed and measured
results is entirely due to the medium effects and the residual
correlation and basis set effects that are absent in the current
level of theory. As a result of the variations in the measured
chemical NMR shifts depending upon the experimental
conditions, there are multiple values for the difference
between computed (gas phase) and measured values for a
given atom in a molecule. For example, in the case of NO3

-,
the measured chemical shifts vary from -12.6 to -4.0 ppm
depending on the experimental conditions (a likely cause is
the acidity of the medium). It is quite clear from these results
that it is ill advised to directly use the computed gas phase
chemical shifts to assist assignments of experiments in
solution. Since there are no well established first principle
based methods to incorporate solvent effects on NMR
chemical shift calculations, we focus on devising an empirical
correction as an alternative. We note that the success of such
an empirical correction depends on whether the solvent
effects can be approximately treated as an average rather
than specific to individual experiments.

In the process of calibration of a new method, a statistical
analysis of the differences between the computed and
measured values is used to establish the accuracy and the
expected error bars. For this purpose the experimental values
are carefully chosen so that the differences between the two

values are small and only due to the deficiencies in the
theoretical treatment of the interactions in the entire experi-
ment rather than due to the neglect of them. But in practice,
this is not always possible and when what is being neglected
in the computation is large, as is the case of the solvent and
finite temperature effects in this work, one can expect large
and less systematic deviations. It is not uncommon in the
literature that the average differences are used as a measure
of the effects that are untreated (or approximated). However,
it is important to emphasize that the empirical corrections
such as the ones described below must be established with
large data sets and should be known with respect to a
quantifiable parameter that is directly influenced by the
effects that are neglected in the calculation.

Strictly speaking the shielding constant difference between
the experimentally measured shielding constants in the gas
phase and in a solvent give a quantitative measure of that
solvent effect. The measured gas phase values are often
unavailable, but they can be accurately computed. Assuming
that the computed values are converged to the measured gas
phase values, the difference between the measured and
computed results gives an estimate of the solvent effects. A
plot of the difference of computed and measured chemical
shifts obtained under a variety of experimental conditions
against the computed absolute shielding constants of the
corresponding nuclei is shown in Figure 3.

It is pertinent to note several interesting trends that can
be observed in the data presented in this figure. One obvious
and expected trend is the increase of the absolute difference
between the computed and measured shifts as the absolute
shielding constant increases. Also, within the data set that
we have considered, for the positive shielding constants, the
difference is also positive, and for the negative shielding
constants, in contrast, the difference is either positive or
negative. Furthermore, for the negative shielding constants,
the difference is much smaller in comparison with that for
the positive shielding constants.

NMR shielding constants are a measure of the response
to an external magnetic field (B0) due to a change in the
electron density caused by bonding (relative to the bare
nuclei) in the vicinity of the nuclei of interest (the effective
magnetic field at the nucleus, Beff, is then Beff ) B0 + σB0

where σ may be positive or negative). We argue that, for all
practical purposes, on average the solvent acts as a perturba-
tion of the electron density; consequently, the magnitudes
of the shielding constants due to the solvent effects, estimated
by the difference between the computed and the measured
shielding constants, are expected to show correlation with
these computed shielding constants. Let us denote the
shielding constants of an isolated atom σ0 and its corre-
sponding value when it is bonded as σ, respectively. Also,
denote the changes in the shielding constants in the presence
of an external medium such as a solvent as ∆σ0 and ∆σ,
respectively (we note that the ∆σ0 is not measured under
normal circumstances). The shielding constant σs in the
presence of a solvent can then be expressed as σs ∝ (σ +
∆σ) - (σ0 + ∆σ0). A more useful form of this expression
for discussion purposes is σs ∝ (σ - σ0) + (∆σ - ∆σ0),
where σg ) (σ - σ0) and ∆σs ) (∆σ - ∆σ0) are to a good
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approximation a measure of the gas phase shielding constant
and the solvent effects, respectively. Thus, when the com-

puted gas phase (σg) shielding constant is positive and large,
then the solvent effect, (∆F - ∆F0), is most likely to be

Table 2. Summary of the Reported Experimentally Measured 15N NMR Chemical Shifts (ppm) and Conditions of Their
Measurement

chem shift
(ppm)/conditions expt gas phase expt liquid phase expt solution (solvent) Schroer Butler

CH2NN 16.8 (CDCl3)b

7.8 (Et2O)c

NO3
- -4.0 (satd NH4NO3)a -11.5

-4.6 (5 M NH4NO3,2 M HNO3)a

-12.6 (7 M HNO3)a

-3.7 (satd NaNO3)b

CH3NO2 0.0
12diazole -182.0 (av, CH3OH)b

-134.7 (av, CHCl3)b

-134.0 (av, CDCl3)c

-79.8 ((CH3)2SO)c

N2 -75.3 (303 K)a -74, -70.2 (77 K)a -70.1 (2 M HNO3)b -72.0
N5

+ (term.) -100.4e

CH2NN -94.2 (CDCl3)b

-96.0 (Et2O)c

HCN -127.5 (300 K)a,
-129 (309 K)a

N3
- (centr) -130.4 (NaN3 in H2O)c -133.7 -147

CH3CN -126.7 (227 K)a -138.0 (227 K)a,
-136.4(303K)a

-140.7b

-137.1c

CH3NNN -133.2 (CDCl3)b

-129.7 (benzene)c

HNNN -134.5 (ether)c

ClCN -144 (309 K)a

NNO -148 (CCl4, 303 K)a -142 (193 K)a -140.0 (EBBAd)c

N5
+ (N2, N4) -165.3e

HNNN -179.0 (ether)c

CH3NNN -171.0 (benzene)c

12diazole -182.0 (av, CH3OH)b

-134.7 (av, CHCl3)b

-134.0 (av, CDCl3)b

-173.1 ((CH3)2SO)c

CH3NC -218.2b

-218.0c

NNO -232.3 (CCl4, 303 K)a -226 (193 K)a -225.0 (EBBAd)c

pyrrole -231.4b -236.4 (CCl4)b

-231.4c -222.3 ((CH3)2SO)b

HCNH+ -235.8 (FSO3H-SbF5-SO2)b

N5
+ (centr) -237.3e

CH3CNH+ -239.6 (FSO3H-SbF5-SO2)b

-239.2 (FSO3H-SbF5-SO2)c

N3
- (term.) -280.9 (NaN3 in H2O)c -281.5 -283

CH3NNN -321.2 (benzene)c

HNNN -324.9 (ether)c

(CH3)3N -372.8f -367.2b -363.1 (CH3OH)c

CH3NH3
+ -361.4 (1 M in CH3OH)b

HNCO -346.0 (C6H12)c

CH3CH2NH2 -355.4 (CH3OH, 273 K)
NH4

+ -359.6 (satd NH4NO3)a -359.8
-361.3
-362.0
-362.7

CH3NCO -366.1b

-365.3c

CH3NH2 -385.4f -378.9b -377.3 (CH3OH, 273 K)c

NH3 -400.1 (195 K)a -377.5 (195 K)a

-399.3 (302 K)a -382.1 (303 K)a

-396.1 (5 atm)b -381.9 (303 K)a

-380.4 (300 K)a

-380.2 (298 K)a

-380.2 (298 K)b

-376.9 (223 K)b

a Reference 57. b Reference 45. c Reference 59. d EBBA: N-(p-ethoxybenzylidene)-p-n-butylaniline. e Reference 37. f Reference 60.

Accuracy of Computed NMR Shifts J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1233



large and positive. However, when σg is negative, the solvent
effect can be either slightly positive or negative.

A closer look at Figure 3 shows that we can identify
regions of shielding constants where on average the contri-
bution due to the medium remains unchanged. For example,
we can see that, for shielding constant values in the range
0-50 ppm, the average difference is 6 ppm with the
minimum and maximum differences being 1 ppm and 11
ppm, respectively. Similarly, for shielding constants in the
range >50 ppm, the average is 17 ppm while the maximum
and minimum differences are 7 and 28 ppm, respectively.
For negative shielding constants, we can identify that the
0-(-)50 ppm range has an average error of (5 ppm with
maximum deviations of (5 ppm and the range >(-)50 ppm
has an average error of (7 ppm while maximum and
minimum deviations are (7, respectively. These results are
summarized in Tables 3 and 4.

If we use the average differences for each range listed
above as the correction for the solvent effects and re-evaluate
the differences between the experiment and the computed

results, after applying the proposed corrections, we obtain
the results shown in Figure 2 and Table 5. We note that the
mean deviation (absolute values) from the experiment of the
computed gas phase results decreases from 12.6 to 3.6 ppm.
Also, note that after applying the correction the mean
deviations of the positive and the negative shielding constants
are 4.6 and 1.6 ppm, respectively, compared with the
corresponding averages prior to applying the correction, 15.9
and 5.2 ppm.

The mean deviations from experiment for the molecules
in set-A and set-B are 12.1 and 14.8 ppm, respectively. The
mean deviation for the group of positive chemical shifts is
15.8 ppm (set-A) and 16.4 ppm (set-B, and that for the group
of negative chemical shifts is 5.0 ppm (set-A) and 6.8 ppm
(set-B)). These results and the results presented in the prior
section point to a general pattern that the deviation from
experiment for positive shielding constant is comparatively
larger than that for negative shielding constants. Comparing
the behavior of sets-A and -B shows that mean deviations
for set-B are only slightly higher. This might be caused by
the error in the estimate used to obtain the CCSD(T)/pz3d2f
chemical shift values in set-B as well as by the size of the
statistical sample, since set-B only contains 6 values (5
corresponding to the positive chemical shifts and only 1
corresponding to the negative chemical shift).

Comparison of the CCSD(T)/cc-pVTZ Results with
Experimental Results: Set-C. The molecules considered in
set-C, further subdivided into subsets C1 and C2, having 18
or 20 atoms are the largest molecules presented in this work.
As a consequence, the quality of the calculations (basis sets
and theoretical method) is severely hampered. In Table 6
are presented computed 15N NMR data for the molecules in
set-C. They include MBPT(2) and CCSD(T) results obtained
with the cc-pVDZ basis set and the MBPT(2) results obtained
with cc-pVTZ, and these are currently the best possible
calculations. The first observation is that the cc-pVDZ basis
set, regardless of the level of theory, performs very poorly
and is unsuitable for comparison with experiment. Neverthe-
less, the differences between the CCSD(T) and MBPT(2)
obtained with the cc-pVDZ basis set are reliable and can be
used to correct the MBPT(2)/cc-pVTZ results to estimate
the CCSD(T)/cc-pVTZ values. These CCSD(T)/cc-pVTZ
estimated values differ from 4 experimentally known values
by 5.9, 11.1, 0.3, and 8.3 ppm, respectively, and, after
correction for the effects of the medium, change to 0.9, 5.1,
7.3, and 1.3 ppm.

Comparison of the CCSD(T)/pz3d2f Results with
Previous Theoretical Results. We have noted only a very
few previous theoretical studies on 15N NMR shifts, and the
results from those studies along with the best values from
this work and from experiment are shown in Table 7. It is
evident from the results shown in Table 7 that MBPT(2)
performs poorly when compared with other methods. Fur-
thermore, the Mulliken populations which correlate with the
NMR shielding indicate that the electronic structure of these
molecules is inadequately described by MBPT(2). This leads
us to conclude that the correlation effects beyond the
MBPT(2) level must be included not only for the NMR but
also for the other properties. The DFT-based methods tend

Figure 2. Differences of experimental 15N NMR chemical
shifts (ppm) and those calculated at the CCSD(T)/pz3d2f level
with and without the empirical correction for solvent effects.
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to do much better, and with the exception of a small number
of DFT functional/molecule combinations, their results are
consistent with the higher level computational methods. The
CCSD(T)/pz3d2f results and CCSDT/qz2p chemical shifts
calculated by Gauss61 are in close agreement (the differences
are 0.2, 0.6, and 2.2 ppm for terminal and central N atom in
NNO and for N2, respectively). Both CCSDT and CCSD(T)
NMR shifts are in good agreement with the experimental
shifts. In order to be consistent with the literature values,
the CCSD(T) results in Table 7 are not corrected for solvent
effects. As noted earlier, the experiments are done in solution
or in some cases neat liquids, and direct comparison of

experimental results with the gas phase values is unjustified.
Nonetheless, the experimental data are also included in Table
7 for the purpose of having a basis for assessing the quality
of different theoretical methods.

In the interest of “predictive” quantum chemistry it would
be wonderful if solution effects on a solvated molecule could
be described with the same accuracy as modern quantum
chemistry can describe the isolated gas phase molecules.

Figure 3. Relationship of the 15N NMR chemical shift differences (experimental - CCSD(T)/pz3d2f, ppm) and the CCSD(T)/
pz3d2f chemical shielding values (ppm).

Table 3. CP Correction to CCSD(T)/pz3d2f 15N NMR
Chemical Shifts for Atoms with Positive Absolute
Shieldinga

absolute chem shielding value (ppm) 0-50 >50

chem shift error - lower bound (ppm) 1 7
chem shift error - upper bound (ppm) 11 28
CP correction used - average (ppm) 6 17.5

a Computed chemical shifts underestimate the experimental
value.

Table 4. CP Correction to CCSD(T)/pz3d2f Calculated 15N
NMR Chemical Shifts for Atoms with Negative Absolute
Shieldinga

absolute chem
shielding value (ppm) 0-(-)50 >(-)50

chem shift error - lower
bound (ppm)

-5 -7

chem shift error - upper
bound (ppm)

5 7

CP correction used (ppm) 5 for positive error 7 for positive error
-5 for negative error -7 for negative error

a If the N atom is internally polarized, the error is negative as in
HCN. If the N atom is neutral, the error is positive as in N2.
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However, that does not seem yet to be possible. Conse-
quently, crude empirical estimates are the first step.

Conclusions

The 15N nuclear magnetic resonance (NMR) shielding
constants computed at the many body perturbation theory

and the predictive coupled cluster levels are compared with
the corresponding experimental values of a series of mol-
ecules to assess corrections for solution effects. Without such
corrections, it is not possible to adequately interpret results
of NMR shifts for molecules like N5

-, where experimental
observations have been questioned. The 15N CCSD(T)/

Table 5. Summary of 15N NMR Chemical Shifts (ppm) Calculated at CCSD(T)/pz3d2f Level and CP Corrected and Their
Comparison with Reported Experimental Values for the Molecules in Set-A and Set-B

chem shift
(ppm) Schroer Butler

most recent
exptl valuee

calcd
CCSD(T)/pz3d2f

CP scaling
factor

CP corrected
chem shift

CH2NN 7.8 4.6 7 11.6
N5H (N3) 3.2 7 10.2
NO3

- -11.5 -4.0 1.5 -7 -5.5
CH3NO2 0.0 7.3 -7 0.3
N5

- -13.5 7 -6.5
N5H (N2) -34.6 7 -27.6
12diazole -79.8 -73.0 -7 -80.0
N2 -72.0 -70.2 -77.5 7 -70.5
N5

+ (term.) -100.4f -100.4 -103.1 5 -98.1
CH2NN -96.0 -105.1 5 -100.1
HCN -127.5 -123.0 -5 -128.0
N5H (N1-H) -128.5 7 -121.5
N3

-(centr.) -133.7 -131g -130.4 -131.9 5 -126.9
-144 ( 3h

CH3CN -137.1 -132.3 -5 -137.3
CH3NNN -129.7 -133.9 5 -128.9
HNNN -134.5 -139.3 6 -133.3
ClCN -144.0 -145.0 6 -139.0
NNO -140.0 -149.9 6 -143.9
N5

+ (N2, N4) -165.3f -165.3 -171.7 6 -165.7
HNNN -179.0 -181.6 6 -175.6
CH3NNN -171.0 -181.8 6 -175.8
12diazole -173.1 -189.9 17.5 -172.4
CH3NC -218.0 -235.5 17.5 -218.0
NNO -225.0 -244.9 17.5 -227.4
Pyrrole -231.4 -245.8 17.5 -228.3
HCNH+ -235.8 -250.5 17.5 -233.0
N5

+ (centr) -237.3f -237.3 -260.8 17.5 -243.3
CH3CNH+ -239.2 -261.2 17.5 -243.7
N3

- (term.) -281.5 -281 -280.9 -309.1 17.5 -291.6
to -282

CH3NNN -321.2 -334.9 17.5 -317.4
HNNN -324.9 -343.1 17.5 -325.6
(CH3)3N -363.1 -370.0 17.5 -352.5
CH3NH3

+ -361.4 -372.0 17.5 -354.5
HNCO -346.0 -374.2 17.5 -356.7
CH3CH2NH2 -355.4 -377.5 17.5 -360.0
NH4

+ -359.8 -359.6 -381.3 17.5 -363.8
-361.3
-362.0
-362.7

CH3NCO -365.3 -390.9 17.5 -373.4
CH3NH2 -377.3 -392.8 17.5 -375.3
NH3 -380.2 -407.2 17.5 -389.7

a Reference 57. b Reference 45. c Reference 59. d EBBA: N-(p-ethoxybenzylidene)-p-n-butylaniline. e Most recent liquid phase/solution
experimental value (excluding experiments in question of Schroer et al.43 and Butler et al.42,67 for the sake of CP correction evaluation).
f Reference 37. g Reference 67, measured in clean D2O-CD3OD solution. h Reference 67, measured for complexed azide anion in a
solution containing Ce3+ and Ce4+ ions (i.e., from dearylation of 4-MeOC6H4N5 or from N3

- anion added to a product solution after
dearylation of N-(4-methoxyphenyl)pyrazole).

Table 6. Summary of 15N NMR Chemical Shifts (ppm) Calculated at MBPT(2)/cc-pVDZ or MBPT(2)/cc-pVTZ Level, Scaled
to Fit CCSD(T)/cc-pVTZ Chemical Shifts, and CP Corrected and Their Comparison with the Reported Experimental Values
for the Molecules in Set-C

chem shift (ppm)
Schroera

expt
Butlerb

expt
calcd

MBPT(2)/cc-pVDZ
calcd

CCSD(T)/cc-pVDZ
calcd

MBPT(2)/cc-pVTZ
CCSD(T)
/cc-pVTZ

CP corr
factor

CP corrected
chem shift

MeOC6H4N3 (NR) -304.1 -310.1 -290.0 -295.9 17.5 -278.4
MeOC6H4N3 (N�) -135.5 -129.0 -166.1 -102.4 -139.5 (5 -134.5, -144.5
MeOC6H4N3 (Nγ) -148.2 -339.1 -172.3 -304.0 -137.2 (5 -132.2, -142.2
MeOC6H4N5 (N1) -80 ( 2 -132.0 -123.0 -96.7 -87.8 (5 -82.8, -92.8
MeOC6H4N5 (N2) -22 ( 2

-28.1c
-105.5 -65.4 -67.1 -27.0 (7 -20.0, -34.0

MeOC6H4N5 (N3) 7 ( 2 -57.8 -29.7 -14.2 13.9 (7 20.9, 6.9

a Reference 43. b Reference 67. c Reference 68.
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pz3d2f, pz3p2d results presented in this work expand prior
benchmark CCSD(T) calculations to include 15N, and the
comparison with the few known gas 15N phase data (total of
eight) establishes the accuracy of the 15N CCSD(T) results.
We observe that the CCSD(T) and MBPT(2) level shielding
constant difference is small for most cases while there are a
few notable exceptions. More importantly, the results are
insensitive to basis set choice, and their differences can be
obtained with a small cc-pVDZ basis set even when the
individual values deviate significantly from the more accurate
large basis set values. Since there are quite large numbers
of molecules where we can obtain the MBPT(2) level
chemical shifts with a suitable basis set, but not the desired
CCSD(T) results, according to our findings the CCSD(T)
and MBPT(2) difference can be used to correct the large
basis MBPT(2) results to obtain the desired CCSD(T)
estimates. Direct comparisons of the computed values with
the data obtained from condensed phase experiments show
a large influence from the medium and confirm that, unless
the medium effects are directly incorporated in the calcula-
tions, the computed data must be corrected for the medium
effects in order to be useful in practical applications. We
present a systematic procedure to obtain an average correc-

tion. The error bars for the solvent effects show that for all
practical purposes the same correction can be used for a range
of shielding constants instead of separate corrections for each
shielding constant. We show that the absolute mean error of
the gas phase computed results due to the medium effects
falls to 3.6 from 12.6 ppm after the proposed corrections
are applied. (Within our complete set of 35 chemical shifts,
the average difference between experimental liquid phase
chemical shifts and the best chemical shifts calculated here
was 12.6 ppm using CH3NO2 as an external standard and
8.9 ppm using NH3 as an internal standard. After correcting
for solvent effects, these differences decreased to 3.6 and
3.7 ppm, respectively. We are aware of the fact that, by not
using NH3 as an internal standard, our calculated NMR
chemical shifts for N atoms in polar molecules might show
slightly higher differences from experiment, and we stress
this fact here. Since this study is related to the works of
Schoer et al.37,44 and Butler at al.,42 who are using ni-
tromethane as an external standard for all of their computed
NMR chemical shifts, our choice in this study is not to use
NH3 as an internal standard. If the reader is interested in
converting our calculated chemical shifts to those obtained
by using NH3 as an internal standard, the constant of 6.87
ppm should be added to all of our computed NMR chemical
shifts and subtracted from all our CP correction factors.)
Further work should attempt to incorporate at least pH effects
into solvation models and related empirical estimates.
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Table 7. Comparison of 15N NMR Chemical Shifts (ppm) Computed at CCSD(T)/pz3d2f Level with Computed Values from
the Literature (Most Recent Condensed Phase Experiments Values Also Given for Comparison although the Gas Phase
Experimental Data Are Not Available in the Literature)

MP2a KS-DFTf RAS-I, RAS-Eh B3LYP CCSD(T) CCSDT experiment

CH3NO2 23.7b, -71.3 15.3,6.5, 3.7, -0.1 18.6g 7.3 0
N5

- -37.9 -1.7k -13.5
N2 -77.5 -79.7m -70.2
CH3CN -147.3 -99.1, -111.0,

-114.7, -124.5
-132.3 -137.1

C4H4NH (pyrrole) -240.1 -218.1, -220.7,
-221.6, -220.3

-245.8 -231.4

NNO (centr) -149.9 -150.5m -140.0
N3

-(centr) -159.0 -131.9, -141.1 -131.9 -130.4
NNO (term.) -244.9 -245.1m -225.0
N3

- (term.) -323.0 -314.6, -313.0 -309.1 -280.9
(CH3)3N -372.7 -351.6, -352.9,

-353.3, -353.4
-370.0 -363.1

CH3NH2 -397.9 -378.5, -380.2,
-380.8, -380.2

-392.8 -377.3

NH3 -396.5c, -408.1d,
-412.7

-400.5, -402.1,
-402.6, -401.6

-395.2g -407.2 -380.2

MeOC6H4N3 (NR) -290.0e -310.4k -295.9 -290.0j, -293.0k

MeOC6H4N3 (N�) -102.4e -144.2k -139.5 -135.5i, -134.3j, -137.3k

MeOC6H4N3 (Nγ) -304.0e -144.3k -137.2 -148.2h, -146.1j, -149.3k

MeOC6H4N5 (N1)l -96.7e -84.1k -87.8 -80 ( 2j

MeOC6H4N5 (N2)l -67.1e -29.2k -27.0 -22 ( 2j, -28.1k

MeOC6H4N5 (N3)l -14.2e -18.8k 13.9 7 ( 2j

a MBPT(2)/pz3d2f, this work, unless specified otherwise. b MP2/6-311G**, see ref . c See ref 63. d MP2/6-311G*, see ref 64.
e MBPT(2)/cc-pVTZ. f In general KS-DFT uses sum over state type expression with the solutions of the coupled perturbed KS equations.
The choice of exchange correlation potential is usually guided by a previous calibration step. The four values correspond to the uncoupled
Kohn-Sham (KS) and three levels of refinements to uncoupled KS. See ref 65 for further details. g B3LYP/6-311++G**, see ref 66.
h RAS-A and RAS-E are both MCSCF with different choices of the active spaces. i See ref 43. j See ref 67. k RB3LYP/6-311++G(2d,p), see
ref 68. l See Figure 4 for numbering scheme. m See ref 61.

Figure 4. Structure of MBPT(2)/cc-pVDZ optimized minimum
for 4-methoxyphenylpentazole (MeOC6H4N5) and its N atom
labeling.
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Supporting Information Available: Optimized geom-
etries of all molecules discussed in this publication. (The
computation level used for each optimization is specified in
the Theoretical Calculations Section.) This material is
available free of charge via the Internet at http://pubs.acs.org.
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(53) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992,
97, 2571.

(54) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.

(55) Witanowski, M.; Stefaniak, L.; Januszewski, H. Nitrogen
NMR; Witanowski, M., Webb, G. A., Eds.; Plenum Press:
New York, 1973; pp 245-254.

(56) Webb, G. A.; Witanowski, M. Proc. Indian Acad. Sci.
(Chem. Sci.) 1985, 94, 241.

(57) Jameson, C. J.; Jameson, A. K.; Oppusunggu, D.; Wille, S.;
Burrell, P. M.; Mason, J. J. Chem. Phys. 1981, 74, 81.

(58) Jameson, C. J. Chem. ReV. 1991, 91, 1375.

(59) Berger, S.; Braun, S.; Kalinowski, H.-O. NMR-Spektroskopie
Von Nichtmetallen, Bd. 2; Wiley-VCH: New York, 1992;
pp 27-107.

(60) Witanowski, M.; Stefaniak, L.; Webb, G. A. In Annual
Reports on NMR Spectroscopy; Webb, G. A., Ed.; Academic
Press: London, 1977; Vol. 7, p 117.

(61) Gauss, J. J. Chem. Phys. 2002, 116, 4773.

(62) Hathaway, B. A.; Day, G.; Lewis, M.; Glaser, R. J. Chem.
Soc., Perkin Trans. 2 1998, 2713.

(63) Dokalik, A.; Kalchhauser, H.; Mikenda, W.; Schweng, G.
Magn. Reson. Chem. 1999, 37, 895.

(64) Barfield, M.; Fagerness, P. J. Am. Chem. Soc. 1997, 119,
8699.

(65) Fadda, E.; Casida, M. E.; Salahub, D. R. J. Phys. Chem. A
2003, 107, 9924.

(66) Alkorta, I.; Elguero, J. Struct. Chem. 1998, 9, 187.

(67) Butler, R. N.; Hanniffy, J. M.; Stephens, J. C.; Burke, L. A.
J. Org. Chem. 2008, 73, 1354.

(68) Burke, L. A.; Butler, R. N.; Stephens, J. C. J. Chem. Soc.,
Perkin Trans. 2001, 2, 1697.

CT9005739

Accuracy of Computed NMR Shifts J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1239



Vibrational Raman Spectra from the Self-Consistent
Charge Density Functional Tight Binding Method via

Classical Time-Correlation Functions

Steve Kaminski,*,† Michael Gaus,‡ Prasad Phatak,§ David von Stetten,†

Marcus Elstner,‡ and Maria Andrea Mroginski*,†

Technische UniVersität Berlin, Institut für Chemie, Max-Volmer-Laboratorium, Sekr. PC 14,
Strasse des 17. Juni 135, D-10623 Berlin, Germany, UniVersität Karlsruhe, Institut für

Theoretische Chemie, Kaiserstrasse 12, D-76131 Karlsruhe, Germany, and Department of
Chemistry, Indiana UniVersity, 800 E Kirkwood AVenue, Bloomington, Indiana 47405

Received December 9, 2009

Abstract: The Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) method
has been extended for the calculation of vibrational Raman spectra employing the Fourier
Transform of Time-Correlation Function (FTTCF) formalism. As Witek and co-workers have
already shown for a set of various organic molecules, the minimal basis SCC-DFTB approach
performs surprisingly good in terms of polarizability calculations. Therefore, we were encouraged
to use this electronic structure method for the purpose of Raman spectra calculations via FTTCF.
The molecular polarizability was accessed via second order numeric derivatives of the SCC-
DFTB energy with respect to the components of an external electric field “on-the-fly” during a
molecular dynamics (MD) simulation. The finite electric field approach delivers Raman spectra
that are in overall good agreement for most of 10 small organic model compounds examined in
the gas phase compared to a standard Normal Mode Analysis (NMA) approach at the same
(SCC-DFTB) and at a higher level of theory (BLYP aug-cc-pVTZ). With the use of reparametrized
SCC-DFTB repulsive potentials, a distinct improvement of the Raman spectra from the SCC-
DFTB/FTTCF protocol of conjugated hydrocarbons has been observed. Further QM/MM test
calculations of L-phenylalanine in aqueous solution revealed larger deviations concerning
vibrational frequencies and relative intensities for several stretching and bending modes in the
benzene ring as compared to experimental results. Our SCC-DFTB/FTTCF approach was also
tested against a hybrid method, in which polarizability calculations at the B3YLP 6-31G(d) level
were performed on a trajectory at the SCC-DFTB level. We found that our SCC-DFTB/FTTCF
protocol is not only much more efficient but in terms of the resulting Raman spectra also of
similar accuracy compared to the hybrid approach. In our opinion, the more accurately calculated
polarizabilities at the B3YLP 6-31G(d) level cannot compensate for the usually insufficient
sampling of phase space when employing high level QM methods in a FTTCF framework.

Introduction

Vibrational infrared and Raman spectroscopy are among the
most important experimental techniques currently used to
obtain information on structures and chemical states of a

variety of chemical systems. In order to increase the amount
of information obtained about the system under investigation,
experimental spectra are often compared to those generated
from electronic structure methods. A clear assignment of the
observed vibrational bands to specific intramolecular motions
is one of the most important contributions of computational
methods to the interpretation of experimental data. Moreover,
given that accurate intra- and intermolecular force fields are
available, computational vibrational spectroscopy is able to
give detailed insight to molecular structures and their
interactions with the environment.

* Corresponding author e-mail: steve.kaminski@chem.tu-berlin.de
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For such calculations, density functional methods1,2 (DFT)
are usually employed since they offer accurate results, at
least for systems in the gas phase, at a reasonable compu-
tational cost. With a given electronic structure method, the
vibrational spectra of molecular systems can be accessed via
several rather different methodologies: the so-called Normal
Mode Analysis (NMA),3 Fourier transform of time-correla-
tion functions (FTTCF),4 and methods based on a principal
component analysis (PCA).5

NMA is by far the most frequently applied method in
the field of computational chemistry. According to the
NMA approach, the vibrational frequencies are obtained
by the diagonalization of the Hessian matrix (second
derivatives of the energy with respect to the atomic
displacements) at an equilibrium geometry of the mol-
ecule. The spectral intensities are independently calculated
through the first spatial derivatives of either the molecular
dipole moment (infrared) or the molecular polarizability
(Raman). The third feature of a vibrational band, its shape,
is not accessible from the NMA approach since the
calculations are formally performed at 0 K.

The second methodology for calculating vibrational spectra
refers to the so-called Fourier transform of time-correlation
functions (FTTCF). Based on Fermi’s golden rule,4 linear
response theory4,10,11 delivers expressions for a practical
calculation of infrared and Raman spectra from dipole (µ)
and polarizability (r) time correlation functions given by

Once a time series of µ or r is available for a molecular
system, the complete infrared or Raman spectrum containing
frequency, intensity, and band shape information can be
directly obtained from evaluating the expressions 1 and 2,
respectively. These expressions can be applied under the
assumption that the linear response approximation is valid;
i.e., the perturbation of the system due to the applied field is
small.

Besides the FTTCF formalism, another established meth-
odology exists to extract molecular vibrations from classical
trajectories. The principal component analysis, also often
termed quasiharmonic analysis or essential dynamics, is
based on a statistical analysis of (mass weighted) atomic
fluctuations. The cross-correlator of such atomic displace-
ments, called the covariance matrix, is usually diagonalized
to yield its eigenvalues and eigenvectors, comparable to those
obtained from the Hessian matrix in a standard normal-mode
analysis. Thus, the method provides vibrational frequencies
and normal modes of the regarded system.

The PCA technique is usually employed to identify large
correlated motions in macromolecules, such as proteins,6-8

with related modes in the far-infrared region (FIR). Wheeler
and co-workers9 were the first to evaluate the performance
of this statistical method in the calculation of vibrational
frequencies of small molecules in the mid infrared region
(MIR).

However, for this type of calculation, Schmitz and Tavan24

found that PCA-based methods exhibit significant limitations
compared to the NMA and FTTCF formalisms.

The NMA technique depends on the harmonic approxima-
tion which assumes a quadratic potential energy expression
at local minima of the potential energy surface. The necessity
of finding minima on the potential surface is one of the major
drawbacks of the NMA approach. Especially for large
flexible molecules it becomes a nontrivial task to identify
all its equilibrium conformations which are sampled at finite
temperature and contribute to an experimental vibrational
spectrum. These problems can be avoided by employing the
FTTCF method. Here, the time series of µ or r are collected
from a MD trajectory at finite temperature, where most of
the equilibrium conformations sampled during a sufficiently
long simulation contribute to the calculated spectrum.

Despite its drawbacks, the NMA approach is more widely
used in the field of computational vibrational spectroscopy
than the FTTCF method. One of the reasons is that, in order
to generate a single spectrum, FTTCF requires an ensemble
of structures which is computationally very demanding when
using high level electronic structure methods like DFT.
Nevertheless, numerous studies were performed concerning
the calculation of infrared and Raman spectra via FTTCF
of a rather small chemical system.12-25 For many of these
studies, the Car-Parrinello26 molecular dynamics approach
was used. Another reason is related to the assignment of
vibrational bands to intramolecular motions. While being a
straightforward task in the framework of NMA, it became
only recently available27,28 in terms of a systematic approach
for the FTTCF formalism.

To benefit from the advantages of FTTCF, it would be
necessary to combine this methodology with a computation-
ally more efficient electronic structure method. An estab-
lished approximative quantum chemical method is the Self-
Consistent Charge Density Functional Tight Binding (SCC-
DFTB) method derived by Elstner and co-workers.29 One
of its strengths is the accurate calculation of molecular
geometries comparable to higher levels of theory.30 At the
same time, the performance of SCC-DFTB comes at a
considerably reduced computational cost, i.e., about 3 orders
of magnitude less compared to standard DFT methods. This
allows a treatment of much larger chemical systems as, e.g.,
biomolecules for which SCC-DFTB has already shown to
deliver accurate results compared to higher level methods.31,32

Concerning spectroscopic properties, Witek and co-work-
ers have already shown that vibrational frequencies33,34 as
well as Raman intensities35 in the framework of a normal-
mode analysis are satisfactorily described by SCC-DFTB.

The combination of SCC-DFTB with FTTCF has also been
successfully employed for several simple chemical sys-
tems22,36,37 in infrared studies. Furthermore, SCC-DFTB has
recently been shown to deliver accurate vibrational infrared
spectra of molecules in a complex protein environment.38

Albeit these infrared studies using SCC-DFTB in combina-
tion with FTTCF are promising, this approach has to our
knowledge not been used so far for the calculation of Raman
spectra. In our opinion, however, the FTTCF approach could
be valuable for the interpretation of various experimental

Infrared: I(ω) ∝ ∫-∞

∞
〈µ(t) · µ(0)〉 e-iωt dt (1)

Raman: I(ω) ∝ ∫-∞

∞
〈r(t) · r(0)〉 e-iωtdt (2)
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Raman studies, especially on biomolecular systems contain-
ing large floppy molecules. The size of such systems requires
a combination of FTTCF with an efficient quantum chemical
method such as SCC-DFTB.

Therefore, the aim of this work was the extension of the
SCC-DFTB method to calculate vibrational Raman spectra
via the FTTCF formalism. The implemented methodology
will be tested in detail on several small organic model
compounds in the gas phase. Due to the importance of an
accurate prediction of condenced phase spectra, the calculated
spectrum of L-phenylalanine in aqueous solution will be also
compared to experimental results.

Although beyond the scope of the present work, the long-
term goal is to find out whether this methodology can be
helpful to interpret Raman spectra of biomolecules (espe-
cially cofactors in proteins) in a complex protein/solvent envi-
ronment.

Theoretical Approach

The SCC-DFTB Formalism. The SCC-DFTB approach
is an approximate quantum chemical method for which an
extensive description is given elsewhere in the literature.29

Like semiempirical methods, SCC-DFTB benefits from
several approximations such as avoiding the calculations of
one- and two-electron integral expressions as well as taking
only valence electrons explicitly into account. Therefore, a
computational speedup of about 3 orders of magnitude
compared to DFT is achieved.

The SCC-DFB energy based on a second-order expansion
of the DFT energy with respect to density fluctuations relative
to a chosen reference density is given by

where ciµ are the coefficients for the minimal basis repre-
sentation of confined pseudoatomic orbitals ψi ) Σµciµφµ and
Hµν

0 the Hamilton matrix which depends only on the reference
density. The induced charge on each atom A is denoted as
∆qA; γAB is a distance dependent function describing charge
interactions, and Erep means a sum of two-centered core
potentials. The coefficients ciµ are determined by solving the
Kohn-Sham equations and transforming them into a set of
algebraic equations,

with the charge self-consistent Hamiltonian

The overlap matrix elements Sµν and the H0
µν are calculated

using the PBE functional39 and tabulated for a dense mesh
of interatomic distances.

As it will be discussed in one of the following sections in
more detail, we need an expression for the SCC-DFTB energy
of a molecular system interacting with an external electric field
to obtain a Raman spectrum via the FTTCF formalism. For

this purpose, we follow Elstner40 with the addition of an extra
term to eq 3, describing the interaction of the field with the
induced Mulliken charges of the system, as

Here, Dj is the Cartesian component of the electric field
and xA denotes the Cartesian coordinate of atom A. The
charge self-consistent Hamiltonian (eq 5) becomes

The FTTCF Formalism for Raman Spectra. The
evaluation of the FTTCF formalism for Raman spectra, dis-
cussed only in brief, starts with the Raman differential scat-
tering cross section in the quantum mechanical framework4,10

given by

where |i〉 and |f〉 denote the wave functions of the initial and
final states of the system and Fi is the probability for the
system to be found in the initial state i. On the left side, λ
denotes the wavelength of the scattered radiation and the
absorption frequency ωfi is proportional to the energy levels
of the final (Ef) and initial states (Ei) via ωfi ) (Ef - Ei)/p.
P is the Cartesian polarizability tensor which can be split
up into an isotropic and an anisotropic component, such as

For eq 8 the associated linear-response equations derived
by Gordon4,10,11 are given by

where tr denotes the trace of a matrix. These are valuable
expressions for a practical calculation of Raman spectra.
Basically, only the isotropic and anisotropic polarizability
tensors Piso(t) and Paniso(t) as a function of time are needed.
The corresponding rotational invariants11 can be defined as

The two invariants measuring the isotropy and anisotropy
of the electronic polarizability are connected to Piso and Paniso

via
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The isotropic and anisotropic components of the scattering
cross sections apply, in particular, to experimental spectra
where the scattered light is measured parallel or perpendicular
to the plane of the polarized incident laser beam11

The ratio of these expressions leads to an important
observable in Raman spectroscopy, the depolarization
ratio F,

To summarize, the vibrational Raman spectrum of a
chemical system can be obtained by generating an
ensemble of structures (indicated by 〈...〉 in eqs 10 and
11), e.g., through molecular dynamics simulations and
simultaneous electronic structure calculations at each time
step to compute the polarizability tensor components (eqs
12 and 13: Rxx, Ryy, ...).

However, care must be taken since a single simulation
usually covers only a small amount of phase space and the
simulation time is usually also insufficiently small to reach
an equal distribution of energy among the normal modes,
leading to an erroneous intensity pattern in the spectra as
pointed out, e.g., by Hornicek and co-workers.14 More
efficient than producing one rather long single simulation is
the generation of multiple shorter independent trajectories,
each starting with a set of randomly reassigned atomic
velocities. Averaging over a certain number of spectra
generally yields reliable relative intensities.

Additional errors concerning spectral intensities arise from
classically (Newtonian) derived trajectories and time-cor-
relation functions for which Berens and co-workers11 pro-
posed a quantum correction factor for Raman spectra,

where 	 is equal to (kT)-1, k denotes the Boltzmann constant,
and ω is the vibrational frequency.

Implementation of Polarizability Calculations. In the
previous section, the time dependent molecular polarizability
Piso/aniso(t) was identified as the essential quantity for the
evaluation of the linear response eqs 10 and 11. The
components of P (Rxx, Ryy, ...) can be practically evaluated
by considering the perturbation of a molecular system
exposed to an external electric field F. The energy of the

perturbed system can be expressed in a Taylor series relative
to the field-free energy41 as

Assuming the harmonic approximation, the Taylor expan-
sion is truncated after the second term which is the response
property of interest, the components of the molecular
polarizability,

The required second order derivatives of the energy with
respect to the electric field components can be performed
numerically using the following expressions42 for diagonal

and off-diagonal components of the polarizability tensor

where the expression for the error O(F2) can be found
elsewhere.43 The numeric step size, here equal to the electric
field strength, must be chosen carefully. Too strong applied
fields, on the one hand, may hamper the SCF convergence
in electronic structure calculations, while a too weak
perturbation may lead to numeric errors because of small
energy differences. To test the numeric stability of the
derived values of Rij, we follow the approach of Magdó58

by doubling the electric field strength and evaluating Rij again
via

A reduced numeric error (O(F4) instead of O(F2)) is
obtained using eq 24, whereas the required number of energy
evaluations in the presence of an electric field increases from
12 to 24.

Vibrational Mode Assignment. Martinez and co-workers
developed a methodology27,28 for the assignment of vibra-
tional bands to intramolecular motions from FTTCF calcula-
tions. In the following section, we will briefly summarize
the most important aspects.

The time dependent atomic velocities as available from a
molecular dynamics trajectory are used as a key quantity of
the methodology. The power spectra of velocity autocorre-
lation functions (vibrational density of states) have been used
earlier to assign vibrational bands to atomic motions.12

However, these power spectra were highly delocalized in
frequency space, making an unambigious band assignment
for larger molecules a difficult task. The methodology of
Martinez and co-workers provides so-called effective normal
modes, i.e., linear combinations of atomic displacements
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constructed in such a way that their corresponding power
spectra are as localized as possible in frequency. To achieve
this task, the following generalized eigenvalue equation must
be solved:

in which Λ is a diagonal matrix containing the vibrational
frequencies. The solution matrix Z performs the transforma-
tion between a set of j initial velocities ẋj in either Cartesian
or internal coordinate space into the final set of k effective
normal mode velocities q̇k via

Power spectra Pk
q generated from these effective normal

mode velocities q̇k via

appear as localized bands in frequency. The matrices K(n),
necessary to set up eq 25, are calculated via

Here, Pkl
x denotes the power spectra of all auto- and cross-

correlation functions from the initial set of atomic velocities
in Cartesian or internal coordinate space,

From the matrices K and Z, an expression for the potential
energy distribution (PED) can be defined,44 i.e., the contribu-
tion of the internal coordinate i to the potential energy of
the jth normal mode,

Computational Details

In order to test the performance of the implementation
described in the previous section, we have chosen a set of
10 small organic molecules for in Vacuo calculations: water
(H2O), butadiene (C4H6), ethanethiol (C2H6S), benzene
(C6H6), methylacetate (C3H6O2), maleimide (C4H3NO2),
n-methylacetamide (C3H7NO), pentane (C5H12), trimethyl-
amine (C3H9N), and glycerol (C3O3H8). In addition, the
methodology was also tested for a single L-phenylalanine
residue in aqueous solution.

In order to generate vibrational Raman spectra for these
compounds via the FTTCF formalism, molecular dynamics
simulations were performed using an extended SCC-DFTB
program of Elstner and co-workers interfaced with the
CHARMM45 32b2 software. The MD simulation protocol
is described as follows for in Vacuo simulations. In a first
step, we performed an initial geometry optimization using
CHARMM’s adopted basis Newton-Raphson (ABNR)
minimizer until a gradient threshold of 1 × 10-5 au was
reached. The system was then heated and equilibrated by
means of a 12.5 ps MD simulation. Subsequently, these

simulations were continued for a further 400 ps under
constant temperature conditions (300 K). During this produc-
tion run, the fluctuating polarizability tensor elements (Rij)
needed to generate Raman spectra were collected at each
time step.

In the case of phenylalanine, the amino acid in its
zwitterionic form (as usual at neutral pH) was placed in a
cubic box of TIP3P46 water (1485 molecules) of dimensions
35 × 35 × 35 Å3. Periodic boundary conditions were applied,
and electrostatic interactions beyond a cutoff radius of 12 Å
were neglected by employing an atom based force-shifting
function. All calculations were performed in a QM/MM
framework, with phenylalanine as the QM part, as imple-
mented in the SCC-DFTB/CHARMM interface.47 After an
initial minimization of the complete system for 1000 steps
using CHARMM’s ABNR minimizer, a subsequent MD
simulation for the purpose of heating and equilibration was
performed for 50 ps. For the following production runs
(altogether 400 ps) in the NPT ensemble, the Anderson-
Hoover equations48 for constant pressure and temperature
as implemented in CHARMM were employed.

Subsequent to the MD simulations, the Fourier transform
of the polarizability autocorrelation was computed and further
processed with a Blackman49 filter to increase the signal-
to-noise ratio. In a final step, the spectra were treated with
a quantum correction factor (see eq 19) improving the
intensity pattern as suggested by Berens and co-workers for
Raman spectra generated from classical trajectories. Fol-
lowing eqs 10, 11, and 19, the Raman spectrum is finally
calculated as

In accordance with Nyquist’s theorem,50 the spectral
resolution after a Fourier transform is inversely proportional
to the product of the simulation length and the chosen time
step. Due to the rather low spectral density of the chosen
small organic compounds for in Vacuo calculations, a
resolution of 8 cm-1 was assumed to be sufficient. To be
comparable with the experimental results, however, spectra
of phenylalanine in solution were calculated at a resolution
of 4 cm-1. Hence, with a chosen time step of 0.5 fs, 8192
and 16 384 (phenylalanine) simulation steps were necessary
for the generation of a single spectrum using a Fast Fourier
Transform (FFT) routine. For reasons mentioned in the theory
section, 100 independent MD simulations were performed
per model compound, and their resulting spectra were
averaged to obtain a reliable intensity pattern.

In order to evaluate the performance of the implemented
SCC-DFTB/FTTCF procedure, additional Raman spectra
were computed at the same level of theory (SCC-DFTB) but
using the NMA technique as implemented into an SCC-
DFTB standalone code by Witek et al.33,35 In fact, the
accuracy of this theoretical approach should be tested against
experimental spectra of molecules in the gas phase. Unfor-
tunately, experimental spectroscopic data recorded in the gas
phase are very difficult to obtain. Thus, most of the
measurements are performed in solution. Comparison to
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experimental data, however, will be done for the SCC-DFTB/
FTTCF calculations of L-phenylalanine in water.

It should be mentioned that not only relative intensities
will differ between the FTTCF and NMA approach but also
vibrational frequencies, since for FTTCF they depend on the
integration time step. The chosen value of 0.5 fs leads to a
frequency-dependent blue shift in the spectrum according
to23

The chosen step size (∆t) of 0.5 fs is believed to be a good
compromise between accuracy and computational cost.

In addition, we compared the performance of SCC-DFTB/
FTTCF with Raman spectra calculated at higher levels of
theory. Density functional theory (DFT) provides efficient
and accurate access to vibrational spectra. It has been
shown51 that reliable Raman intensities depend mostly on
the size and quality of the basis set in use. Dunning’s
augmented triple-� basis set52 (aug-cc-pVTZ) performs well
in this respect. Since recent work of Riley et al.53 also
revealed very good performance in the prediction of vibra-
tional frequencies (40 cm-1 error) for the combination of
the BLYP54,55 functional together with Dunning’s aug-cc-
pVTZ basis set, we have chosen this setup in combination
with an NMA approach for comparison to our SCC-DFTB/
FTTCF results.

Besides our implementation, it is also possible to generate
a Raman spectrum via the FTTCF formalism out of a hybrid
approach. Here, we followed the procedure of Yu and Cui22

by performing single point calculations (to obtain the
molecular polarizability) at the DFT level on snapshots
sampled from a trajectory computed at the SCC-DFTB level.
Here, the DFT calculations were done using a computation-
ally less demanding combination of functional and basis set
(B3LYP/6-31 g(d)), since numerous single-point calculations
are required (8192) to generate a spectrum. Therefore, they
were restricted to only 2 of our 10 model compounds:
butadiene and maleimide. With such a setup, we tried to
estimate the impact of two parameters on the relative Raman
intensities: namely, the size of the basis set and the number
of independent trajectories used for spectral averaging. All
DFT based calculations were performed using Gaussian 03.56

Since the output of either SCC-DFTB/NMA or DFT-
BLYP/NMA calculations consists of Raman activities Ak

rather then intensities Ik, they were multiplied with a
frequency dependent factor to be comparable to the SCC-
DFTB/FTTCF results

Here, Kb denotes the Boltzmann constant, ωk is the vibra-
tional frequency of mode k, and the incident laser line ω0

was chosen at a value of 1064 nm. The temperature has been
chosen to be 300 K.

An important aspect concerning the interpretation of the
calculated spectra is the assignment of Raman active bands
to intramolecular motions. In the framework of NMA, the

eigenvectors of the Hessian matrix, referring to vibrational
motions, are calculated by default. Since the in Vacuo SCC-
DFTB/FTTCF calculations will be compared to calculations
using the NMA approach, the eigenvectors will be used for
a qualitative assignment of bands to internal motions.

The solution spectrum of phenylalanine from SCC-DFTB/
FTTCF calculations has been compared to experimental data.
Therefore, effective normal modes as described previously
were evaluated, and the potential energy distribution of
selected modes were estimated via eq 30. The atomic
displacements of phenylalanine were expressed in the internal
coordinate space. For this purpose, a set of 63 nonredundant
internal coordinates for the amino acid were defined from
bond length, bond angles, and proper and improper (out-of-
plane) torsion angles following the rules of Pulay et al.57

Experimental Procedure

The vibrational Raman spectrum of L-phenylalanine in water
(∼0.18 M) was measured at two temperatures (298 and 133
K) and pH ∼ 7 using a Bruker RFS 100/S Fourier-transform
spectrometer. The excitation line was at 1064 nm, and the
spectrum has been recorded at a resolution of 4 cm-1.

Results and Discussion

Numeric Stability of Calculated Polarizabilities. For all
10 model compounds, MD simulations were performed to
find appropriate numeric step sizes (the applied field strength)
for the computation of the polarizability tensor components.
Magdó et al.58 suggested values of about 0.004 au for
polarizability calculations on linear tetrapyrroles at local
minima and in the framework of a NMA approach. Accord-
ing to the FTTCF methodology, however, the computation
of polarizabilities are performed on structures extracted out
of a MD trajectory, which are usually not in a local
minimum. Therefore, we tested the step sizes 0.0005, 0.001,
0.005, 0.01 and 0.05 au. For all model compounds except
glycerol, methylacetate, and maleimide, the effects were
negligible, meaning that the spectra could not be visually
distinguished from each other. For the mentioned compounds,
however, the smallest step size (0.001) leads to slight artificial
baseline drifts, while the spectra resulting from the two higher
step sizes are almost identical. Raman spectra of methyl-
acetate and glycerol, estimated using different step sizes, are
shown in Figure 1. A pronounced baseline effect together
with a decreasing signal-to-noise ratio is clearly visible for
the spectrum obtained using a step size of 0.0005 au. Large
step sizes (0.05 au) on the contrary only have quite small
influences on the overall spectral shape.

Whereas these calculations have been performed using a
simple numeric differentiation scheme (eq 21), additional
tests for all model compounds were done using a more
accurate approach as shown in eq 24. A comparison between
the two methodologies revealed a visually negligible differ-
ence for the resulting spectra. Therefore, to keep the
computational effort low, all simulations in this work have
been performed using eq 21.

Stability of Spectral Intensities. As pointed out in the
theory section, only an average over spectra from several

∆ω ) ω3∆t2/24 (32)
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(ω0 - ωk)

4
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independent MD simulations will give reliable relative band
intensities. Figure 2 exemplifies for two model compounds
(pentane, n-methylacetamide) that spectra generated from
single trajectories (bottom spectra) are by no means repre-
sentative. The top spectra, on the other hand, show that in
all of the spectral regions, changes in intensities between 50
and 100 on the average remain very small, so that conver-
gence in the intensity pattern has been achieved.

Raman Spectra in the Gas Phase. Among the 10 model
compounds for which in Vacuo calculations have been
performed, five of them have been selected for a more
detailed discussion. For the remaining model compounds,
only the spectra will be shown. All spectra derived from the
time-correlation-function formalism as implemented in this
work (termed SCC-DFTB/FTTCF) result from simulations
with a step size of 0.005 au and from an average of 100
single spectra.

For the purpose of a better visual comparison with the
SCC-DFTB/FTTCF results, the line spectra from the NMA
approach have been convoluted using Lorentzian functions
with a half-width of 10 cm-1 and a peak maximum at the
position of the calculated vibrational frequencies. In all
vibrational spectra shown, the most intense band was scaled
to unity.

Water. For the smallest model compound, the resulting
spectra in Figure 3 (top left) show excellent agreement when
comparing the NMA and FTTCF formalisms for the SCC-
DFTB method in terms of vibrational frequencies. Compared
to BLYP aug-cc-pVTZ, the highest frequency mode, i.e., the
asymmetric O-H stretching, is substantially blue-shifted
(244 cm-1), whereas the other two modes are in good

agreement with SCC-DFTB results. Concerning the relative
intensities, very good agreement is found between SCC-
DFTB/FTTCF and BLYP aug-cc-pVTZ, wheras SCC-DFTB/
NMA shows a distinctly different pattern.

Glycerol. Analogous to water, the calculated vibrational
frequencies compare well (see Figure 4 /bottom right) between
SCC-DFTB/FTTCF and SCC-DFTB/NMA. This is also true
for most spectral regions when incorporating BLYP aug-cc-
pVTZ into the comparison. The largest spectral shift (∼160
cm-1) can be found for the double band feature in the C-H
stretching region near 3000 cm-1. A striking feature of the
glycerol spectrum from the SCC-DFTB/FTTCF approach is its
broad background. It is the only model compound where
intramolecular hydrogen bonds appear with a continuous
variation of donor-acceptor distances (O-H · · ·O) during the
MD simulations, which is most likely responsible for the
observed broadening. In terms of the spectral shape, the SCC-
DFTB/NMA approach is in closer agreement to BLYP aug-
cc-pVTZ in the high frequency region above 3500 cm-1.
Here, the O-H stretching vibrations are overestimated in
the SCC-DFTB/FTTCF spectrum. Below 500 cm-1, O-H
wagging modes at 249 and 262 cm-1 are overestimated for
the SCC-DFTB/NMA approach.

Ethanethiol. For the only sulfur compound, good agree-
ment in band positions is found for all three compared
methodologies in the region between 500-1500 cm-1, as
shown in Figure 4. The largest deviation comparing SCC-
DFTB and DFT occurs for the S-H stretching mode at 2538
cm-1 (SCCDFTB/NMA) which is blue-shifted by 130 cm-1.
The intensity pattern, however, varies strongly between SCC-
DFTB/FTTCF and SCC-DFTB/NMA for three distinct
modes. These are the ones at 139, 684, and 3065 cm-1

(referring mainly to S-H wagging, S-C stretching, and
C-H stretching vibrations), which are over- (139 cm-1) and
underestimated (684 and 3065 cm-1), respectively, for the
SCC-DFTB/NMA approach compared to the other two
methodologies. In the high frequency region above 2500
cm-1, the spectral shapes of both SCC-DFTB approaches
are not in accordance with BLYP aug-cc-pVTZ.

Maleimide. While SCC-DFTB/FTTCF shows good agree-
ment concerning band positions (Figure 3) over the whole
spectral range compared to SCC-DFTB/NMA and BLYP
aug-cc-pVTZ, its spectral shape is clearly distinct from BLYP
aug-cc-pVTZ, especially the N-H stretching mode at ∼3500
cm-1, just as the region below 1200 cm-1 is overestimated
with respect to the most pronounced band at 1771 cm-1. On
the contrary, the SCC-DFTB/NMA compares well concern-
ing relative intensities to BLYP aug-cc-pVTZ over the entire
spectral range.

n-Methylacetamide. Both SCC-DFTB approaches deliver
a very similar vibrational spectrum concerning band positions
and the overall spectral shape, as illustrated in Figure 5. The
agreement with BLYP aug-cc-pVTZ in terms of band
positions is also very good, except in the C-H stretching
region around 3000 cm-1. Overestimated intensities for both
SCC-DFTB methods can be found in the broad spectral
feature near 1450 cm-1 mainly belonging to C-H methly
deformations. In the C-H stretching region, the bands from

Figure 1. Raman spectra of methylacetate and glycerol in
dependence of numeric step sizes for the evaluation of the
polarizability tensor elements. The resulting Raman spectra
for step sizes of 0.005, 0.01, and 0.05 au can hardly be
distinguished and are therefore represented by a single dotted
line.
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both SCC-DFTB approaches are underestimated compared
to BLYP aug-cc-pVTZ.

Raman Spectra in Solution. In Figure 6, experimental
and calculated Raman spectra of L-phenylalanine in water
are shown. Since the experimental spectrum recorded at room
temperature, which is principally the correct one to compare
to our calculations, exhibits an intense background below
750 cm-1, it has been measured again at ∼133 K. The
observed background is most likely due to couplings of the
solutes’ vibrations to the librational motions of water which
are largely suppressed at 133 K. As a result, in the low
temperature spectrum, a better resolution of the solutes’
vibrations in this region is observed. Therefore, we will refer
to this 133 K spectrum in the following discussion.

Concerning intensity fluctuations arising from the MD
simulation, small variations are found between spectra
generated out of 50 and 100 independent trajectories. This
is basically the same observation as for the in Vacuo
calculations, indicating a sufficient sampling of the solute
in aqueous solution.

The overall spectral pattern obtained from SCC-DFTB/
FTTCF calculations on L-phenylalanine fits the experiment
to an extent that makes it possible to qualitatively assign
most of the spectral regions, as illustrated by dashed vertical
lines in Figure 6. Especially the experimental line shapes
are mostly well reproduced. However, several regions in the
calculated spectrum deviate significantly in terms of vibra-
tional frequencies and/or relative intensities as compared to
the experiment. These regions are labeled 1-5 in Figure 6
and will be discussed in more detail. For the purpose of an
assignment of the labeled bands to vibrational motions,
effective normal modes have been calculated for selected
bands as shown in Figure 7. Here, the colored spectra denote

the normal modes localized in frequency and therefore are
helpful for an assignment of Raman active vibrational bands.

In spectral region 1 in Figure 6, the bands are overesti-
mated by the SCC-DFTB/FTTCF calculations compared to
the experiment and blue-shifted by ∼80 cm-1. From a PED
analysis (eq 30), these bands are related to C-H out-of-
plane motions of the benzene ring as well as C-C backbone
stretchings and C-C-C bendings of the benzene ring.

The intensity of the single band marked as number 2 in
Figure 6, which can be assigned to the most prominent one
in the experiment, is significantly underestimated by the
SCC-DFTB/FTTCF calculations, and its vibrational fre-
quency is blue-shifted by ∼55 cm-1. The related motions
are mainly C-C-C bendings of the benzene ring.

The relative intensities between the three Raman active
bands in region 3 are well reproduced by the SCC-DFTB/
FTTCF calculations. The intensity of this spectral region
compared to the neighboring ones, hovewer, is overestimated
and blue-shifted by ∼90 cm-1. The most prominent band in
the SCC-DFTB/FTTCF spectrum can be assigned to C-C
stretchings and C-C-H bending motions in the benzene
ring. The second and third bands are mainly composed of
C-C-H bending motions in the benzene ring as well as
backbone C-C and C-N stretchings.

The spectral region number 4 is characterized by a blue-
shifted (∼60 cm-1) broad feature in the SCC-DFTB/FTTCF
calculations. Its intensity is overestimated, and the related
motions are C-C-H backbone bending and C-C as well
as C-O backbone stretching motions.

The highest frequency modes in the spectrum in Figure 6
corresponding to region 5 are extremely shifted to higher
wavenumbers (∼200 cm-1) as compared to the experiment.
This double band feature is dominated by C-C stretching
motions in the benzene ring. This is not surprising since it

Figure 2. Raman spectra from the SCC-DFTB/FTTCF formalism of two model compounds. The top spectra illustrate the
convergence of the overall spectral shape as the number of single spectra for averaging increases. On the bottom, three spectra
from single independent trajectories are shown to illustrate spectral variations.

Self-Consistent Charge Density Functional J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1247



is well-known for the non-self-consistent DFTB method that
for benzene in the gas phase the C-C stretching mode with
symmetry E2g is overestimated by more than 200 cm-1.59

For the self-consistent scheme, this shortcoming is not
eliminated, as shown for benzene (mode 5 in Figure 4). For
SCC-DFTB, this band appears at 1826 cm-1, whereas for
BLYP it is found at 1571 cm-1.

SCC-DFTB Repulsive Potentials for Vibational Spectra
Calculations. The vibrational Raman spectra from SCC-
DFTB/FTTCF calculations presented so far in this work have
shown to be in overall good agreement with higher level
theoretical methods and experimental data. However, vibra-
tional bands referring to C-C stretching and bending motions

in conjugated π systems (butadiene, benzene, phenylalanine)
show large frequency shifts up to 200 cm-1. Overpolarization
effects in conjugated systems, a known problem of SCC-
DFTB,60 are responsable for such errors.

To overcome such problems, the improvement of SCC-
DFTB repulsive pair potentials for a better prediction of a
variety of molecular properties is in progress. Małolepsza
and co-workers61 developed a set of pair potentials which
substantially improve calculated vibrational frequencies for
modes where hydrogen and carbon atoms are involved.
Furthermore, Gaus and co-workers62 recently presented a
procedure for an automatized parametrization of repulsive
potentials for several molecular properties.

Figure 3. Vibrational Raman spectra of 4 model compounds from different methodologies (FTTCF vs NMA) and different levels
of theory (SCC-DFTB vs DFT) for comparison. Raman active modes of water for which depolarization ratios were estimated are
marked.
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To investigate the effect of parametrized pair potentials
on vibrational frequencies, we recalculated Raman spectra
of benzene and butadiene (since optimized parameters only
exist for carbon and hydrogen so far) in the gas phase with
the SCC-DFTB/FTTCF protocol. The results (termed new-
sk (Slater-Koster) parameters) shown in Figure 8 have been
compared to SCC-DFTB/FTTCF calculations with the
standard set of repulsive potentials (top spectra). Vibrational
bands significantly affected by the new parameters in use
were marked with symbols (triangle, star, circle). For
benzene, three strongly shifted bands can be observed as
shown in Figure 8. The resulting spectrum is in much closer
agreement to the one from high level density functional

methods (first two spectra from the bottom). This is also true
for butadiene. Here, the intense CdC stretching mode
(marked with a triangle) is red-shifted by approximately 200
cm-1 and compares well to the results obtained from DFT
calculations.

The Raman spectra from SCC-DFTB/FTTCF calculations
have been compared to a variety of DFT methods with different
basis sets and density functionals (first two spectra from the
bottom) involved. With the new repulsive pair potentials for
carbon and hydrogen atoms, most of the observed Raman active
bands obtained from the SCC-DFTB/FTTCF calculations are
in terms of frequency positions and intensities within the range
of scattering observed from different high level DFT methods.

Figure 4. Raman spectra of 4 model compounds from different methodologies (FTTCF vs NMA) and different levels of theory
(SCC-DFTB vs DFT) for comparison. Raman active modes of benzene for which depolarization ratios were estimated are marked.
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Further improvements concerning vibrational spectra of mol-
ecules containing various functional groups can be expected,
since the work on repulsive potentials for other pairs of elements
is in progress.

Depolarization Ratios. Depolarization ratios are important
observables in Raman spectroscopy. By employing eqs 16
and 17, depolarization ratios for individual vibrational modes

are accessible via the FTTCF formalism and shall be
compared here to results obtained from SCC-DFTB and
BLYP aug-cc-pVTZ calculations for polarized laser light
following the NMA approach. The respective calculations
have been performed for the most prominent Raman active
modes (marked in Figures 3 and 4) of water and benzene
since they show the most simple spectral pattern of all tested
compounds, making an unambiguous mode assignment
straightforward. Due to the high symmetry of benzene (D6h),
several of its Raman active modes are degenerated. Since
they are equal concerning their vibrational frequencies and
depolarization ratios, each couple of degenerated modes was
treated as a single band and not counted twice.

In the case of water and for the symmetric and asymmetric
O-H stretching vibrations (modes 2 and 3), the depolariza-
tion ratios from SCC-DFTB/FTTCF are in good agreement
with the results obtained from BLYP aug-cc-pVTZ calcula-

Figure 5. Raman spectra of 2 model compounds from different methodologies (FTTCF vs NMA) and different levels of theory
(SCC-DFTB vs DFT) for comparison.

Figure 6. Raman spectra of phenylalanine in water from
SCC-DFTB/FTTCF calculations (top) and experimental mea-
surements (bottom) at 298 K (light gray) and 133 K (black),
respectively. The top spectrum results from an average of 100
independent MD simulations. Dashed lines indicate the
qualitative assignment of various spectral regions of which
the numbered ones will be discussed in the text.

Figure 7. Calculated vibrational Raman spectrum of phenyl-
alanine in solution from SCC-DFTB/FTTCF calculations aver-
aged over 100 independent simulations (black). Colored
spectra denote localized effective normal modes referring to
spectral regions numbered in Figure 6. Relative intensities of
effective normal modes were manually adjusted for a better
illustration.
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tions as illustrated in Figure 9. Concerning the H-O-H
bending vibration (mode 1), the respective ratio from SCC-
DFTB/FTTCF calculations is underestimated by approxi-
mately 25% in comparison to BLYP aug-cc-pVTZ, whereas
SCC-DFTB/NMA perfectly agrees with BLYP aug-cc-pVTZ
for modes 1 and 3, while mode 2 is overestimated by a factor
of 3.

For benzene, depolarization ratios for all vibrational modes
except number 3 are in a very good agreement comparing
SCC-DFTB/NMA with BLYP aug-cc-pVTZ. The skeletal
breathing mode number 3 is overestimated by the SCC-
DFTB/NMA method. The SCC-DFTB/FTTCF calculations
on the other hand reveal significantly reduced ratios for
modes 4 and 6, referring to C-H wagging and C-H
stretching vibrations, respectively.

Raman Spectra via DFT Polarizability Calculations.
For all previously presented Raman spectra in the framework
of our SCC-DFTB/FTTCF method, both the trajectory as
well as the molecular polarizabilities were calculated at the
SCC-DFTB level of theory. While SCC-DFTB is known to

yield molecular structures in close agreement to higher level
methods,30 calculated polarizabilities are less accurate com-
pared to high level methods due to the minimal basis set
employed by SCC-DFTB. Therefore, as an alternative to our
SCC-DFTB/FTTCF protocol, we figured out the performance
of an approach, called the hybrid method, in which the
trajectory and the polarizabilities were calculated on different
levels of theory. Whereas the trajectory was still generated
at the SCC-DFTB level, subsequent single-point calculations
on snapshots of the trajectory were performed using higher
level methods to obtain the molecular polarizabilitiy. We
used such a hybrid approach to estimate the impact of the
two parameters, i.e., the quality and size of the basis set for
polarizability calculations on the one hand and the amount
of phase space sampling on the other hand, on the overall
spectral pattern.

Within our SCC-DFTB/FTTCF protocol using “on-the-
fly” calculations of molecular polarizabilities, it is a com-
putationally feasible task to generate a large ensemble of
trajectories to guarantee for a sufficient phase pace sampling,

Figure 8. Calculated Raman spectra of butadiene and benzene in the gas phase. The first two spectra from the top of the
graph result from SCC-DFTB/FTTCF calculations employing different Slater-Koster parameters for C-C and C-H repulsion.
The symbols (triangle, star, circle) illustrate the frequency shift of several vibrational bands. The two graphs from the bottom
show Raman spectra from DFT/NMA calculations done with different combinations of density functionals and basis sets.

Figure 9. Calculated depolarization ratios for the most prominent Raman active modes (marked in Figures 3 and 4) of water
(left) and benzene (right) from three different approaches as indicated in the graphs.
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important for a reliable spectral pattern as already shown in
Figure 2. This is not true any longer when employing density
functional methods, such as DFT/B3LYP 6-31G(d), for the
calculation of polarizabilities. For a butadiene molecule in
the gas phase, the computational effort on a conventional
desktop PC to generate a Raman spectrum out of a single
trajectory (8192 simulation steps/0.5 fs time step/8 cm-1

spectral resolution) is as follows. Within the use of our SCC-
DFTB/FTTCF protocol, the concurrent generation of the
trajectory and the polarizabilities takes approximately 3 min
on a single processing core. For the polarizability calculations
itself, about 135 h of computing time is needed when
employing DFT/B3LYP 6-31G(d) on a single CPU.

Due to the substantially increased computational cost,
DFT/B3LYP 6-31G(d) single-point calculations were neces-
sarily done on snapshots from a smaller ensemble of SCC-
DFTB trajectories. Vibrational Raman spectra averaged over
10 single spectra were generated for two chosen model
compounds. We used butadiene and maleimide as test cases,
for which the resulting spectra are shown in Figure 10 and
compared to a related B3LYP 6-31G(d)/NMA spectrum.
Further on, we will denote the spectra derived from B3LYP
6-31G(d) single-point calculations of SCC-DFTB/FTTCF
snapshots as B3LYP 6-31G(d)/polar.

Concerning butadiene, in the region above 1000 cm-1, the
B3LYP 6-31G(d)/polar calculations deliver a spectrum in
good agreement to its B3LYP 6-31G(d)/NMA analogue, as
shown in the left picture of Figure 10. The respective bands
mainly refer to C-C and C-H stretching vibrations.
However, the spectral pattern below 1000 cm-1 is not
reproduced satisfactorily. Here, from the B3LYP 6-31G(d)/
polar protocol, the intensities of the vibrational bands are
strongly underestimated.

The observations made for butadiene are also valid for
maleimide. The most pronounced CdO stretching vibration

at 1833 cm-1 (B3LYP 6-31G(d)/NMA) as well as the C-H
and N-H stretchings in the region above 3000 cm-1 are in
a very good agreement compared to the B3YLP 6-31G(d)/
NMA spectrum, whereas the SCC-DFTB/FTTCF calcula-
tions (Figure 3) show a very different spectral pattern in this
region. The relative intensities below 1500 cm-1 are again
not satisfactory within the B3LYP 6-31G(d)/polar approach
compared to the results from NMA calculations, indicating
that a sufficient sampling has not been achieved after an
overall simulation time of 40 ps.

The fact that a 40 ps MD simulation is not necessarily
sufficient in terms of the Raman intensity pattern is also
illustrated for pentane in Figure 2. The spectrum colored in
red (40 ps) differs in the region below 1500 cm-1 signifi-
cantly from the ones in green (200 ps) and blue (400 ps).
Nonella and co-workers25 made a similar observation by
comparing infrared Spectra from an FTTCF and NMA
approach of p-benzoquinone in aqueous solution. They
concluded that the 17.5 ps QM/MM MD simulation, although
consuming considerable computational resources, was too
short for the computation of a reliable vibrational spectrum.

Larger spectral deviations in the lower frequency region
can also be observed by the comparison of the B3LYP
6-31G(d)/NMA spectra to their analogues (BLYP aug-cc-
pVTZ) in Figures 3 and 4. The spectral pattern in this region
is therefore highly sensitive to the level of theory on the
one hand, as well as, in the FTTCF framework, to the number
of independent trajectories used for spectral averaging on
the other hand.

From our test calculations, we conclude that a hybrid
approach to calculate Raman spectra via the FTTCF formal-
ism yields results which are not clearly superior to the ones
from our SCC-DFTB/FTTCF protocol, at least not below
1500 cm-1. The generation of spectra via the hybrid approach
is, however, computationally much more demanding and

Figure 10. Comparison of vibrational Raman spectra of butadiene and maleimide (each from two different approaches as
explained in the text). The top spectra result from an average of spectra from 10 independent simulations.
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therefore, in contrast to the SCC-DFTB/FTTCF method,
restricted to rather small chemical system.

Summary and Conclusions

The SCC-DFTB electronic structure method has been
extended for “on-the-fly” calculations of molecular polariz-
abilities via a finite electric field approach to access
vibrational Raman spectra in the framework of the FTTCF
formalism. FTTCF, in contrast to a standard Normal Mode
Analysis, incorporates anharmonic motions as well as effects
from the fluctuating environment at a finite temperature in
the pattern of a vibrational spectrum.

The numeric differentiation step size for the calculation
of polarizabilitiy tensor elements has been shown to be
important, and a value of 0.005 au or larger was sufficient
to avoid obvious numeric errors for the set of tested
molecules. Furthermore, the stability of the employed
numeric differentiation scheme has been verified to be
sufficient by comparison to a more sophisticated method
proposed by Magdó and co-workers.

Vibrational Raman spectra generated via the SCC-DFTB/
FTTCF formalism were in good agreement for a set of 10
model compounds examined in the gas phase and compared
to an NMA approach at the same (SCC-DFTB) and at a
higher level of theory (BLYP aug-cc-pVTZ). Especially the
consensus of vibrational frequencies for both methodologies
(NMA vs FTTCF) at the SCC-DFTB level suggests that an
integration time step of 0.5 fs is not too coarse and is a good
compromise between accuracy and computational effort.

Compared to high level BLYP aug-cc-pVTZ calculations,
the largest deviations concerning vibrational frequencies
using SCC-DFTB were found for C-C stretchings in
conjugated systems as well as C-H stretching modes in
general. We were able to correct for such errors by
employing a set of optimized repulsive pair potentials for
SCC-DFTB. Recalculated Raman spectra for butadiene and
benzene with the SCC-DFTB/FTTCF protocol were in very
good agreement compared to high level desity functional
methods. With ongoing progress in parametrizing SCC-
DFTB repulsive potentials for other pairs of elements, further
improvements in vibrational spectra calculations can be
expected.

With respect to the relative band intensities compared to
spectra from high level methods, none of the two techniques
(neither NMA nor FTTCF) could be identified to be clearly
superior to the other one in combination with the SCC-DFTB
method. The situation varies rather strongly in terms of the
specific compound and the spectral region under consider-
ation. Concerning the FTTCF formalism, the quality of the
spectral pattern depends strongly on the number of indepen-
dent MD trajectories taken into account. For the model
compounds tested in the gas phase, the spectral pattern was
shown to adequately converge from an average of ∼50 single
spectra, taken from a ∼200 ps simulation.

Besides the in Vacuo calculations, Raman spectra of
L-phenylalanine in solution in a QM/MM framework have
been calculated using our SCC-DFTB/FTTCF implementa-
tion. Here, the same behavior concerning the intensity
convergence through spectral averaging was observed as

compared to the in Vacuo calculations. However, this may
not generally be true for a solute in a polar solvent. Strong
intermolecular interactions, such as hydrogen bonds, could
hamper an efficient sampling of phase space, making a larger
number of independent trajectories necessary.

The overall spectral pattern of phenylalanine from SCC-
DFTB/FTTCF calculations is in an acceptable agreement
with the experiment, especially concerning the line shapes.
Nevertheless, for several spectral regions, significant devia-
tions concerning the relative band intensities were observed.
Furthermore, due to well-known limitations of the SCC-
DFTB approach, the C-C stretching modes in the benzene
ring are strongly overestimated as indicated by a shift of
∼200 cm-1 to higher wavenumbers as compared to the
experiment.

Depolarization ratios estimated via the FTTCF formalism
were in a good overall agreement with the other two
methodologies, although SCC-DFTB/NMA compares alto-
gether better with ratios obtained from high level BLYP aug-
cc-pVTZ calculations.

Finally, in this work, we tried to estimate whether an
acceptable Raman spectrum in the FTTCF framework could
be obtained by replacing our SCC-DFTB/FTTCF method
with a hybrid approach. Here, the calculation of molecular
polarizabilities on snapshots obtained from a SCC-DFTB
trajectory were performed on the B3YLP 6-31G(d) level. In
fact, the spectra resulting from insufficiently sampled 40 ps
trajectories unsatisfactorily reproduced NMA calculations in
the frequency range below 1500 cm-1. The spectral pattern
for two test cases in this region were characterized by a
reduced number of intense Raman active bands compared
to B3YLP 6-31G(d)/NMA. In our opinion, the hybrid
approach, which incorporates high level methods for the
calculation of polarizabilities, is therefore not an appropriate
alternative to our SCC-DFTB/FTTCF method, since the
quality of the Raman spectral pattern depends too strongly
on appropriate phase space sampling. The more accurate
polarizabilities obtained with B3YLP compared to SCC-
DFTB cannot compensate for the effect of insufficient
sampling. With the use of the highly efficient SCC-DFTB
method, a sufficiently large ensemble of trajectories can be
generated even for large molecules in solution, whereas for
large chemical systems, the computational effort needed by
a hybrid approach only allows for the generation of single
short trajectories, from which the resulting Raman intensities
are not representative.
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Abstract: An effective time-independent approach to compute vibrationally resolved optical
spectra from first principles is generalized toward the computation of one-photon electronic
spectra induced by either electric or magnetic transition dipoles or by their mutual interaction.
These encompass absorption, emission, and circular dichroism spectra. Additionally, the
proposed computational scheme is extended to cover a broad range of approximations to
evaluate vibronic transitions within both vertical and adiabatic frameworks and to be able to
take into account the effects of the temperature. The presented computational tool is integrated
into a general purpose computational chemistry package and offers a simple and an easy-to-
use way to evaluate one-photon electronic spectra, starting from electronic structure calculations
chosen according to the system under study, from fully quantum mechanical descriptions to
discrete/continuum quantum mechanical/MM/polarizable continuum models.

1. Introduction

In a recent work,1 we have presented a versatile procedure
to compute vibrationally resolved electronic spectra, when
nonadiabatic couplings are negligible, along with its integra-
tion into one of the most widely used quantum chemical
packages, namely Gaussian.2 It relies on an efficient a priori
prescreening scheme3,4 to identify the most intense transitions
and to generate the spectra of medium-to-large systems1 at
a relatively nonexpensive computational cost. In a first step,
the procedure was set within the adiabatic framework and
was limited to one-photon absorption (OPA) and emission
(OPE) transitions from the vibrational ground state of the
initial electronic state, discarding the effects of the temper-
ature. However, our general goal is to provide a robust and
easy-to-use computational tool able to assist a broader range
of spectroscopic studies. To this purpose, there are several

issues which need to be accounted for, like electronic
transitions arising from interaction between different transi-
tion dipole moments, spectral ranges encompassing more
than one final electronic state, temperature effects, and
anharmonicity. In the present work, we propose a generalized
method able to deal with spectroscopies related either to
electric or magnetic transition dipoles or to their mutual
interaction. Additionally, we have introduced temperature
effects and, in order to extend applicability of the approach
to larger systems, also simplified models within the frame-
work of vertical approaches. In such a way, we have
completed the formulation and implementation of a general
computational tool, set within the harmonic approximation
and the time-independent framework, able to simulate zero-
and finite-temperature electronic spectra for transitions
between two electronic states, showing vibronic effects either
negligible or amenable to a description within the Herzberg-
Teller intensity-borrowing theory. The following discussion
will be limited to OPA, OPE, and electronic circular
dichroism (ECD) spectroscopies, in line with the approach5,6

recently presented by some of us, but our method can also
deal with other spectroscopic phenomena, such as the ones
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issuing from magnetic dipole moments only. It is noteworthy
that similar approaches have also been applied to nonreso-
nant two-photon absorption (TPA) and circular dichroism
(TPCD).7

Ab initio quantum approaches to the calculation of
vibrationally resolved optical spectra require an a priori
analysis of the relevant potential energy surfaces (PES),
independently of the method adopted to compute the
spectrum. However, an extensive analysis of the PES is still
impractical, in most cases, and impossible for medium-to-
large systems. In the latter, only a local region of the PES
about a given geometry can be explored. In generic systems,
an electronic excitation can involve any kind of electronic
states, including neutral or ionic, and bound or dissociative
ones. In addition, the initial and/or final electronic state can
be subjected to strong nonadiabatic couplings, as those
triggered by the existence of a conical intersection. The
probability of occurrence of these couplings increases with
the dimension of the system. At the current state-of-the-art,
no unique rigorous method can be proposed for such a
general situation. It is, therefore, convenient to clarify the
reference physical model in which we developed our method:
we deal with transitions between nondissociative electronic
states not showing conical intersections nor strong noadi-
abatic effects. In such a framework, if the spectral range of
interest encompasses several final electronic states, they are
considered uncoupled, and the spectrum can be, therefore,
calculated as a sum of the spectra of each of them. As a
consequence, it is always possible to focus on a single final
state at a time, and we will refer to our approach as a “single-
state” approach. In this model, the most natural choice is to
build both the initial and final PES, starting from a harmonic
analysis at the respective equilibrium geometries. This kind
of approach, often referred to as “adiabatic”, treats both states
on the same foot, i.e. at the same level of accuracy. It is
particularly suited for high-resolution descriptions of the
spectra, as it simulates correctly most of low- (high-) lying
bands of the absorption (emission) spectrum, i.e., transitions
to vibrational states spanning the minimum region of the final
electronic state PES. Such an approach is especially impor-
tant when an accurate reproduction of the fine structure of
the spectrum is required, in particular, in studies related to
the assignment of excited-state frequencies.8-13 However,
an important drawback of this approach is the computational
cost of the geometry optimization and the frequency calcula-
tions in the excited state, which might be prohibitive for large
systems. An alternative model relies on the observation that
the most intense transitions are vertical, so that a correct
description of the PES of the final state about the geometry
of the initial state is more suited to the analysis of the region
of the spectral maximum and of the broad features of the
low-resolution spectrum. In fact, the latter mostly reflects
the short-time dynamics of the system after an instantaneous
promotion on the final state. Within the harmonic ap-
proximation, such a “vertical” approach describes the final
state PES on the ground of its gradient and Hessian at the
initial-state equilibrium geometry, so that it has been named
VFC (vertical Franck-Condon).14 Once the initial and final
states harmonic PESs are obtained, the machinery to compute

the spectra is the same for vertical and adiabatic harmonic
models. Therefore, since in most cases, the computation of
the excited-state Hessian is the most time-consuming step
of the electronic calculation (at least when it is obtained by
numerical differentiation of the gradients), the two ap-
proaches are about equivalent as far as the computational
cost is concerned. From the physical point of view, as
discussed above, both have their advantages and drawbacks,
but in most cases, when they lead to significantly different
results, the harmonic approximation itself is questionable.
As an example, the VFC approach shows an increased
sensitivity of the Hessian matrix to the anharmonic character
of the PES. More generally, when the physical problem under
investigation sensibly deviates from the reference single-state
harmonic model we introduced above, no rigorous and
general solution exists, and each of the adiabatic/vertical
frameworks can reveal more suitable than the other for a
given specific system. In the case of semirigid molecules
showing conical intersections (CI), for instance, the multi-
electronic-state problem can be better faced within the so-
called linear vibronic coupling model (LVCM), that is based
on a diabatic electronic representation and is grounded in
the vertical framework. Such a model, that has been
developed by the Heidelberg group in a number of seminal
contributions,15,16 is powerful and effective when harmonic
approximation is suitable for describing the diabatic PES
(notice that CI occurrence always makes adiabatic PES
strongly anharmonic), and it has been recently adopted and
generalized by Nooijen17 to one-photon chiral spectroscopies.
It is worth highlighting that when conical intersections exist
in the region of the coordinate space relevant for the spectral
features, attempt to use adiabatic single-state approaches may
run into unsurmountable technical problems, as it is clear in
the extreme case when the minimum of an adiabatic PES
coincides with a CI. Albeit physically relevant, these
problems may not appear evident in a vertical single-state
approach, simply because the latter does not try to locate
the excited-state PES minimum. It is, however, important
to clarify that these situations require in principle a multi-
electronic-state treatment and, even if a vertical single-state
approach is technically affordable, it is not granted that it is
also able to catch the main physics of the problem under
investigation. From a different perspective, one may recog-
nize that the exploration of the excited-state PES necessary
to locate the excited minima can bring to light issues and
problems that may simply remain unobserved in a vertical
approach.

At the current state-of-the-art, the most effective imple-
mentation of LVCM for spectra calculation is based on time-
dependent methods, like the multiconfigurational time-
dependent Hartree (MCTDH),18 even if time-independent
(e.g., Lanczos-based) treatments are possible for limited-
dimensionality problems (up to a dozen of modes) and if
promising Green-function approaches have been recently
proposed.19 In the present paper, we do not deal with
nonadiabatic problems, and our work is focused on the
development of a robust tool for single-state harmonic spectra
that can be used also by non specialists. Within this chosen
framework, beyond adiabatic methods, we found it conve-
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nient to implement a simplified vertical model, by assuming
that the Hessian matrix is the same in both initial and final
states. Such a model, which we will refer to as vertical
gradient (VG), is also known in literature as the linear
coupling model (LCM)20 (which, nonetheless, should not be
confused with the multistate LVCM approach introduced
above.)15,16 In VG, only the energy gradients need to be
evaluated in the final state at the equilibrium geometry of
the initial one, a task much less time-consuming than the
Hessian computation.

Up to now, we have discussed possible deviations from
our reference physical model, arising from nonadiabatic
couplings. Another issue of general relevance to be dealt
with is anharmonicity. It is worthy to highlight, in fact, that
its proper consideration is by far more complicated here than
in vibrational spectroscopy since one has to deal contem-
porarily with two different electronic states. As a matter of
fact, equilibrium geometries could be quite different, and
this requires the description of a larger amount of the PES
with the consequent problems of couplings, limits of
polynomial expansions, etc. Furthermore, the normal modes
of the two states can be sufficiently different to require the
inclusion of large sets of coupling terms, which cause
additional methodological and numerical difficulties. More-
over, minimization of coupling terms is often nonoptimal
when normal modes are expressed in Cartesian coordinates,
and switching to internal coordinates could be more
effective.21,22 While this is quite straightforward for small
systems and/or well-defined modes, a general and automa-
tized procedure for large systems is still lacking. This is the
reason why we prefer deferring the issue of anharmonicity
to further work, after we have developed a general and robust
strategy at the harmonic level. Nonetheless, when anharmo-
nicity can be considered nearly “diagonal” in terms of the
normal modes of the reference state, at least two effective
procedures have been proposed for semirigid systems8 and
for cases involving a single anharmonic mode,14 respectively.
The current approach incorporates a simple scheme to correct
vibronic transitions for the anharmonicity in the case of
semirigid systems.

In the above discussion, we have explicitly settled our
reference physical model. Despite the discussed limitations,
this model is able to provide a reliable interpretation of the
electronic spectroscopy data for a very broad range of
molecular species. On the other hand, the elaboration of a
general and robust method, along with its implementation,
still needs to be considered a very challenging part of the
computational spectroscopy field. To this purpose, two main
and strictly correlated issues must be taken into proper
account, the former concerns the reliability of the electronic
description, while the latter is more focused on the vibrational
problem. More specifically, the first issue related to the
evaluation of properties of molecular systems in their excited
electronic states affects the reliability of computational
spectroscopy studies. In fact, until recently, computations
of vibronic spectra have been limited to small molecules,
but recent developments in electronic structure theory for
excited states within the time-dependent density functional
theory (TD-DFT)23,24 and the resolution of the identity
approximation of coupled cluster theory (RI-CC2)25 have

paved the route toward the simulation of spectra for
significantly larger systems. In this respect, a pivotal role
can be played by hybrid DFT/CC approaches where the most
expensive computationally geometry optimization and Hes-
sian computations are performed by DFT with medium-size
basis sets, while energies and/or other properties can be
computed with more accurate quantum mechanics (QM)
approaches.8 However, when larger systems are to be studied,
besides the QM treatment, a second computational challenge
arises from the inclusion of vibrational contributions. Indeed,
the number of vibrational states to be taken into account
increases steeply with the dimension of the system and with
the spectral width, but most of the possible vibronic
transitions do not contribute significantly to the spectrum
and can be safely neglected. Therefore, wise and effective
selection criteria to individuate a priori the most relevant
vibronic transitions within the dense bath of possible final
states can make feasible the calculations of spectrum
lineshapes for macromolecular systems. Several schemes
have been proposed3,26-30 ranging from the simplest ap-
proach,basedsolelyon theenergywindowof thespectrum,26,27

up to rigorous prescreening techniques, based on analytically
derived sum rules.30 In order to maximize the efficiency of
calculations and to deal with large systems, it is necessary
to adopt a fast, a priori selection scheme of general
applicability for a variety of different systems that is able to
correctly choose all the non-negligible transitions. We have
recently derived a general and robust tool rooted into a
method recently introduced by some of us3,29 in the frame
of harmonic approximation, which has been proven to
provide very accurate spectra of medium-to-large systems
with a limited computational cost.8 Moreover, in the imple-
mentation,1 particular care has been taken to avoid the
introduction of any built-in restriction, be it for the number
of allowed quanta in a single mode, for the number of
simultaneously excited vibrations, or for the spectrum energy
range. In this paper, we extend the applicability of our tool
to other spectroscopic phenomena, temperature effects, and
even larger systems (through the VG model). Thanks to the
new available features and to the full integration into the
Gaussian package, the one-photon electronic spectra for a
wide variety of cases can be treated in a fully automatic way
easily accessible also to nonspecialists. In this work, the
developed tool is applied to a variety of different systems
and problems, such as simulations of OPA, OPE, and ECD
spectra with and without temperature effects and both in the
gas phase and in solution (where the solvent is described
within polarizable continuum models).

The paper is organized as follows: Section 2 describes the
theoretical frame of the generalized approach to compute
one-photon electronic spectra, along with the details of the
current implementation. Computational models, which have
been applied to the determination of structures, forces,
vibrations, and energies to provide the information necessary
for spectra calculation, are gathered in Section 3. The
developed method gave us the opportunity to extensively
validate the DFT/N07 model for the computations of ECD
spectra, and results are reported in Section 4. Finally, the
simulated vibrationally resolved one-photon electronic spec-
tra are gathered in Section 5. Aspects of simulated spectra
convergence are discussed in Sections 5.1 and 5.2 on the
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example of the well studied S2 r S0 one-photon ECD
spectrum of (R)-(+)-3 methylcyclopentanone (R3MCP),
which is followed by two illustrative examples of direct
application of our integrated approach to larger systems: the
UV-vis absorption spectrum in the 250-700 nm range of
chlorophyll a1 (Section 5.3) in methanol solution, and the
ECD spectrum of π* r n transition of (Z)-8-methoxy-4-
cyclooctenone (MCO) (Section 5.4).

2. Computation of One-Photon Electronic
Spectra

2.1. Generalized Model. In order to deal with different
one-photon electronic spectroscopies, the procedure described
in our previous work1 has been redesigned to be as general
as possible. Additionally, it has been modified to provide
quantities easier to compare with their experimental coun-
terparts. In this context, the intensity of OPA, fluorescence,
OPE and ECD can be expressed by the same equation:

where the symbol “*” is used to represent the conjugate of
dBmn, and δ is the Dirac function.

The quantity I is evaluated by taking into account all
transition probabilities, represented by the double summation
over all possible initial vibronic states m, weighted by the
probability of the molecule to be in this initial state given
by the Boltzmann population Fγ and by the final vibronic
states n.

The intensity for OPA, OPE, or ECD is given by replacing
I, R, �, γ, dAmn, and dBmn with the values given in the list
below:

where ε(ω) is the molar absorption coefficient for a given
angular frequency ω, ∆ε(ω) is the difference (referred to as
anisotropy) between the molar absorption coefficients ε- and
ε+, relative to the left and right circularly polarized light,
respectively. For OPE, Iem/Nn is the energy emitted by one
mole per second. It is noteworthy that phosphorescence
spectra, i.e., emission from electronic states characterized
by different spin multiplicity with respect to the ground
electronic state, depend on spin-orbit couplings that are not
always available. In this case, only Franck-Condon calcula-
tions are performed (see below for details), assuming the
transition is fully allowed with the length of the electric
transition dipole moment set to 1 au.

Finally, NA is the Avogadro constant, ε0 is the vacuum
permittivity, µmn is the electric transition dipole moment
between the vibronic states m and n, and I (mmn) is the
imaginary part of the magnetic transition dipole moment
between the vibronic states m and n, mmn. A more detailed
description of the calculation of I for OPA, OPE, and ECD
is available in ref 31.

We will use from now on the symbol dX to represent
indifferently dA and dB. We define the integral dXmn and its
conjugate as

where Ψm and Ψn are the molecular wave functions of the
vibronic states m and n, respectively.

From eq 1, one can see that the knowledge of I is bound
to the evaluation of dAmn ·dBmn*.

In the framework of the Born-Oppenheimer approxima-
tion, the molecular wave function Ψ can be written as a
product of its electronic and nuclear components, ψe and
ψN, respectively. For readability, the spectroscopic conven-
tion will be used to designate the wave functions, a single
quote (′) representing the lower vibronic state in energy m
and a double quote (′′) the higher state, n.

Because of the orthogonality of the electronic wave
functions, the second term in the right-hand side (rhs) of
the previous equation is null, so that:

Finally, assuming that the Eckart conditions32 are met, it
is possible to separate, with a good approximation, the
nuclear wave function into translational, rotational, and
vibrational terms. As we are interested in the vibrational
contribution in radiative transitions, we discard the transla-
tional and rotational wave functions:

More precisely, the intensity in eq 1 is obtained after an
orientational averaging that assumes freely rotating mol-
ecules. The electric and magnetic transition dipole moments,
µmn

e and mmn
e respectively, are, in general, unknown functions

of the vibrational coordinates so that the transition dipole
moment dX

e
mn, which could represent either µmn

e or I (mmn
e ),

must be approximated. The most common approximation,
stated by Franck33 and formalized by Condon,34 assumes
that the transition takes place in such a short time that the
position of the nuclei remains almost unchanged and that
the transition dipole can be considered as constant. While
this approximation is fairly good when the transition is fully
allowed and the minima of the potential energy surfaces of
the initial and final electronic states are almost vertically to
each other, it shows serious limitations when the transition
is weakly allowed or dipole forbidden. The limitation is even

I ) Rω� ∑
m

∑
n

Fγ[dAmn · dBmn* ]δ(ωn - ωm - ω) (1)

OPA: I ) ε(ω), R )
10πNA

3ε0 ln(10)pc
, � ) 1, γ ) m,

dAmn ) dBmn ) µmn

OPE: I ) Iem/Nn, R )
2NA

3ε0c
3
, � ) 4, γ ) n,

dAmn ) dBmn ) µmn

ECD: I ) ∆ε(ω), R )
40NAπ

3ε0 ln(10)pc2
, � ) 1, γ ) m,

dAmn ) µmn, dBmn ) I (mmn)

dXmn ) 〈Ψm|dX|Ψn〉 (2)

dXmn* ) 〈Ψn|dX*|Ψm〉 (3)

〈Ψ′|dX|Ψ′′〉 ) 〈ψe′ψN′ |dX
e |ψe

′′ψN
′′〉 + 〈ψe′ψN′ |dX

N|ψe
′′ψN

′′〉
(4)

〈Ψ′|dX|Ψ′′〉 ) 〈ψe′ψN′ |dX
e |ψe

′′ψN
′′〉 ) 〈ψN′ |dXmn

e |ψN
′′〉

(5)

〈Ψ′|dX|Ψ′′〉 ) 〈ψV′ |dXmn
e |ψV

′′〉
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more strongly felt for ECD where the product µmn ·I (mmn)
can be almost negligible, even if the transition is strongly
allowed whenever the electric and magnetic moments are
nearly orthogonal. An early extension to the Franck-Condon
principle was proposed by Herzberg and Teller35 and
accounted for a linear variation of the transition dipole
moment, with respect to the normal coordinates of the initial
state, Q′ or Q′′, depending if absorption or emission is
considered. It must be recognized, however, that, once the
most suitable physical model has been chosen and the proper
quantities obtained from electronic calculations (e.g., from
the expansion around the initial-state geometry), from the
mathematical point of view, the transition dipole moment
dX

e
mn can be equally well expressed in a Taylor expansion

around the equilibrium geometry of each electronic state.
For convenience, with respect to the formulation of the
overlap integrals in the rest of the document, the higher state
in energy is chosen as the reference. The Taylor expansion
about the equilibrium geometry of this state, Q0′′ ) 0, is

where N is the number of normal modes.
The FC approximation corresponds to the first term in the

rhs of eq 6, HT to the second one and Franck-Condon
Herzberg-Teller (FCHT) to both terms. The remaining terms
in eq 6 will not be taken into account in the following
discussion. From a vibronic point of view, the HT term
introduces an intensity borrowing effect due to the interaction
of the states involved in the electronic transition with other
closely lying electronic states, with which they mix upon
small displacements along the normal coordinates. When an
electronic multistate diabatic representation is adopted, like
in the linear coupling vibronic model cited in Section 1 (the
Introduction), Herzberg-Teller effects are usually less
important since diabatic states are defined in order to be
ideally independent of the coordinates. In those cases,
intensity borrowing mechanisms are explicitly introduced by
the coupling among the different diabatic states. However,
when the interacting states are sufficiently separated in energy
and when the interaction is weak, traditional HT treatment
allows to account for the main borrowing effects, keeping
the simplicity of an adiabatic single-state description.

At this stage, it is useful to digress from the theoretical
background and to take a deeper look into the computational
implementation. While our method is fully general and can
be applied starting from data obtained with any electronic
model, it is oriented toward large molecules. It must be
recognized that the state of the art methods rooted to TD-
DFT provide probably the most effective route to treat such
systems. In this approach, the excited-state Hessian, required
for harmonic analysis, is computed by numerical differentia-
tion of the energy gradient at the equilibrium geometry of
the excited state. During this calculation, it is also possible
to obtain, at no additional cost, the numerical derivatives of

the electric and magnetic transition dipole moments. There-
fore, by default, our implementation uses these sets of data
for HT and FCHT calculations. It must be remembered,
however, that, as previously discussed in ref 4, Herzberg
and Teller considered in their original work35 the initial state
as the state of reference for the linear variation of the
electronic transition dipole moment (we call it iHT), in line
with the FC principle. Therefore, while fully agreeing with
their original approach for emission, our default computa-
tional implementation slightly differs from their original
proposal for absorption processes, adopting the final-state
equilibrium geometry reference (fHT). It should be noted
that nondefault choices of proper keywords allow a
calculation along the original iHT formulation, to be
performed also for absorption processes. However, we
point out that when the iHT and fHT approaches lead to
substantial different results, the common linear ap-
proximation must probably be questioned.

Regarding the vertical gradient (VG) approach, it is
possible to combine it with the FC and the FCHT ap-
proximations, as often done in the literature.20 Nonetheless,
at least at the TD-DFT level, the effort required for the
numerical differentiation of the transition dipole derivatives
neutralizes the computational convenience of the VG model,
since at the same cost the excited state normal modes also
can be obtained. Hence, in the following, the VG is only
adopted in combination with the FC approximation.

Using eq 6, the transition dipole moment integral dXmn is
given by the relation

The overlap integral 〈ψV′ |ψV″〉 is also referred as the
Franck-Condon integral.

While the treatment can be done at the anharmonic
level,36,37 our current implementation treats the calculation
of the Franck-Condon integrals at the harmonic level. With
this approximation, the multidimensional wave function ψV

can be written as a product of one-dimensional vibrational
wave functions ψVi

,

For purposes of compactness, the convenient Dirac
notation will be adopted from now on, |ψV〉 ) |W〉 where
V represents the vector of quantum numbers Vi for each
vibrational mode i.

Using second quantization, the second term in the rhs of
eq 7, which depends on the normal coordinates Q′′, can be
reformulated as

dXmn
e (Q′′) ≈ dXmn

e (Q0
′′) + ∑

i)1

N (∂dXmn
e

∂Qi
′′ )

0

Qi
′′

+ 1
2 ∑

i)1

N

∑
j)1

N ( ∂
2dXmn

e

∂Qi
′′
∂Qj

′′)
0

Qi
′′Qj

′′ + ... (6)

〈Ψm|dx|Ψn〉 ≈ dXmn
e (Q0

′′)〈ψV′ |ψV
′′〉 + ∑

i)1

N (∂dXmn
e

∂Qi
′′ )

0

〈ψV′ |Qi
′′|ψV

′′〉

(7)

|ψV〉 ) ∏
i)1

N

|ψVi
〉 (8)

〈W′|Qi′′|W′′〉 ) � p

2ωi
′′[√Vi

′′〈W′|W″ - 1i
′′〉

+ √Vi
′′ + 1〈W′|W″ + 1i′′〉] (9)
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Introducing eq 9 in eq 7, we obtain the following Taylor
expansion for the transition dipole moment:

A major issue to calculate the integrals in eq 10 arises
from the fact that each vibrational wave function is expressed
in a different set of normal coordinates. This problem can
be overcome by the linear transformation proposed by
Duschinsky38 to express the normal coordinates of one state
with respect to the other’s:

where J is the so-called Duschinsky matrix and represents
the mixing of the normal modes during the transition, and
K is the shift vector of the normal modes between the initial
and final states. Qi represents the normal coordinates of the
initial state, and Qf represents those of the final one. In case
of OPA or ECD spectroscopies, Qi ) Q′ and Qf ) Q′′, and
in OPE, Qi ) Q′′ and Qf ) Q′.

The rotation or Duschinsky matrix is given by

where Li and Lf are the transformation matrices from mass-
weighted Cartesian coordinates to normal coordinates of the
initial and final states, respectively.

When considering an adiabatic model, the shift vector is
given by the difference of geometries between the final and
initial states:

where M is the diagonal matrix of atomic masses, and ∆X
) X0

f - X0
i is a vector representing the shift of nuclear

Cartesian coordinates between the initial (Xi) and final (Xf)
states.

For “vertical” models, the structure remains unchanged,
but information about the shift of the normal modes between
the initial and final states are obtained from the energy
gradient in the final state. Since our treatment of the vertical
models will be limited here to VG, we report only the shift
used for this approximation:

where Ωi is the diagonal matrix of the harmonic frequencies
ω of the initial state, and gf is the final state’s energy gradient
in Cartesian coordinates.

It should be noted that in this model, the Hessian matrix
of the final state is assumed to be the same as in the initial
state. As a consequence, we have Li ) Lf so that J is the
identity matrix I. Moreover, it is assumed that the final-
state frequencies are identical to the initial-state ones.
Based on these approximations, we can also define an
“adiabatic” model, that we will refer to as adiabatic shift,
where J is replaced by the identity matrix while the shift
vector K is kept unchanged with respect to the value given
in eq 13. Notice that, at variance with the adiabatic models
where the shift vector only depends on structural param-
eters (the two equilibrium geometries), thus representing
a true displacement, in VG K not only depends on the
vibrational frequencies of the initial state but it is also
sensitive to anharmonicities (through the gradient), and
it must be considered, therefore, a sort of “effective
displacement”.

The overlap integrals can then be evaluated analytically39-44

or recursively.45-48 While the former method allows
straightforward calculations and avoids possible error
propagation, it suffers from a quickly growing complexity
and a lack of versatility when dealing with medium-to-
large systems. As a consequence, the more general-purpose
recursive approach presented by Ruhoff47 and based on
the generating functions of Sharp and Rosenstock39 has
been implemented:

Table 1. Ab Initio Computations Required to Generate the Input Data for the Simulation Vibrationally Resolved Electronic
Spectra with the VG, AS, AFC, and AFCHT Models

computation VGa ASa AFC AFCHT

initial state
Cartesian coordinates of the atoms (equilibrium structure) x x x x
energy at the minimum of the PES (equilibrium geometry) x x x x
frequencies x x x x
normal modes, expressed by the atomic displacements x x x x

final state
Cartesian coordinates of the atoms at the minimum of the PES
(equilibrium structure)

x x x

energy at the equilibrium geometry of the initial state x
energy at the minimum of the PES (equilibrium geometry) x x x
forces at the equilibrium geometry of the initial state x
frequencies x x
normal modes, expressed by the atomic displacements x x

general
atomic masses x x x x
transition dipole moments x x x x
derivatives of the transition dipole moments x

a For the VG and AS approaches, it is assumed that the FC approximation is used. See text for the details.

〈Ψm|dx|Ψn〉 ≈ dXmn
e (Q0

′′)〈W′|W′′〉 +

∑
i)1

N (∂dXmn
e

∂Qi
′′ )

0� p

2ωi
′′[√Vi

′′〈W′|W″ - 1i
′′〉 + √Vi′′ + 1〈W′|W″ + 1i

′′〉]

(10)

Qi ) JQf + K (11)

J ) (Li)-1Lf (12)

K ) (Li)-1M1/2∆X (13)

K ) -{Ωi}-2[(Li)-1M-1/2gf] (14)
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and

where the matrices and vectors A, B, C, D, and E are the Sharp and Rosenstock matrices.
2.2. An Efficient A Priori Method to Generate One-Photon Electronic Spectra. Once the final electronic state is

individuated, no selection rule (beyond those based on the symmetry of the vibrational wave functions) exists to effectively
limit the huge number of possibly bound final states to be taken into account in sizable molecules. However, transitions to
most of them have a negligible intensity. Based on this observation, a prescreening method3,4 is used to select a priori the
most intense transitions. It relies on a categorization of the latter with respect to the number of simultaneously excited modes
in the final state, called classes. For instance, class 1 (C1) represents all transitions to final vibrational states with a single
excited mode i, 〈W′|0′′ + Vi′′〉, and class 0 contains the overlap integral between the vibrational ground states, 〈0′|0′′〉. Based
on this division, the overlap integrals in classes 1 and 2 are used as reference data to prescreen those to compute in each
“higher” class, each class being calculated one after the other, increasing the number of excited modes in the final state. The
advantages of using the overlap integrals of these classes are two-fold. The first one is that these integrals are computationally
cheap and are generated quickly even in the case of large molecules. The second interest lies in the information provided by
the reference data. We present here a generalized approach able to handle OPA, OPE, and ECD spectroscopies, but which
could be extended easily to additional kinds of spectroscopy.

Depending if only the zeroth order of the Taylor expansion given in eq 6 or higher orders are considered, two or three data
sets are required. This number is doubled when temperature is taken into account. The first general set, FC1

, is defined during
the calculation of the transtions from class 1. Its elements are defined as

where the factors Cii and Di give, respectively, information on the effect of the shifts in equilibrium positions and the frequency
changes on the overlap integrals of overtones and, more precisely, on the vibrational progression of mode i.

The second set, FC2
, is obtained in class 2 and gives information about the Duschinsky mixing of the normal modes. It

contains all combinations of modes i and j but only considering the cases of an equal number of quanta for both modes (Vi′′
) Vj′′):

For Herzberg-Teller calculations (HT or FCHT approximations), a second data set is extracted from class 1, HC1
, which

stores an upper-bound estimation of the square of the pure Herzberg-Teller contribution for a given mode i and the
corresponding transition 〈0′|0′′ + Vi′′〉:

with the summation over each Cartesian coordinate of the transition dipole moments dAmn
e and dBmn

e .
The method to choose the maximum quantum number of each mode has been extensively presented in previous references.3,4

When considering temperature, an additional difficulty lies in the choice of the starting vibrational states in the initial
electronic state. An evident way to limit the treatment is to use a threshold on the Boltzmann population of each vibrational
state. In practice, this threshold is set with respect to the population of the ground state. Similarly to the final states, a division
in classes is performed for the initial states. For each class, a set is defined by the initial states sharing the same simultaneously
excited modes, so that they differ only by the quantum numbers of these modes, and each set (in previous papers named
“mother states”)4,29 is treated separately. The a priori selection of the most intense transitions requires two additional (or

〈W′|W′′〉 ) 1

√2Vi′[Bi〈W′ - 1i′|W′′〉 + √2(Vi′ - 1)Aii〈W′ - 2i′|W′′〉 + ∑
j)1,j*i

N
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j)1

N �Vj′′
2
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N
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′′ - 1i
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(16)
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(i, Vi
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′|0′′ + Vi
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′′ - 2i

′′〉]|2 (17)
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′′ + Vj

′′〉|2 -
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(i, Vi
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′′)

|〈0′|0′′〉|2
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three in the case of the Herzberg-Teller approximation) data sets, FC1
T and FC2

T (and HC1
T ), which are equivalent to FC1

and FC2

(and HC1
) for the case of finite temperature. These sets are defined for the highest-energy initial state for each set:

Details of the prescreening method when taking into
account the temperature can be found in ref 29.

When choosing a priori the transitions to compute, it is
necessary to control the reliability of this prescreening. This
is done by comparing the total intensity Icalc obtained by the
addition of all the transitions taken into account to the
expected intensity Itot calculated using analytic sum rules.

The method to compute the “analytic” total intensities has
been presented in previous papers, approximating the elec-
tronic transition dipole moment in a Taylor series up to the
second order.1,4 For completeness, we report the generalized
calculation of the spectrum convergence (Icalc/Itot) for any
couple of dipoles dA and dB in the Supporting Information
of the present contribution. Starting from eq 1, the total
intensity can be defined as

where the summation is performed over all the initial
vibrational states i and Fi is the Boltzmann population of
the initial state |Wi〉. For OPA and ECD, the initial state is
the lowest in energy, while for OPE, it is the highest one.

With these definitions, Supporting Information shows that
the spectrum convergence, ς, is given by the relation:

where |Wf〉 represents a vibrational final state.
2.3. Implementation. A wide range of approaches to

compute vibrationally resolved electronic spectra, for cases
where the involved electronic states can be considered not-
coupled, has been presented, which differ by their conceptual
approach to the transition, vertical, or adiabatic as well as
the level of approximation of the respective PESs of the
initial and final states, such for example adiabatic FC and
adiabatic shift (AS). Additionally, various approximations
of the transition dipole moments, FC, FCHT, or HT can be
applied. The acronyms AFC, AFCHT, and AHT will be used
to refer to the adiabatic model with the harmonic representa-
tion of the PES of each electronic state computed at its

equilibrium geometry, differing only by the approximation
of the transition dipole moment in eq 6, respectively, FC,
FCHT, and HT. For the VG and AS models, as stated
previously, only the FC approximation will be considered
here, as a consequence, the redundant FC suffix will be then
omitted. However, it should be noted that present imple-
mentation is able to handle transparently FCHT and HT
calculations with the VG and AS models. All such models
can be combined with computations of one-photon electronic
spectra induced by either electric or magnetic transition
dipoles or by their mutual interaction. Table 1 provides an
overview of the information needed as input for each of the
considered models. It is noteworthy that all approaches
require the optimized geometry for the initial state along with
the calculation of its Hessian matrix. However, they differ
significantly for the data required for the final state, whose
PES can be built only from the ground of its energy gradient
for the simplest VG model or from a full geometry
optimization and harmonic analysis for the most demanding
one. As a consequence, the choice of the model might have
a large impact on the total computational times.

The simplest VG model requires only the energy gradient
of the excited state to be calculated at the geometry of the
ground state. In a time-dependent perspective, the VG
approach is related to the effect of short-term dynamics on
the spectra, so it is expected to reproduce well the low-
resolution spectrum shape. On the other side, it does not
account for the changes in vibrational frequencies and for
the normal modes’ mixing between the excited and ground
electronic states. Because of its characteristics, the VG model
provides the most up to date and feasible approach for the
studies of the spectrum in a broad energy range and/or for
macromolecules. At variance, the AS model requires the
determination of the equilibrium structure for the final state
but not the frequencies, so it might be considered as a
solution for cases where the main interest is in the spectral
features close to the transition origin, but no precise
frequencies are required. It should be noted that both VG
and AS models constrain the total zero-point vibrational
energy to be the same in the initial and final states. At
variance, they evaluate differently the transition energy
between the minima of the initial and final states, which is
more accurately computed within the adiabatic framework.
However, in both cases, if ZPVE effects are introduced and
excited-state frequencies are computed from second deriva-
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tives of the excited-state PES, sensible differences can be
found, introducing shifts of the final energy levels that are
often larger than 0.1 eV.

Finally, the AFC or AFCHT approaches are best suited
when an accurate reproduction of the excited-state frequen-
cies, a fine structure of the spectra, and a good estimate for
absolute positions of vibronic bands are necessary. However
they are rather expensive in terms of computational costs
since they involve geometry optimization and Hessian
computations in the excited electronic state. Vertical ap-
proaches based on a full calculation of the Hessian of the
excited state can be convenient in some cases, but they have
not been implemented yet and will be the subject of future
work. It is worthwhile to note that, in the present imple-
mentation, if ab initio computations are performed at the TD-
DFT level, then frequency calculations are performed by
numerical differentiation of the analytical TD-DFT energy
gradients, so the transition dipole electric and magnetic
moments as well as their derivatives are directly available
from the frequency calculations. However, if analytical
second derivatives with respect to the geometrical parameters
are available for the method used to compute the energy of
the excited electronic state, then the numerical calculation
of frequencies must be requested in order to use the
Herzberg-Teller approximation of the transition dipole
moment. The implementation of the presented computational
tool into a general purpose computational package facilitates
its use for nonspecialist. However, the presented approach
is not limited to quantum mechanical treatments available
in the Gaussian package and besides the internal ab initio
data user-defined data, e.g. for the vibrational frequencies
and/or energies of each electronic state as well as for the
transition dipole moments can be provided as input, increas-
ing the flexibility of the implementation. Such a feature is
of particular relevance for hybrid approaches where geom-
etries, Hessian computations, and related derivatives of
transition dipole moments are obtained at a lower level of
theory (e.g., DFT with a medium-size basis set), while energy
of electronic transition and related transition dipole moments
are further refined by more accurate computations (e.g., DFT
with larger basis sets and RI-CC2). Moreover, a number of
parameters are then available to fine-tune the spectra layout
or to control the prescreening, among others. About the
former, it is possible to not only define the spectrum bounds
but also the distribution functions used to simulate the
spectrum broadening. To this purpose, both Lorentzian,
simulating a homogeneous broadening, and Gaussian func-
tions for the inhomogeneous broadening, due to solvent or
temperature effects, are available. Moreover, the quality of
the spectra simulations is ruled by parameters set for the
prescreening method, and various aspects of spectrum
convergence with respect to these parameters have been
discussed in detail in ref 1. The inclusion of temperature
has led to additional functionalities. The two major param-
eters are the temperature and the minimum Boltzman
population (MinPop). The second one sets the minimum
population a vibrational state must have with respect to the
Boltzmann population of the vibrational ground state (set to
1) to be taken into account as an origin of the transitions.

As mentioned before, the initial vibrational states are divided
by class and then grouped in sets. Each set is treated
independently with a specific total intensity Itot calculated
for it. The spectrum convergence as well as the assignment
is given for each set. By default, only the final spectrum is
printed. However, when needed, specific spectra for each
class of the initial and/or final states are available.

In this work, we will mainly concentrate on newly
introduced features with respect to the previous Gaussian
implementation1 and discuss the problems related to their
applicability to quite different spectroscopic studies, as
discussed further in Section 5. The applications presented
here are confined to transitions between bound electronic
states. Nonetheless, we highlight that the developed meth-
odology and all the different implemented methods can be
utilized also for the simulation of photoionization and
photoelectron spectra, with the approximation of considering
the transition probability independent of the free electron
final state and kinetic energy. In this limit, with the current
facilities within the Gaussian package, it is possible to obtain
the FC envelope of the spectra in arbitrary units.

3. Computational Chemistry Models

The computational chemistry methods have been chosen
according to the system under study in order to find a
satisfactory balance between feasibility of calculations and
accuracy of results. First, a small chiral molecule, R-
methyloxirane (RMO), has been chosen to assess the
computational models, which will be used in further studies,
with particular reference to the accuracy of the computed
rotatory strengths. For such a reason, the ground and excited
electronic state computations have been carried out using DFT
and TD-DFT,23 respectively, with the standard B3LYP,49 and
its longe-range corrected extension CAM-B3LYP,50,51 func-
tionals in conjunction with N07D,52,53 N07T,53,54 and aug-
cc-pVTZ basis sets.55,56 Additionally, for the calculations
with CAM-B3LYP, basis sets up to aug-cc-pV5Z have been
considered, and their effect on the computed vertical excita-
tion energies and on the rotatory strengths is discussed in
the detail. For (R)-(+)-3 methylcyclopentanone (R3MCP),
we have chosen to apply the CAM-B3LYP/aug-cc-pVDZ
computational model, in line with the detailed studies of its
ECD spectra by some of us.5-7,57 Additionally, for R3MCP
the convergence of the computed values of the transition
dipole moments with respect to the basis set has been
evaluated by the comparison of aug-cc-pVDZ results with
the N07 double- and triple-
, augmented by one set of diffuse
functions on the heavy atoms53 (N07Ddiff and N07Tdiff).
For chlorophyll a1, the ground-state structure and the
harmonic frequencies have been computed with the B3LYP/
N07D model, while the forces in first eight singlet excited
electronic states have been computed at the TD-DFT level
with the CAM-B3LYP50 functional and the N07D basis set
augmented by one set of diffuse functionals on heavy atoms
(N07Ddiff), as recommended in excited studies of vinyl
radical.58,59 The vertical excitation energies have been
computed as a difference between ground- and excited-state
energies computed with CAM-B3LYP/TD-CAM-B3LYP,
respectively, with a N07Ddiff basis set, while solvent effects
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on the UV-vis spectrum of chlorophyll a1 have been
introduced by a polarized continuum medium, as described
by the conductor-like polarizable continuum model
(CPCM)60 model. For the OPA and ECD studies of (Z)-8-
methoxy-4-cyclooctenone (MCO), only the lowest, π* r n
electronic transition has been considered, thus, the TD-
B3LYP/B3LYP//N07Ddiff model, which is able to provide
accurate results for the lowest excited states has been applied.
All calculations have been performed with a locally modified
version of the Gaussian suite of quantum chemistry pro-
grams.61

4. Validation of the DFT/N07 Model for
Computations of ECD Spectra

It is widely recognized62-65 that computations of ECD
spectra are particularly challenging for the quantum me-
chanical treatments. Hence, the definition of a reliable and
feasible computational tool, able to handle studies of ECD
spectra, is of relevance to the general applicability of the
presented model. Recently, some of us have presented a DFT/
N07D model52,66,67 which has been further validated for a
broad range of computational spectroscopy studies: electron
spin resonance (ESR), infrared (IR), UV-vis.58,59 In this
work, we have chosen to check the performance of the N07D
basis set for the challenging case of ECD spectroscopy as
well as the new triple-
 basis set in the N07 family,53,54 that
is introduced here. In these benchmark studies, we will not
only consider the absolute values of the rotatory strengths
but also the accuracy of the computed derivatives of the
magnetic and electric dipole moments necessary for the
inclusion of HT effects into the simulated ECD spectra.

4.1. Computation of Rotatory Strengths for
R-methyloxirane. RMO stands as a popular example, due
to its small size, for the benchmark studies of properties of
chiral systems.63,64,68 In particular, the effect of the basis
set on the vertical excitation energies and on the rotatory
strengths computed at the B3LYP level with the aug-cc-
pVXZ (X ) D, T, Q) basis sets (shortly named from now
on “AVXZ”) has been studied, pointing out the importance
of diffuse functions.63 The results gathered in Table 2 show

that all basis sets starting from N07Ddiff predict the vertical
excitation energies with a comparable accuracy (within 0.1
eV) and also agree fairy well with the experimental data.
Such a finding further confirms the applicability of the
N07Ddiff basis to the study of excited states, in line with
recent investigations.58,59 However, as already discussed,
computations of rotatory strength are much more demanding
with respect to the basis set convergence. It should be noted
that none of the theoretical results presented in Table 2,
match precisely the experimental values, but such disagree-
ment can be attributed to solvent and vibrational effects as
already postulated in previous studies.63,68 For this reason,
we will consider in the following discussion, the results from
CAM-B3LYP/aug-cc-pV5Z computations as reference data.
It can be observed that the standard N07D basis set is not
even sufficient for qualitative studies on the rotatory strength.
However, a significant improvement is obtained by adding
a set of diffuse functions on heavy atoms, which leads to a
semiquantitative agreement, at the expense of slightly more
demanding computations. Results can be further improved
with the N07T basis set, in particular its augmented version.
In fact, the N07Tdiff basis set provides rotatory strengths of
accuracy comparable to the much more computationally
demanding AVQZ basis set (190 vs 596 basis functions,
respectively), and on the whole, closer to the most expensive
basis set considered, aug-cc-pV5Z (988 basis functions), than
the triple-
 basis set from the aug-cc-pVXZ family (AVTZ,
322 basis functions). Additionally, we have chosen to test
the performance of the standard B3LYP functional for
rotational strength computations and to compare the results
to the ones obtained with the CAM-B3LYP functional, as
the latter provides rotatory strengths in good agreement with
experiment, in particular, if sufficiently large basis sets are
applied. Results gathered in Table 3 show that, as expected,
the B3LYP provides qualitatively correct values only for
lower lying excited states of valence character. In conclusion,
the results discussed above show that the CAM-B3LYP/N07
model is able to provide qualitatively correct results for all
excited electronic states starting with the augmented basis
set of double-
 quality (N07Ddiff), while further refinements

Table 2. Vertical Electronic Excitations (VE in eV) and Rotatory Strengths (R in cgs Computed with the Length Gauge)
Computed For RMO with the TD-CAM-B3LYP Density Functional and Basis Sets Ranging from N07D to aug-cc-pV5Z

AV5Z AVQZ AVTZ N07Tdiff N07T N07Ddiff N07D

state exp VE
2A 7.07 7.14 7.15 7.15 7.13 7.15 7.15 7.69
3A 7.7 7.46 7.48 7.49 7.46 7.49 7.53 8.04
4A 7.56 7.58 7.58 7.55 7.56 7.61 8.19
5A 7.71 7.73 7.74 7.72 7.72 7.78 8.58
6A 8.5 7.85 7.86 7.86 7.87 7.89 7.89 8.67
7A 8.28 8.30 8.30 8.32 8.32 8.37 8.80
8A 8.32 8.34 8.36 8.36 8.38 8.45 8.95

exp R
2A -12.56 -15.35 -16.19 -16.63 -16.23 -17.01 -19.89 -3.02
3Aa 6. 98a -7.40(7.76) -7.08(9.06) -6.81(9.73) -6.46(9.71) -6.51(9.08) -3.53(16.13) 3.58(4.85)
4Aa 8.47 8.64 8.72 8.89 8.75 10.12 10.66
5Aa 6.69 7.50 7.81 7.27 6.84 9.54 -9.39
6A 10.55 10.87 11.03 10.50 11.04 11.80 14.07
7A -1.50 -0.11 0.86 0.04 0.72 0.53 -5.86
8A -15.95 -18.39 -19.83 -16.02 -13.58 -19.74 -18.42

a Comparison with experiment is made by summing the transitions to the 3A-5A Rydberg states, shown in parentheses.
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can be introduced by the N07Tdiff one. Additionally, it
should be stressed that the B3LYP functional can also be
applied to cases where only transitions to the lowest lying
electronic states of valence character are considered.

4.2. Accuracy of the Derivatives of the Transition
Dipole Moments Computed at The DFT/N07 Levels:
Line Shape Convergence of ECD-AFCHT Spectrum
for the S2 r S0 Electronic Transition of ax-R3MCP. In
the present approach, it is possible to improve the quality of
the OPA, OPE, and ECD spectra computed within the AFC
approximation by considering changes of the transition dipole
moments with the geometry. It has been already mentioned
that, as far as the computations of excited electronic state
frequencies are performed at the TD-DFT level, the inclusion
of the Herzberg-Teller term does not require any additional
quantum mechanical calculations with respect to the AFC.
For such reason, it should be recommended to perform also
FCHT computations whenever possible, in particular, for
weakly allowed electronic transitions or for cases when ECD
spectra have to be studied. For the latter, it has already been
demonstrated that inclusion of the HT term might change
the sign of some vibronic lines, as for example, the case of
axial-methyl conformer of (R)-(+)-3 methylcyclopentanone
(ax-R3MCP).6,57 The higher sensitivity of ECD computations
to the transition dipole moment approximation, compared
to OPA and OPE, is related to the dot product of two
different transition dipole moments and, more precisely, to
their relative orientation, which stands as an additional factor.
For instance, when the mutual orientation of electric and
magnetic dipole moments is close to 90 degrees, small
changes might introduce a sign reversal of the computed
rotatory strength. For this reason, it is important to check
not only how the basis set influences the computed rotatory
strength at the equilibrium but also more subtle effects on
the accuracy of the computed derivatives of transition dipole
moments, which might cause significant changes of the
spectral lines. The analysis of the basis set effects on the
rotatory strength, presented in Section 4.1, revealed that fairly
accurate results are provided by computations with the CAM-
B3LYP functional in conjunction with the N07Tdiff basis

set. This basis set is small enough to allow the simulation
of ECD spectra for medium-size systems with adiabatic
approaches, requiring excited electronic state frequency
computations. However, having in mind larger systems, it
is important to check the performance of the smaller
N07Ddiff basis set and to compare these results with CAM-
B3LYP/aug-cc-pVDZ computations.57 When studying the
ECD spectrum related to the S2 r S0 electronic transition
of the ax-RMCP, it appeared that some of the vibronic
transitions changed sign by including the HT term.6,57 As a
consequence, we have chosen ax-RMCP for the benchmark
study of the basis set effect on the computed transition dipole
moment derivatives and on their influence of the spectra line
shape. Panel a in Figure 1 shows the ECD spectra in a
0-4000 cm-1 energy range from the transition origin,
computed with the three different basis sets under study with
the AFC and AFCHT approximations and convoluted with
Lorentzian functions with full width at half-maximum
(fwhm) of 0.005 eV (in line with previous studies). It is
immediately visible that several bands change sign when the
HT term is taken into account, and such an effect is
consistently obtained for the main spectrum features by all
basis sets. Looking more into detail, as shown in panel b of
Figure 1 and in the stick spectrum presented in Figure 2, it
is possible to find some minor vibronic contributions which
differ in sign depending on the basis set. The most visible
difference is related to the 〈0|21〉 transition, where computa-
tions at the FCHT level with the aug-cc-pVDZ basis set
predicts a negative vibronic band in line with FC approxima-
tion, while for the N07 basis sets, its contribution to the
spectra is canceled through the HT term. However, despite
minor discrepancies, we shall conclude that all studied basis
sets provide comparable results for the ECD-FCHT spectra.
In particular, the good qualitative agreement obtained with
the N07Ddiff basis set justifies its applicability to the studies
of vibrationally resolved ECD spectra within the FCHT
approximation, which requires expensive computations of
the vibrational frequencies in the excited electronic states.
It should also be stressed that the hybrid approach with
transition dipole moment derivatives computed with basis

Table 3. Vertical Electronic Excitations (VE in eV) and Rotatory Strengths (R in cgs) Computed for RMO with the
TD-CAM-B3LYP and TD-B3LYP Density Functionals and aug-cc-pVTZ and N07Tdiff Basis Sets

TD-CAMB3LYP TD-B3LYP

N07Tdiff AVTZ N07Tdiff AVTZ

state exp VE
2A 7.07 7.13 7.15 6.53 6.56
3A 7.7 7.46 7.49 6.96 6.99
4A 7.55 7.58 7.00 7.03
5A 7.72 7.74 7.08 7.11
6A 8.5 7.87 7.86 7.37 7.36
7A 8.32 8.30 7.72 7.76
8A 8.36 8.36 7.82 7.82

R
2A -12.56 -16.23 -16.63 -18.76 -19.37
3Aa 6. 98a -6.46(9.71) -6.81(9.73) 12.48(15.89) 13.01(16.43)
4Aa 8.89 8.72 1.20 0.88
5Aa 7.27 7.81 2.20 2.55
6A 10.5 11.03 8.40 8.80
7A 0.04 0.86 2.67 2.74
8A -16.02 -19.83 -13.55 -3.50

a Comparison with experiment is made by summing the transitions to the 3A-5A Rydberg states, shown in parentheses.
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sets of N07D quality, combined with equilibrium properties
evaluated at higher level of theory, can offer a noteworthy
refinement for larger systems. The current implementation
allows such a hybrid scheme through reading of appropriately
defined transition dipole moments and their derivatives from
the input stream. However, it should be remembered that
on the ground of the perturbative HT theory of intensity
borrowing,35 such hybrid approach is not expected to be
reliable when the energy gap between the lending and
borrowing states change considerably with the basis set.

5. Simulated One-Photon Electronic Spectra

The integrated approach to compute vibrationally resolved
one-photon electronic spectra can be applied to a large variety
of systems ranging from small molecules in the gas phase
to macrosystems in condensed phases, whenever the nona-
diabatic couplings are negligible and the harmonic ap-
proximation is reliable. In this section, the S2 r S0 one-
photon ECD spectra of R3MCP are used to present various

aspects of the convergence of the simulated results (Sections
5.1 and 5.2), while the last two subsections: the UV-vis
absorption spectrum in the 250-700 nm range of chlorophyll
a1 (Section 5.3) and the ECD spectrum of the π* r n
transition of MCO (Section 5.4) are presented in order to
illustrate the flexibility of the integrated approach and its
applicability to larger systems.

5.1. Vertical and Adiabatic Approaches to Compute
Electronic Spectra: Case of OPA, OPE, and ECD
Spectra for ax-R3MCP. As already shown in previous
sections and discussed in refs 6 and 57, the S2r S0 electronic
transition of the ax-RMCP is an interesting case where HT
effects can lead to a change of the sign with respect to the
simple FC approach, in case of ECD spectra, but have a
lower impact in OPA simulations. Figures 3, 4, and 5 show
the simulated OPA, OPE, and ECD spectra obtained with
various approximations related to changes between the
electronic states within the electronic transition. In fact, for
OPA spectra, it is immediately visible that the simplest VG
approach yields spectrum line shapes in qualitative agreement
with more demanding computations performed within the
adiabatic framework, so it can be sufficient to reproduce
correctly the general features of the experimental spectra.
However, as clearly shown in Figure 4, such an agreement

Figure 1. Convergence of the ECD spectrum line shape with
respect to the basis set. Accuracy of the derivatives of the
transition dipole moments computed at the TD-CAM-B3LYP
level with aug-cc-pVDZ (AVDZ), N07Ddiff (N07D), and N07Tdiff
(N07T) basis sets. Adiabatic Franck-Condon (AFC) and
Franck-Condon Herzberg-Teller approaches (AFCHT) for
the S2 r S0 electronic transition of ax-R3MCP (color online).
The bands are convoluted with Lorentzian functions of 0.05
eV fwhm and with the spectra span energy range of 0-4000
cm-1 (panel a) or 0-1000 cm-1 (panel b) with respect to the
0-0 transition.

Figure 2. Convergence of the ECD spectrum line shape with
respect to the basis set. Accuracy of the derivatives of the
transition dipole moments computed at the TD-CAM-B3LYP
level with AVDZ, N07D, and N07T basis sets. The stick
spectra of the AFCHT for the S2 r S0 electronic transition of
ax-R3MCP (color online) span an energy range of 0-1000
cm-1 (panel a) or 0-600 cm-1 (panel b).
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cannot be expected if the fine structure is also needed.
Moreover, larger deviations can be expected for molecules
(and/or states) showing larger changes in frequencies and/
or significant Duschinsky mixings upon excitation. As an
example, in ref 57, sensible differences between VG and
AFC results have been documented for the n f π* (S1 r
S0) electronic transition of both ax- and eq- conformers of
RMCP. Such a transition involves the lone pair of the oxygen
and the π* orbital residing on the CO bond, so that the CO
stretch is responsible for the most prominent progression of
the spectrum, and its vibrational frequency strongly decreases
upon excitation. In this situation, models like VG that do
not take into account this effect predict too-large spacings

between the bands, while application of the AFC model
results in a significant improvement of the agreement with
the experiments. The situation is different in the case of the
OPE spectrum, since the fine structure corresponds to the
vibrational frequencies in the ground state, which are
correctly taken into account in all models. In fact, panel b
of Figure 4 shows that VG, AS, FC, and FCHT predict the
same positions for the vibrational transitions. However the
general pattern is different, as some bands are missing in
VG or varying in intensity.

However, the situation is more complex for ECD spectra;
in this case, much more pronounced differences between VG
and AS or AFC computations can be observed. In fact, even
the AFC and AFCHT spectra line shapes differ significantly
when the HT contributions change the sign of some of
vibronic transitions, an effect which obviously cannot be
reproduced by any FC based approaches: VG, AS, or AFC.
Such findings clearly show the higher sensitivity of ECD to
the approximation of the transition dipole moment used to
compute the spectra. Thus, while VG approaches can be also
applied to ECD, the VG-ECD results need to be considered

Figure 3. Convoluted OPA spectra of the S2r S0 electronic
transition of ax-R3MCP (color online) computed with vertical
and adiabatic approaches: VG, AS, AFC, and AFCHT.

Figure 4. Stick OPA and OPE (panel a and b, respectively)
spectra of the S2r S0 electronic transition of ax-R3MCP (color
online) computed with vertical and adiabatic approaches: VG,
AS, AFC, and AFCHT.

Figure 5. ECD spectra of the S2 r S0 electronic transition
of ax-R3MCP computed with vertical and adiabatic ap-
proaches: VG, AS, AFC and AFCHT (color online), which span
an energy range of 0-4000 cm-1 (panel a) or 200-2000 cm-1

(panel b) with respect to the 0-0 transition.
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qualitative at most. It must be noticed that, in ref 5, it has
been shown that the VG method with the inclusion of HT
effects can reproduce correctly the change in the sign of
vibronic transitions, even if differences are visible in the
details of the spectrum. Nonetheless, we highlight once more
that, at the state-of-the-art level, the computational effort to
compute the derivatives of the transition dipole moment is
the same as the one required to obtain all the necessary data
to compute the spectrum at the AFCHT level, i.e., by fully
including all the possible spectral features within the
harmonic approximation.

5.2. Temperature Effects and Convergence of Line
Shapes for One-Photon Electronic Spectra Simulated
in Ambient Conditions. Case of OPA and ECD
Spectra for ax-R3MCP. In the current implementation, it
becomes possible to include the temperature effects on the
spectrum shape, a feature particularly important for the
comparison with experimental data performed at ambient
conditions. In general, when temperature-dependent spectra
are to be simulated by a time-independent approach, like
the one pursued here, additional issues arise in choosing the
set of vibrational states from which electronic transitions will
take place. This choice is defined by the probability of the
molecule to be in each initial vibrational state given by its
Boltzmann population. Then, a suitable threshold for the
minimum population of the vibrational states to be included
into the sets considered in computations needs to be chosen.
This threshold is defined with respect to the Boltzmann
population of the vibrational ground state (set to 1) and can
be modified freely (through the MinPop keyword). The
intensity and line-shape convergence, with respect to the
population threshold, will also be discussed on the examples
of OPA-AFC and ECD-AFCHT spectra for the S2 r S0

electronic transition of the ax-RMCP, simulated at 298 K,
which are shown in Figures 6 and 7, respectively. It can be
immediately observed that temperature has a similar effect
in both cases and that the increasing number of initial
vibrational states (lower percentage of ground-state Boltz-
mann population required for state to be included into set)
modifies mainly the part of the spectra close to the 0-0
transition, while in the higher energy wing, spectra do not
differ significantly from the one computed at 0 K. Addition-
ally, we can note that some temperature effects are already
visible even if a limited number of vibrational states is taken
into account (MinPop ) 25%) and that increasing the number
of initial vibrational states leads to a decrease in the intensity
of the main transitions, coupled with an increase in intensity
for the less pronounced features. Nevertheless, for the AFC
approximation, the total spectrum intensity remains constant
at the value corresponding to the simulations at 0 K.
However, usually the spectrum shape is the property of
interest and, as shown in Figure 6, the spectra computed with
a minimum population set of 25 and 10% are already quite
similar when the intensity with respect to the total Boltzmann
population is considered. The latter finding is also valid for
ECD spectra, as shown in Figure 7, for which the line-shape
convergence does not require the inclusion of a very high
number of vibrational initial states, which would, in turn,
increase steeply the computational cost. In line with this

finding, we have chosen to set to 10% the default value of
the Boltzmann population to be considered, however, such
a value might be freely modified whenever needed. Never-
theless, it should be noted that in some cases, where normal
modes are significantly displaced or noteworthy mixing
between them is observed as well as in cases where strong

Figure 6. Temperature effects and convergence of the line
shapes for one-photon electronic spectra simulated in ambient
conditions (298 K) are shown with the case of the OPA spectra
of ax-R3MCP (color online), simulated within the AFC frame-
work. The spectra span an energy range of 6.0-6.8 eV (panel
a) or 6.06-6.20 eV (panel b).

Figure 7. Temperature effects and convergence of the line
shapes for one-photon electronic spectra simulated in ambient
conditions (298 K) are shown with the case of the ECD spectra
of ax-R3MCP (color online), simulated within the AFCHT
framework.
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progressions are induced by the hot vibrational modes, such
a threshold might not be satisfactory.

5.3. UV-vis Spectrum of Chlorophyll a1. The under-
standing of the molecular mechanism of light harvesting in
the photosystem II is one of the subjects intensively studied
both experimentally and theoretically. For the latter, recent
developments within the computational approaches and
within the increased computational resources allow, at
present, studies at the QM level in ground as well as in
excited states. In such a way, a new level of accuracy has
become available, and it may be expected that QM computa-
tions of optical properties combined with spectroscopic
experiments will contribute to shed further light on this
phenomenon.69 In the present work, we have chosen to study
the UV-vis spectrum of chlorophyll a,70,71 which has been
modeled in the current approach by chlorophyll a1, a large
molecule with 46 atoms and 132 normal modes. For such a
system, fully QM simulations of vibronic spectra within the
AFC or AFCHT frameworks are already possible but still
computationally demanding, in particular, if large energy
windows, encompassing several electronic transitions, need
to be studied. This situation can be significantly improved
with the VG approach where, to simulate vibrational effects
on the spectrum line shape only computations of excited-
state forces are required, allowing a relatively cheap and
straightforward computation of low-resolution electronic
spectra for large molecules in gas phase and in solution. Here,
we present such a study for chlorophyll a1, for which
electronic QM computations have been performed at the
DFT/N07D level, and the effect of the methanol solvent has
been included by means of the polarizable continuum model,
where the solvent is represented by a homogeneous dielectric
polarized by the solute and placed within a cavity built as
an envelope of spheres centered on the solute atoms.60 The
solvent has been described in the nonequilibrium limit where
only its fast (electronic) degrees of freedom are equilibrated
with the excited-state charge density, while the slow (nuclear)
degrees of freedom remain equilibrated with the ground state.
This assumption is well adapted to describe the broad features
of the absorption spectrum in solution due to the different
time scales of the electronic and nuclear response compo-
nents of the solvent reaction field.3

The simulated UV-vis spectrum in a 250-700 nm range
has been obtained by summation of the contributions from
transitions to the first eight singlet excited electronic states.
It can be noted that the new features of the integrated
procedure to compute electronic spectra, which reports results
in the absolute values (see Section 2.1) instead of arbitrarily
normalized intensity units, allow a more straightforward
comparison of relative intensities of vibronic contributions
from transitions to different electronic states. Figure 8 shows
spectra simulated in a gas phase and a methanol solvent for
chlorophyll a1, which are compared to the experimental data
from the solution.70,71 It is immediately visible that, while
both computed spectra reproduce qualitatively the line shape
of their experimental counterpart, a much better agreement,
in particular for the absolute positions of vibronic bands,
has been obtained for the one simulated in methanol. For
the spectrum simulated in methanol solvent, a small 500 cm-1

shift on the energy scale leads to a very good agreement
with experiment, and such shifted spectrum is also depicted
in Figure 8. For the gas-phase spectrum, the application of
a uniform energy shift of 1500 cm-1 allows a good match
in an energy region around 650 nm, but in this case, the
position of most pronounced band is still blue-shifted with
respect to the experiment. At this point, we would like to
stress that accurate prediction of electronic energies is still
a very difficult task even for the most advanced computa-
tional approaches, while TD-DFT/DFT//N07D computations
have already proven to provide very reasonable estimates
of the relative energetics of the electronic states.58,59 The
current study shows also the importance of the direct
inclusion of solvent effects, which significantly improve the
agreement with experimental data. Additionally, the simu-
lated spectrum can be easily dissected into the single
electronic transitions, as shown in Figure 9, allowing to
analyze their individual contributions to the spectrum line

Figure 8. The absorption spectrum of chlorophyll a1 in a
250-700 nm energy range, resulting from the sum of the
transitions to the eight first singlet electronic states, is
simulated in a gas phase and a methanol solution and
compared to experimental data obtained in a methanol
solvent.70,71

Figure 9. The absorption spectrum of chlorophyll a1 (color
online) in MeOH (CPCM) in a 250-700 nm energy range is
dissected into the contributions of the single transitions.
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shape. In fact, it can be immediately observed that in case
of chlorophyll a1, the spectrum line shape is dominated by
the contributions from transitions to the S1, S3, and S4
excited electronic states, with the non-negligible contributions
from transitions to S2 and S8. In line with the general
objective of the present work, we will mainly stress the ease
and the feasibility of the presented integrated procedure, with
results of very good quality obtained by the simple VG
approach combined with relatively inexpensive QM studies
available through the recently introduced DFT/N07D model.
More detailed studies of the spectroscopic properties of
chlorophyll a1 and of its radical cations are to be reported
in a separate work.72

5.4. Electronic OPA and ECD Spectrum of
(Z)-8-Methoxy-4-cyclooctenone. An unusual vibronic pat-
tern in the ECD spectrum has been recently observed for
the π* r n electronic transition of the enantiopure (Z)-8-
methoxy-4-cyclooctenone (MCO).73 In the ECD spectrum,
several bands of opposite sign have been observed, at
variance with the single broad band found in the absorption
spectrum. To analyze this issue, studies in the UV-vis
energy range have been performed, aided by IR and VCD
experiments and by computations at the DFT level. For the
latter, only the vertical transition between the electronic states
has been taken into account, and both absorption and ECD
spectra have been simulated by applying a phenomenological
broadening to the electronic stick data. Several conformers
of MCO have been studied theoretically in order to obtain
the best match with experimental spectra. On the basis of
DFT computations for the ground state performed at the
B3LYP/6-311+G(2d,p) level, the simulated IR and VCD
spectra have been compared with their experimental coun-
terparts, and the two most stable conformers were identified.
However, the contribution from two additional, less stable
conformers have been necessary to satisfactorily reproduce
the unusual pattern of ECD spectra with the chosen model.
It should be noted that our computations performed at the
TD-B3LYP/B3LYP//N07diff level agree well with the results
presented by Tanaka et al.73 for the structure and energies
of eight MCO conformers. In particular, conformers 1A and
1B are the most stable, and their energies differ only
negligibly (within 0.2 kcal/mol), while all other conformers
are less stable by at least 2 kcal/mol. Indeed, conformers
1A and 1B show an almost equal stability, so they should
be observed in IR and VCD spectra as suggested. Here, we
present the OPA and ECD spectra of MCO, which have been
simulated considering only one of the two most stable
conformers, labeled 1A in ref 71. The simulated absorption
and the ECD spectra computed within the AFC and AFCHT
frameworks are compared to their experimental counter-
parts73 in Figures 10 and 11, respectively. The OPA spectra,
depicted in Figure 10, show a single broad band both at the
AFC and AFCHT level, in agreement with the experimental
findings, and the inclusion of the HT contributions blue-
shift the maximum of the computed spectrum improving the
agreement with the experiment. Obviously, the same result
has been obtained when the AFC approximation has been
used for the ECD spectroscopy and, indeed, ECD-AFC is
a mirror reflection (due to negative sign of the rotatory

strength) of OPA-AFC. At variance, the ECD spectrum
computed within the AFCHT framework shows both positive
and negative vibronic contributions, in line with experiment.
Figure 11 compares the simulated ECD-AFCHT spectrum
convoluted with a fwhm of 500 cm-1 with the experimental

Figure 10. Simulated (at AFC and AFCHT levels) and
experimental absorption spectra of the π* r n electronic
transition of MCO. The theoretical spectra were convoluted
with a fwhm of 500 cm-1.

Figure 11. Simulated (at the AFCHT level) and experimental
ECD spectra of the π* r n electronic transition of MCO. The
theoretical spectra were convoluted with a fwhm of 500 cm-1

.
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data obtained at room temperature or by cooling the system
to 170 K. In panel b of Figure 11, the theoretical stick
spectrum is also shown, clearly indicating the presence of
positive vibronic contributions. It is noteworthy that the
spectrum simulated at 0 K is more similar to its experimental
counterpart registered at 170 K than to the one taken at room
temperature. More detailed insights of the temperature effects
on the OPA and ECD spectra of MCO would require further
investigations, which are beyond the scope of the present
work. As mentioned above, IR and VCD studies confirmed
the presence of another stable structure (1B) at experimental
conditions, for which our computations yielded a very small
FC integral between the vibrational ground sates. Neverthe-
less, even if the main spectral features are related to
conformer 1A, it should not be excluded that contributions
from 1B might slightly modulate the spectrum shape and
that taking it into account could further improve the accuracy
of the theoretical spectrum, with respect to the experiment.
In any case, it should be noted that, within the simplified
model where the vibrational effects are neglected,73 as many
as four conformers have been necessary for a qualitative
reproduction of the experimental spectra. A change of sign
can be sometimes observed in the energy window encom-
passed by a single electronic state74 and is often attributed
to the contribution of different conformers as in ref 73.
However, the issues of possible changes in the sign of some
vibronic lines of the ECD spectra due to the HT term have
already been demonstrated in refs 6 and 57 and discussed in
Section 4.2. Our results suggest that this is also the case for
MCO, where the HT contribution indeed influences signifi-
cantly the spectrum line shape and is necessary for a
qualitative agreement with experimental data. Indeed, the
simulation of the ECD spectrum within the FCHT framework
can describe all its unusual features considering only the most
stable isomer, at variance with the previous studies based
on simple ECD spectra, simulated by applying a phenom-
enological broadening to the electronic stick data.

Conclusions

A general approach for the simulation of vibrationally
resolved one-photon electronic spectra has been implemented
and applied to a variety of molecular systems, showing the
high flexibility of the developed computational tool. The
integration of all procedures within the same computational
package allows for the fully automatic computation of
vibrationally resolved electronic spectra. Despite the fact that
our computational scheme has been tailored for large
systems, it can be utilized as well to generate high-quality
spectra for small systems, when nonadiabatic and anharmonic
couplings are negligible, since it allows different levels of
approximation for the computation of FC integrals. It should
be noted that, even when nonadiabatic couplings can be
neglected, several issues which are of general importance
in many cases remain still open, like problems related to
the presence of double-well potentials, large molecular
displacements, or multimode couplings. However, all these
issues are, in more general terms, related to the anharmo-
nicity, and as we already stated, the simulations of vibra-
tionally resolved electronic spectra with anharmonic models

appropriately tailored for vibronic transitions are under active
development. Notwithstanding the above limitations, we
point out that, in the present work, we introduce an easy-
to-use, general, and robust computational tool able to
simulate good-quality spectra even for large systems with
hundreds of normal modes, whenever harmonic approxima-
tion is reliable, paving the route to spectroscopic studies of
systems of direct biological and/or technological interest,
improving their interpretation and understanding.
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Abstract: We present a systematic investigation of the structural relaxation in the excited state
of model retinal chromophores in the gas phase using the complete-active-space self-consistent
theory (CASSCF), multiconfigurational second-order perturbation theory (CASPT2), quantum
Monte Carlo (QMC), and coupled cluster (CC) methods. In contrast to the CASSCF photoi-
somerization mechanism of bond inversion followed by torsion around formal double bonds,
we find that the other approaches predict an initial skeletal relaxation which does not lead to
bond inversion but to a rather flexible retinal chromophore with longer bonds and with the bond-
length pattern of the ground state being partly preserved. The relaxation proceeds then
preferentially via partial torsion around formal single bonds and does not reach a conical
intersection region. Our findings are compatible with solution experiments which point to the
existence of multiple minima and relaxation pathways, some of which are nonreactive, do not
lead to photoproducts via conical intersection, and are dominant in solution. Our results also
demonstrate the importance of a balanced description of dynamical and static correlation in the
excited-state gradients and raise serious concerns on the common use of the CASSCF method
to investigate structural properties of photoexcited retinal systems.

1. Introduction

The absorption of visible light and its conversion to other
forms of energy is at the heart of some of the most
fundamental processes in biology. An important example of
light absorption initiating a biological response is the primary
event of vision1 where light induces the cis-trans isomer-
ization of the photosensitive 11-cis retinal chromophore in
rhodopsin2 and other visual pigments, activating a cascade
of chemical reactions which ultimately culminate in the
stimulation of the optical nerve.3 The initial photoisomer-
ization process is one of the fastest photochemical reactions
in nature, occurring within a few hundred femtoseconds,4

and the protein environment plays a central role in guiding
the reaction. In solution, the dynamics of retinal chro-
mophores is in fact quite different than in the protein, namely,
about 20 times slower5 and much less efficient.6,7 Even

though femtosecond spectroscopy studies have extensively
investigated the primary isomerization step of retinal
chromophores,8-14 the detailed nature of the molecular
mechanism in the initial excited-state reaction and the exact
role of the protein environment are still not understood.12

Theoretically, a large number of calculations with a variety
of quantum chemical methods have been performed to
investigate the structural and spectroscopic properties as well
as the nature of the photoisomerization mechanism of retinal
chromophores and retinal models in the gas phase15-41 and
in the protein environment.24,42-61 Given the large size of
the retinal chromophore, most calculations including the
protein via quantum mechanics/molecular mechanics (QM/
MM) approaches have mainly focused on obtaining a realistic
representation of the structural model in the ground state and
understanding the environmental effects on the absorption
properties. Interestingly, even though all investigations
employing different techniques appear to reproduce the
correct experimental absorption value, the reasons behind
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this agreement are contrasting and there are fundamental
differences concerning the structure of the chromophore, the
protonation of nearby residues, and the overall role of the
protein in tuning the spectral properties.46,52,53,57,60 If nailing
down the exact role of the environment on the Franck-
Condon excitation has proven elusive, the computation of
dynamical properties of photoexcited retinal chromophores
in the gas phase as well as in the protein is an even harder
task since it requires a uniformly reliable computation of
excited-state potential energy surfaces and the availability
of analytical energy gradients for geometric optimization and
dynamical runs.

To date, most excited-state geometrical investigations have
employed the low-level complete-active-space self-consistent
field (CASSCF) approach for the relaxation of retinal
chromophores in the gas phase15-18,33,34,38,46 with also few
attempts to simulate the dynamics of retinal chromophores
in the protein environment.45,55,61 The excited-state energies
on the CASSCF structures are often refined in single-point
calculations with higher-level approaches such as multicon-
figurational perturbation theory (CASPT2) to partially ac-
count for dynamical correlation largely missing in the
CASSCF description. These studies have led to the generally
accepted picture that photoisomerization begins with an in-
plane skeletal relaxation which yields bond inversion and
proceeds via a torsional motion around carbon-carbon bonds
having double-bond character in the ground state.16,18,34,38

The chromophore is then funneled into a conical intersection
region which leads to the ground-state trans photoproduct.
Recent calculations of Send and Sundholm based on coupled
cluster (CC) theory have however challenged this picture,
as they obtained a rather different excited-state relaxation
mechanism of retinal models in the gas phase.29,31,35,37 The
initial relaxation in the excited state at the CC level does
not yield bond inversion but the lengthening of most bonds
while preserving the general bond-length pattern of the
ground state. The subsequent torsional motion is around
carbon-carbon bonds holding single-bond character in the
ground state. However, these CC calculations have been
dismissed on the basis of being single reference and thus
lacking a proper description of static correlation as compared
to the CASSCF approach.36 This response reflects the general
acceptance of CASSCF as an adequate tool for the investiga-
tion of excited-state structural properties of retinal and other
photosensitive chromophores.

In the present work, we perform a thorough investigation
of the initial excited-state relaxation from the Franck-Condon
point of model retinal chromophores in the gas phase and
employ CASPT2 and quantum Monte Carlo (QMC) in
addition to the CASSCF and CC methods. The CASPT2
approach is well established and is considered a benchmark
method for the computation of excited-state properties, but
its use for retinal models has been mostly confined to single-
point calculations, in-plane geometrical relaxation of few
models,20 and constraint optimization of a minimal chro-
mophore model.19,20,23,41 The QMC method is instead less
common in the field of theoretical photochemistry, and its
use for excited-state geometrical optimization is novel. QMC
has recently given promising results in the study of various

photoactive molecules,62-66 and a favorable comparison with
CASPT2 will further establish its use for investigating
photochemical problems. At the cost of being computation-
ally more expensive, CASPT2 and QMC methods can give
an accurate and balanced description of both static and
dynamical correlation and therefore represent an ideal tool
to clarify the nature of the microscopic mechanism in the
photoisomerization of retinal chromophores and to resolve
the disagreement between the generally accepted CASSCF
picture and the recent, controversial CC results.

We find that our in-plane geometrical relaxations from the
Franck-Condon point of retinal models show a consistent,
good agreement among the CASPT2, CC, and QMC ap-
proaches, which give excited-state structures not characterized
by bond-length inversion, and are in striking contrast to the
results obtained with the CASSCF approach. Photoexcitation
therefore weakens all bonds, which stretch and become partly
more similar in length while preserving the general bond-
length pattern of the ground state. To investigate a nontrivial
minimum energy path out of plane, we consider a model
with four double bonds and find that the excited-state
relaxation at the CASPT2 level proceeds preferentially via
a partial torsional motion around a formal single bond and
does not lead to a conical intersection region. To assess the
existence of a reactive path at the CASPT2 level, we also
study the constrained excited-state isomerization around a
formal double bond for the same model. We find that the
system encounters a small barrier to isomerization at rather
large angles of rotation, beyond which it is funneled toward
a conical intersection region characterized by bond inversion.

Therefore, in agreement with previous CC calculations,
our results support the picture of a rather flexible retinal
chromophore in the excited state as compared to the CASSCF
excited chromophore, which can only twist around formal
double bonds. These findings are compatible with the
observation in solution experiments of the existence of
multiple minima, possibly corresponding to different torsional
conformations, and multiple excited-state paths. Some of
these paths are reactive and yield a photoproduct via a conical
intersection, while others are nonreactive, do not lead to a
conical intersection, and are dominant in solution.67 Finally,
our results demonstrate the importance of including an
accurate description of dynamical correlation also in the
excited-state gradients and raise serious concerns about the
common use of CASSCF in investigating excited-state
structures of retinal systems.

In section 2, we briefly present the methods used in this
paper and focus on the description of the QMC geometrical
optimization. In section 3, we describe the computational
details, and in section 4, we introduce the model retinal
chromophores we investigate. In sections 5-7, we present
the results for the vertical excitation energy, the in-plane
geometrical relaxation, and the minimum energy path or out-
of-plane geometrical relaxation in the excited state. Finally,
in section 8, we discuss our results and conclude.

2. Methods

In this work, we employ a wide range of ab initio quantum
chemical methods. While we refer the reader to appropriate

1276 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Valsson and Filippi



textbooks68 for a discussion of the more traditional CASSCF,
CASPT2, and CC approaches, we briefly review below the
less common QMC methods.69 In particular, we focus on
the procedure we follow to perform geometrical optimization
within variational Monte Carlo (VMC), which is nonstandard,
and on how we address stability issues in the calculation of
energy gradients.

2.1. QMC Methods. QMC methods provide an accurate
and balanced description of dynamical and static electronic
correlation in both molecular and extended systems.69 Their
application to the description of the excited-state properties
of photoactive molecules has already given promising
results.62-66

A crucial ingredient which determines the quality of a
QMC calculation is the many-body trial wave function,
which is here chosen to be of the so-called Jastrow-Slater
type. Since we treat multiple states of the same symmetry,
we write the ground- and excited-state wave functions as a
linear combination of spin-adapted configuration state func-
tions (CSF) multiplied by a Jastrow correlation factor:

where different states depend on their individual linear
coefficients, ci

I, but share a common set of single-particle
orbitals and Jastrow factor, J. We use here a Jastrow factor
which correlates pairs of electrons and each electron separately
with a nucleus, and we employ different Jastrow factors to
describe the correlation with different atom types. Since the
optimal orbitals and expansion coefficients in ψI may differ from
the values obtained for instance in a CASSCF calculation in
the absence of the Jastrow factor, it is important to reoptimize
them in the presence of the Jastrow factor.

The parameters of the trial wave functions are optimized
in an efficient and simple approach in a state-average (SA)
fashion as described in ref 66. In this scheme, we iteratively
alternate between optimizing the linear coefficients in the
CSF expansion and the nonlinear (Jastrow and orbital)
coefficients where the quantity minimized is the weighted
averaged energy over the states under consideration:

where the weights are fixed and ∑IwI ) 1. At convergence, the
averaged energy ESA is stationary with respect to all parameter
variations subject to the orthogonality constraint, while the
energies of the states are stationary with respect to variations
of the linear coefficients but not of the orbital or Jastrow
parameters. In this approach, the wave functions are kept
orthogonal and a generalized variational theorem applies.

The set of optimal linear coefficients is obtained by solving
a generalized eigenvalue problem where the Hamiltonian and
the overlap matrix on the basis functions J Ci are estimated
within VMC by sampling a guiding function Ψg chosen to
have significant overlap with all states of interest. The use
of a nonsymmetric estimator of the Hamiltonian matrix yields
a strong zero-variance principle and renders the approach

particularly efficient.70 To optimize the nonlinear parameters,
we employ the linear optimization method first developed
for ground states71 and recently extended to the state-average
optimization of multiple states.66 In this scheme, the non-
linear minimization problem is linearized by working on the
basis of the derivatives of the wave function with respect to
the nonlinear parameters. In the case of multiple states, the
elements of the weighted averaged Hamiltonian and overlap
matrices are computed in a single VMC run by sampling a
guiding wave function Ψg. When determining both the linear
and the nonlinear parameters, the guiding wave function is
here chosen equal to �(ΣI|ΨI|2).

The optimal trial wave functions are then used in diffusion
Monte Carlo (DMC), which gives the best energy within
the fixed-node approximation, that is, the lowest-energy state
with the same zeros (nodes) as the trial wave function.

2.2. VMC Geometrical Optimization. The VMC geo-
metrical optimization is performed in Z-matrix coordinates
where the energy gradients with respect to the nuclear
coordinates are obtained using numerical differentiation and
correlated sampling.72

To determine the interatomic forces at a given reference
geometry, we construct a set of secondary geometries
corresponding to small forward and backward displacements
of 0.001 au for the bond lengths and 0.01° for the bond and
dihedral angles. The gradient in Z-matrix coordinates is
computed as

where E is the total energy and δxγ is a displacement in the
internal coordinate γ with respect to the reference coordinates
x. The diagonal component of the Hessian can be obtained
in the same run at no extra cost as

The geometry is updated according to an approximate version
of the Newton-Raphson method as

where x′ denotes the new coordinates in Z-matrix representa-
tion. To stabilize the procedure against numerical noise, we
add a constant parameter of 5 × 10-5 to all diagonal elements
of the Hessian.

The use of correlated sampling allows us to efficiently
determine relative energies for different geometries from a
single reference Monte Carlo walk. The reference walk is
obtained by sampling the wave function Ψ corresponding
to the coordinates x and Hamiltonian H, while the secondary
geometries are characterized by the corresponding quantities
x ( δxγ, Ψγ, and H γ. Given a reference primary wave
function, the secondary wave function is here simply obtained
by recentering Ψ at the coordinates x ( δxγ without altering
the wave function parameters. The electronic coordinates of the
secondary walk are obtained by stretching the primary walk
with the nuclear coordinates through a space-warp transforma-
tion as described in ref 72. In the present work, we use the
function F(r) ) r-4 for the space-warp transformation.

ψI ) J ∑
i)1

NCSF

ci
ICi (1)

ESA ) ∑
I

wI

〈ΨI|H |ΨI〉
〈ΨI|ΨI〉

(2)

gγ ) [E(x + δxγ) - E(x - δxγ)]/2δxγ (3)

hγ
diag ) [E(x + δxγ) - 2E(x) + E(x - δxγ)]/δxγ

2

(4)

xγ′ ) xγ - gγ/hγ
diag (5)
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In summary, the procedure for the geometrical optimiza-
tion is the following: (i) The determinantal component of
the initial wave function is obtained in a CASSCF calcula-
tion. (ii) All wave function parameters are optimized in a
VMC run (we discuss later the importance of optimizing the
orbital parameters). (iii) The energy gradients are obtained
in a correlated sampling VMC calculation. (iV) The geometry
is updated as described above. We note that, with the
exception of the first iteration, step i can be skipped since
step ii can be performed starting from the wave function
optimized at the previous geometry and recentered at the
current geometry. This procedure is iterated until the bond
length and bond angle gradients are on the order of 0.001
hartree/Bohr and 0.0001 hartree/deg, respectively, that is,
comparable to their error bars. Since the stochastic nature
of VMC does not allow the assignment of one particular
geometry as the minimum one, we perform 5-10 additional
iterations after convergence and average the internal coor-
dinates over these additional steps.

To decrease the computational effort, the carbon-hydrogen
and nitrogen-hydrogen bond lengths and all the bond angles
involving terminal hydrogen atoms are kept fixed. All other
internal degrees of freedom are allowed to vary.

2.3. Stability of VMC Energy Gradients. The computa-
tion of gradients in VMC poses some stability issues which
we analyze by considering for simplicity the gradient
expression without the use of the space-warp transformation.
Then, the energy difference between the primary and a
secondary geometry can be written as

E(x) - E(x + δxγ) )

〈H Ψ(R)
Ψ(R)

-
HγΨγ(R)

Ψγ(R)
Wγ(R)〉

Ψ2

(6)

where 〈 · · · 〉 denotes the statistical average over the configu-
rations sampled in VMC from the distribution Ψ2, and the
weights are defined as

Wγ(R) )
Ψγ

2(R)/Ψ2(R)

〈Ψγ
2(R)/Ψ2(R)〉Ψ2

(7)

If we expand this energy difference to linear order in δxγ,
we obtain a term proportional to

〈H Ψ(R)
Ψ(R)

∂ log Ψ(R)
∂xγ

〉
Ψ2

(8)

Since the product inside the square brackets diverges as 1/d2

when the distance d from the nodes of Ψ approaches zero,
the estimator of eq 6 obtained by sampling the square of the
primary wave function has infinite variance, and it is not
possible to obtain a stable energy difference. To cure this
problem, we follow ref 73 and sample a different distribution
which is nonzero at the nodes and is defined here as

Ψg(R) ) Ψ(R)
max[ε, dn(R)]

dn(R)
(9)

where dn(R) is a measure of the distance from the nodes:

and ε is a cutoff parameter74 chosen as 10-2. The average
of eq 8 can then be rewritten as

〈Ψ2(R)

Ψg
2(R)

H Ψ(R)
Ψ(R)

∂ log Ψ(R)
∂xγ 〉

Ψg
2

(11)

where the reweighting factor Ψ2(R)/Ψg
2(R) removes the

divergence of the products inside the brackets. This cures
the problem of the infinite variance and allows us to obtain
stable energy differences.

3. Computational Details

We use the program MOLCAS 7.275 to optimize the ground-
state geometries of the model chromophores within all-
electron MP2 and DFT with the B3LYP76 functional. For
the ground-state optimizations of the full retinal model (see
Figure 1E), we employ the Gaussian 03 code.77 The default
convergence criteria are used for both codes.

We also use MOLCAS 7.2 for the all-electron CASSCF,
CASPT2, and multistate (MS) CASPT278 calculations. The
state-average (SA) CASSCF calculations are performed with
equal weights over the states of interest, and the two lowest
states are used in the SA-CASSCF and MS-CASPT2
calculations. In the CASPT2 calculations, we employ the
default IPEA zero-order Hamiltonian79 unless otherwise
stated and indicate if an additional constant level shift80 is
added to the Hamiltonian. In the CASPT2 calculations for

dn(R) ) 1
|∇Ψ(R)/Ψ(R)|

(10)

Figure 1. Model retinal chromophores. The atom numbering
for chromophore E is used for all models, so the cis bond is
always between C11 and C12. Cyan, blue, and gray represent
carbon, nitrogen, and hydrogen, respectively.
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the complete 11-cis retinal chromophore, we use the Cholesky
decomposition of the two-electron integrals81 with a default
threshold of 10-4. Analytical CASSCF and numerical
CASPT2 gradients are used for geometrical optimizations
and minimum energy path (MEP) calculations. In the
CASPT2 calculations, we do not correlate as many lowest
orbitals of σ character as the number of heavy atoms in the
model. The default convergence criteria are used for all
calculations.

The EOM-CC calculations are performed with the codes
ACES II82 and CFOUR.83 The CC calculations include
approximate single and double excitations (CC2) and single
and double excitations (CCSD). Default convergence criteria
are used for all calculations, and we do not correlate as many
lowest orbitals of σ character as the number of heavy atoms
in the model.

The program package CHAMP84 is used for the QMC
calculations. We employ scalar-relativistic energy-consistent
Hartree-Fock pseudopotentials85 where the carbon, nitrogen,
and oxygen 1s electrons are replaced by a nonsingular
s-nonlocal pseudopotential and the hydrogen potential is
softened by removing the Coulomb divergence. Different
Jastrow factors are used to describe the correlation with
different atom types, and for each atom type, the Jastrow
factor consists of an exponential of the sum of two fifth-
order polynomials of the electron-nuclear and the electron-
electron distances, respectively.86 We also test the effect of
including an electron-electron-nuclear term. The starting
determinantal components are obtained in CASSCF calcula-
tions, which are performed with the program GAMES-
S(US).87 In all SA-CASSCF calculations, equal weights over
the states are employed and the final CAS expansions are
expressed on the weighted-average CASSCF natural orbitals.
The CAS wave functions of the ground and excited states
may be truncated with an appropriate threshold on the CSF
coefficients, and the union sets of surviving CSFs for the
states of interest are retained in the QMC calculations. The
Jastrow correlation factor and the CI coefficients are
optimized by energy minimization in a state-averaged sense
within VMC with equal weights. When indicated in the text,
also the orbitals are optimized along with the Jastrow and
CI parameters. The pseudopotentials are treated beyond the
locality approximation,88 and an imaginary time step of 0.05
or 0.075 au is used in the DMC calculations.

In the DFT, CASSCF, CASPT2, and CC calculations, we
employ either the correlation consistent (cc-pVxZ)89 or the
atomic natural orbital (ANO-L-VxZP)90 basis sets. We use
the ANO contraction schemes as defined in MOLCAS, that
is, [3s2p1d]/[2s1p] for ANO-L-VDZP, [4s3p2d1f]/[3s2p1d]
for ANO-L-VTZP, and [5s4p3d2f]/[4s3p2d] for ANO-L-
VQZP. In the single-point energy calculations, the ANO-L-
VDZP basis set is generally used, while the default basis in
the geometrical optimization and MEP calculations is the
cc-pVDZ. In the QMC calculations, we use the Gaussian
basis sets85 specifically constructed for our pseudopotentials.
In particular, we employ the cc-pVDZ basis (denoted by D)
and the D basis augmented with s and p diffuse functions91

on the heavy atoms (denoted by D+). We also use the T′
and Q′ basis sets which consist of the cc-pVTZ and

cc-pVQZ, respectively, combined with the cc-pVDZ for
hydrogen. The g functions are not included in the Q′ basis.
Most single-point energy calculations use the D+ basis, while
geometrical optimizations employ the D basis.

4. Retinal Models

The 11-cis retinal chromophore consists of a conjugated
carbon chain with a protonated Schiff base (PSB) at one end
and a twisted �-ionone ring at the other end (see Figure 1E).
It sits inside the protein pocket of rhodopsin, a seven helix
transmembrane protein, where it is covalently bound to Lys-
296 via the protonated Schiff base linkage. In theoretical
gas phase studies, there has been no consistent choice of
how to terminate the covalent bond between the positively
charge nitrogen in the protonated Schiff base and Lys-296.
A single hydrogen, a methyl, and also an n-butyl group have
been used as termination, and this particular choice appears
to influence only slightly the excitation energy.27,40 Due to
the large size of the 11-cis retinal chromophore, smaller
protonated Shiff base models have been mainly investigated
theoretically, which differ in the length of the conjugated
chain and the absence of methyl groups with respect to the
complete chromophore.

The retinal models studied in this work are shown in
Figure 1 and range from the minimal model (Figure 1A) to
the full 11-cis retinal chromophore (Figure 1E). The atom
labeling shown for the 11-cis chromophore is adopted also
for the other models so that the cis-to-trans isomerization
bond is always between the C11 and C12 atoms, with atom
numbering increasing from the carbon to the nitrogen end.
For the models without the �-ionone ring, we introduce the
naming convention PSBx(y) where x and y are the number
of double bonds and methyl groups, respectively. The
PSB3(0) (C5H6NH2

+) model (A) is the minimal model of the
retinal chromophore and has already been extensively studied
in the literature.15,17,20,22,25,41 Since the methyl group at
position C13 plays an important role in accelerating the
isomerization process,15,17 we also consider the PSB3(1)
(C6H8NH2

+) model (B), that is, the minimal model (A) with
an added methyl group. The PSB4(1) (C8H10NH2

+) model
(C) has one additional double bond and has been previously
studied without the methyl group using the CC and TDDFT
methods.29 The PSB5(1) (C10H12NH2

+) model (D) has the
full conjugated chain but is missing the �-ionone ring, and
the complete 11-cis retinal chromophore (E) is here termi-
nated with a single methyl group. With the exception of the
11-cis (E) chromophore, all other models are planar in the
ground state. We note that a direct comparison with
experiments is only possible for the vertical excitation energy
of the 11-cis chromophore (E) since, to the best of our
knowledge, none of the smaller models has been studied
experimentally.

5. Vertical Excitation Energies

We compute the vertical excitation energies of the lowest
singlet excited state (S1) of all retinal models using the
CASPT2, CC2, CCSD, VMC, and DMC approaches. The
ground-state DFT/B3LYP geometries optimized with the cc-
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pVDZ basis are used. The model E is optimized with no
symmetry constraint (C1), while the other models are planar
and are optimized in either Cs or C1 symmetry. The CASPT2
excitations are computed with the standard IPEA Hamiltonian
(S-IPEA) and with the IPEA shift set to zero (0-IPEA), which
was the default prior to MOLCAS 6.4, in order to be
compatible with previous calculations in the literature.

5.1. Dependence on Basis Set and Other Parameters.
Before comparing the relative performance of the different
methods, we focus on the minimal model (A) and investigate
the dependence of the excitations on the choice of the basis
set and other parameters which may affect the calculations.
We begin with the MS-CASPT2 approach and show in
Figure 2 the vertical excitations obtained with the double
(D), triple (T), and quadruple (Q) � basis sets from the cc-
pVxZ and ANO-L-VxZP series. We correlate all 6 π
electrons in the reference configuration and use a different
number m of virtual π orbitals in the CAS(6,m) expansion.
We note that single-state and MS-CASPT2 yield equivalent
excitations for model A.

We observe that the ANO-L-VxZP series gives a faster
convergence in the CASPT2 excitation energy than the
correlated consistent basis. The excitations computed with
the D basis are only 0.05 eV higher than the values obtained
with the T and Q basis sets. On the other hand, in the cc-
pVxZ series, the D excitations are 0.12 eV higher than the
T values, which still differ from the Q results by 0.04 eV.
The behavior of the CC2 and CCSD excitations with the
basis set is not shown in the figure but parallels closely the
one observed for the CASPT2 excitations. Therefore, since
the ANO-L-VDZP basis set gives a good balance between
accuracy and computational cost, it is used hereafter for all
single-point CASPT2, CC2, and CCSD calculations.

We find that the CASPT2 results depend very strongly
on the choice of the zero-order Hamiltonian. The difference
between the excitation energies obtained with the standard
IPEA Hamiltonian and the IPEA shift set to zero is
independent of the basis set used and equal to about 0.3 eV
when a CAS(6,6) is employed. As expected, the dependence
on the particular zero-order Hamiltonian is reduced as the

wave function is improved, and the difference between the
excitations with and without the IPEA shift becomes 0.2 eV
if the number of active π orbitals in the CAS is increased
from 6 to 18. Finally, we observe that the vertical energies
obtained with the IPEA shift set to zero are much more
sensitive to the dimension of the CAS since they increase
by 0.07-0.12 eV when m goes from 6 to 18, while the
energies obtained with the standard IPEA Hamiltonian are
quite stable and only decrease by about 0.02-0.04 eV.

In Table 1, we present an extensive QMC investigation
for the minimal model (A) to assess how different ingredients
in the trial wave function affect the excitation energy. The
reference wave function is constructed from a CAS(6,6)
expansion expressed on the weighted-averaged CASSCF
natural orbitals in the D+ basis and truncated with a
threshold of 0.02, where only the two-body Jastrow factor
and CI coefficients are optimized in energy minimization in
a SA fashion. Starting from this wave function, we inves-
tigate the effect of (i) changing the threshold on the CAS(6,6)
expansion in the range 0.01-0.08, (ii) increasing the number
of active π orbitals from 6 to 18 in the CAS(6,m) expansion,
(iii) including an electron-electron-nuclear (e-e-n) term
in the Jastrow factor in addition to the electron-nucleus
(e-n) and electron-electron (e-e) components, (iV) opti-
mizing the orbitals in a CAS(6,6) wave function with a
threshold of 0.08 with both 40 and 80 external orbitals
included in the optimization, and (V) using different basis
sets (D, T′, and Q′). We find that the choice of basis has a
significant effect on the QMC results as the VMC and DMC
excitations computed with the D basis are higher by 0.06(2)
and 0.09(3) eV than the corresponding D+ values. Since
the use of the larger T′ and Q′ basis sets brings the excitations
in closer agreement with the D+ results, we employ below
the D+ basis set to compute the QMC excitations of all
model chromophores. For this choice of basis, other ingre-
dients in the trial wave function appear to have a smaller effect
on the VMC and DMC excitation energies which range between
4.24(2) -4.32(2) and 4.16(2)-4.24(2) eV, respectively.

Figure 2. MS-CASPT2 vertical excitation (S1) energies of the
PSB3(0) model (A) computed with the standard IPEA Hamil-
tonian (S-IPEA, filled symbols) and with the IPEA shift set to
zero (0-IPEA, empty symbols). The excitations are obtained
with different basis sets and expansions CAS(6, m) of 6
electrons in m active orbitals. The ground-state DFT/B3LYP
geometry is used.

Table 1. VMC and DMC Vertical Excitation (S1) Energies
(eV) of the PSB3(0) Model (A), Computed with Different
Basis Sets and CAS Expansions Expressed on the
Weighted-Averaged Natural Orbitalsa

CAS(6, m) Thr. Det./CSF Jastrow basis VMC DMC

(6,6) 0.01 183/79 e-n, e-e D+ 4.32(1) 4.22(2)
(6,6) 0.02 101/47 e-n, e-e D+ 4.31(1) 4.20(2)
(6,6) 0.04 66/31 e-n, e-e D+ 4.31(1) 4.21(2)
(6,6) 0.08 23/10 e-n, e-e D+ 4.24(2) 4.19(2)
(6,6)b 0.08 23/10 e-n, e-e D+ 4.25(2) 4.21(2)
(6,6)c 0.08 23/10 e-n, e-e D+ 4.28(1) 4.16(2)
(6,6) 0.02 103/48 e-n, e-e D 4.38(1) 4.29(2)
(6,6) 0.02 103/48 e-n, e-e T′ 4.34(1) 4.25(2)
(6,6) 0.02 103/48 e-n, e-e Q′ 4.34(1) 4.22(2)
(6,12) 0.02 152/66 e-n, e-e D+ 4.29(1) 4.22(2)
(6,18) 0.02 156/67 e-n, e-e D+ 4.29(1) 4.22(2)
(6,6) 0.02 101/47 e-n, e-e, e-e-n D+ 4.32(2) 4.24(2)

a The CAS(6,m) active space includes all 6 π electrons
occupied in the reference configuration and m active π orbitals.
The threshold on the expansion and the corresponding number of
determinants and CSFs are also listed. Unless indicated, only the
Jastrow and CI parameters are optimized. The ground-state DFT/
B3LYP geometry is used. b Orbitals optimized including 40
external orbitals. c Orbitals optimized including 80 external orbitals.
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5.2. Results. We collect the vertical excitations of all
retinal models computed using the MS-CASPT2, CC2,
CCSD, VMC, and DMC methods on the ground-state DFT/
B3LYP geometries in Table 2. The VMC and DMC
excitations are obtained using wave functions where the
Jastrow and CI parameters are optimized by energy mini-
mization in a SA fashion and the threshold on the CSF
expansion is 0.08 for the E model and 0.02 for all other
models. It is evident that, for all models, the CASPT2
excitations obtained with the IPEA shift set to zero are at
variance and significantly lower than the results obtained with
all other theoretical methods. The use of the standard IPEA
Hamiltonian raises the excitation energies of all models by
as much as 0.3 eV and brings the CASPT2 values in close
agreement with the CC2 results. The CCSD method yields
excitations slightly higher by 0.11-0.17 eV than the CC2
and CASPT2 results obtained with the IPEA Hamiltonian.
Finally, the VMC excitations are always higher by 0.1-0.2
eV than the DMC values which agree closely with the CCSD
results.

For a comparison with experiments and previous theoreti-
cal work, we focus on the full 11-cis retinal chromophore
(E) and collect the relevant results in Table 3. In line with
previous calculations,24,30,58 we find that the excitation
energy of the retinal chromophore depends strongly on the
method used to determine its ground-state structure. The
sequence of BLYP, B3LYP, MP2, and CASSCF geometries
corresponds to an increase of the degree of bond-length
alternation and of the twisting of the �-ionone ring from
-30° to -60° (see Figure 3). Stronger bond alternation and
larger twisting angles correspond to larger excitations ener-
gies, and we find indeed an increase of 0.5 eV in the CASPT2
excitation both with and without the IPEA shift, when going
from the BLYP to the CASSCF geometry. A comparison
with CASPT2 geometries of planar retinal models indicates
that DFT and MP2 ground-state structures represent a better
model for the retinal chromophore in the gas phase as shown
in Figure 6a and Figure SI-5 (Supporting Information) and
already observed in ref 20. Even though discarding the
CASSCF structures significantly reduces the spread in
excitations, we still have an uncertainty of about 0.1 eV
related to the choice of the particular DFT or MP2 geometry.

In Table 3, we present the single-state (SS) excitations in
addition to results obtained with the MS-CASPT2 approach

as done so far in this section. As already mentioned, SS-
CASPT2 and MS-CASPT2 give equivalent excitations within
0.01 eV for the smaller model A, as expected given the large
gap of about 4 eV between the ground and excited states.
However, as the size of the retinal model increases and the
excitation decreases, SS-CASPT2 and MS-CASPT2 start to
differ, and this discrepancy grows faster when no IPEA shift
is employed. For the 11-cis model (E) and a gap of about 2
eV, the difference amounts to about 0.10 and 0.15 eV with
and without the IPEA shift, respectively, and is independent
of the ground-state geometry. Therefore, the choice of
performing single- or multistate calculations within CASPT2
represents another internal parameter of the theory which
affects the CASPT2 excitation in addition to the IPEA shift.
We remark that, while MS-CASPT2 gives results which
nicely parallel the DMC and CC excitations for all models,
the difference between CASPT2 and other theories increases
with system size if the single-state approach is used. The
choice of the MS theory is our preference also for compat-

Table 2. Vertical Excitation (S1) Energies (eV) of the
Retinal Modelsa

MS-CASPT2

model n 0-IPEA S-IPEA CC2 CCSD VMC DMC

(A) PSB3(0) 6 3.75 4.06 4.12 4.23 4.31(1) 4.20(2)
(B) PSB3(1) 6 3.86 4.18 4.20 4.37 4.52(2) 4.42(2)
(C) PSB4(1) 8 3.04 3.35 3.33 3.47 3.59(2) 3.47(2)
(D) PSB5(1) 10 2.58 2.87 2.82 2.95 3.08(2) 3.00(3)
(E) 11-cis 12 2.03b 2.30 2.59(3) 2.41(3)

a The MS-CASPT2 energies are computed both with the
standard IPEA Hamiltonian (S-IPEA) and without the IPEA shift
(0-IPEA). The CAS(n,n) expansion in the CASPT2 and QMC
calculations includes all π electrons in the reference configuration
and an equal number n of π orbitals. CASPT2 and CC employ the
ANO-L-VDZP basis, and QMC the D+ basis. The ground-state
DFT/B3LYP geometries are used. b Constant level shift of 0.2 au.

Table 3. Single-State (SS) and MS-CASPT2, and DMC
Vertical Excitations (S1) Energies (eV) of the 11-cis Retinal
(E) Chromophorea

Method Geometry Eexc

SS-CASPT2 0-IPEA S-IPEA
DFT/BLYP 1.81c 2.12
DFT/B3LYP 1.89c 2.20
MP2 1.92c 2.24
CASSCFb 2.30c 2.65c

MS-CASPT2
DFT/BLYP 1.96c 2.22
DFT/B3LYP 2.03c 2.30
MP2 2.08c 2.35
CASSCFb 2.42c 2.72c

DMC/D+
DFT/BLYP 2.32(3)
DFT/B3LYP 2.41(3)

Expt.92 2.05-2.34d

a The experimental estimate is also listed. The geometries are
optimized with the cc-pVDZ basis, and the CASPT2 calculations
employ a CAS(12,12) expansion and the ANO-L-VDZP basis.
b CASSCF(12,12)/6-31G(d) geometry from ref 27. c Constant level
shift of 0.2 au. d Termination with two methyl groups, -N(CH3)2

+.

Figure 3. Ground-state bond lengths (Å) of the 11-cis
chromophore (E) optimized using MP2, DFT/BLYP, and
B3LYP and the cc-pVDZ basis. The CASSCF(12,12)/6-31G(d)
geometry is from ref 27. The C5-C6-C7-C8 dihedral angles
are -29.7°, -33.5°, -40.5°, and -68.8° in BLYP, B3LYP,
MP2, and CASSCF, respectively.
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ibility with the CASPT2 excited-state geometrical optimiza-
tions presented in the next sections, where we employ the
MS approach, as it is not known a priori whether the
molecule will encounter a conical intersection region during
relaxation.

We now compare our theoretical results with gas phase
photodestruction experiments which are available for the 11-
cis model terminated with two methyl groups.92 The
experimental absorption spectrum displays two main peaks
at 2.05 eV (610 nm) and 3.18 eV (390 nm), which have
been interpreted as the location of the vertical excitations to
the two lowest singlet excited states (S1 and S2). The lowest-
energy band (S1) displays however a broad shoulder which
has a secondary peak at 2.34 eV (530 nm) and is only about
20% lower in intensity than the absorption maximum at 2.05
eV. It has been previously suggested33 that the vertical
transition lies in the broad shoulder at higher energies and
corresponds to the secondary peak at 2.34 eV. We further
note that the adiabatic and not the vertical transition may be
related to the lowest-energy feature at 2.05 eV. This
interpretation of photodestruction experiments for retinal
chromophores has in fact a parallel in the theoretical
findings66 and recent experimental reassessment93 of pho-
todestruction experiments of the photosensitive green fluo-
rescent protein chromophore. We therefore report a range
of energies between 2.05 and 2.34 eV as a more conservative
experimental estimate of the vertical excitation of retinal
chromophores. Our DMC, single-state, and MS-CASPT2
excitations are compatible with the experimental estimate,
especially if we consider the remaining uncertainty on the
ground-state DFT and MP2 geometries and the fact that we
did not include vibrational effects. Setting the IPEA shift to
zero moves the vertical CASPT2 excitation toward the lower
end of the experimental range, namely, the possible location
of the adiabatic transition, and the excitation even falls below
the lower bound in the case of the single-state approach. We
note that we could not perform CC calculations for the 11-
cis model with the available codes and that the best CC2
result of 2.10 eV found in the literature40 is about 0.20 eV
lower than the CASPT2 excitation we compute on a similar
B3LYP geometry. This discrepancy is rather puzzling since
the CASPT2 and CC2 excitation energies agree rather well
for all smaller models and could be due to the particular
basis used in ref 40 or to the different response of CC2 and
CASPT2 to the addition of the �-ionone ring missing in the
smaller models.

6. In-Plane Geometrical Optimization

We optimize the in-plane excited-state geometries of the
retinal chromophore models (A, B, C, D) using the CASSCF,
MS-CASPT2, CC2, CCSD, and VMC approaches. We
always follow the second root in the optimization and use
two roots in the SA-CASSCF and MS-CASPT2 calculations
as well as in the optimization of the VMC wave functions.
The CAS expansion correlates all π electrons and an equal
number of orbitals with the exception of models A and B,
where we include more virtual orbitals to be consistent with
previous calculations.15 As shown in ref 22 for model A, a
smaller active space of 6 electrons in 6 orbitals yields

equivalent CASSCF results. We impose the planarity of the
conjugated chain by constraining the optimization to Cs

symmetry, and unless otherwise stated, we start the excited-
state optimization from the DFT/B3LYP ground-state
geometry.

6.1. Dependence on Basis Set and Other Parameters. In
all geometrical optimizations, we employ the cc-pVDZ basis
set. As shown in Figure 4a for the minimal model (A), the
effect of using the larger cc-pVTZ basis set is to systemati-
cally shorten all ground- and excited-state CASPT2 bond
lengths by about 0.010-0.015 Å without affecting the bond
length pattern, as was also previously observed in ref 20.
Differently from the case of the excitation energies, the
ANO-L-VDZP basis yields comparable bond lengths to the
cc-pVDZ value, which only disagree by 0.06 and 0.07 Å in
the C11-C12 and C12-C13 excited-state bonds, respectively.
A similar behavior as a function of the size of the basis set
is also found for the CASSCF and DFT bond lengths,
although the shortening in not as pronounced as for the
CASPT2 results. In Figure 4b, we compare the VMC results
obtained with the D and D+ basis sets, which are almost
equal. Interestingly, the VMC results obtained with the D
(cc-pVDZ) basis are very close to the CASPT2/cc-pVTZ
results, so the presence of the Jastrow factor appears to
compensate for the use of a smaller basis.

Figure 4. Bond lengths (Å) of the PSB3(0) model (A)
optimized in the ground and excited states with the CASPT2
(panel a) and VMC (panel b) approaches and different basis
sets. The CASPT2 geometries are computed with the cc-
pVDZ, cc-pVTZ, and ANO-L-VDZP basis, and the VMC results
with the D and D+ basis sets. In panel a, the VMC/D bond
lengths are also shown for comparison. Planar symmetry is
imposed.
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The VMC geometrical optimization is very sensitive to
the quality of the trial wave function as shown for model B
inFigure5.Westart theoptimization fromtheFranck-Condon
region, and if we optimize only the Jastrow and CI
coefficients within VMC, we obtain a VMC minimum which
corresponds to the bond-inverted CASSCF geometry. On the
other hand, if we include the orbital parameters in the VMC
optimization, we obtain a very different VMC geometry
which agrees with the minimum obtained by the other highly
correlated approaches as shown below. Thus, in the VMC
geometrical relaxation, we need to optimize all wave function
parameters. We also note that preliminary calculations with
DMC gradients indicate that the use of DMC does not mend
the behavior of VMC when the DMC gradients are computed
from wave functions with only optimal Jastrow and CI
parameters.

6.2. Results. To understand how the geometry of the
retinal chromophore is modified upon photoexcitation, we
begin with the minimal model (A) and show in Figure 6a
the ground-state bond lengths as obtained with the CASSCF,
CASPT2, MP2, VMC, and DFT/B3LYP approaches. All
methods agree in predicting a strong single-double bond-
length alternation with a short, double bond between the
central carbons. The MP2 and CASPT2 geometries are
almost exactly equal since the ground state is dominated by
a single configuration (89% weight) and CASPT2 is equiva-
lent to MP2 for a single-reference CASSCF wave function.
The DFT/B3LYP bond lengths deviate from the MP2 and
CASPT2 values by at most 0.01 Å in the two single bonds.
The VMC bond lengths are shorter by about 0.015 Å, and
this can be explained as a basis set effect as discussed above.
Only the CASSCF approach is at variance with the other
approaches in the sense that it exhibits a greater bond length
alternation, as has also been observed for larger retinal
models.20,26 The difference between CASSCF and the other
approaches is on the order of 0.01-0.02 Å for model A but
grows as the model becomes larger (see Figure SI-5,
Supporting Information). In view of these results, we find
that the DFT/B3LYP approach offers a good balance between
performance and computational cost for the computation of
the ground state structure.

The excited-state bond lengths of the minimal model (A)
are shown in Figure 6b. The CASSCF approach exhibits two
almost degenerate minima, while all other approaches yield
only one minimum. The first CASSCF minimum (solid line)
displays a lengthening of almost all bonds and a largely
preserved bond-length pattern as compared to the ground
state. The second CASSCF minimum (dashed line) is about
0.022 eV higher in energy than the other CASSCF minimum
and displays a pronounced bond-length inversion with respect
to the ground state. Importantly, we note that the first
minimum is found when starting the optimization from the
ground-state geometry, while we started from a geometry
biased toward bond inversion to find the second one. In
addition, regardless of the starting point, we only converge
to a single CASSCF minimum, corresponding to the first
minimum, if the ANO-L-VDZP basis set is used instead of
the cc-pVDZ basis set. For the two CASSCF minima
obtained with the cc-pVDZ basis, we report the wave
function character and orbitals in the Supporting Information.

As for the other methods, we observe that most bond
lengths become longer and more similar in the excited state.
The CC2 and VMC structures largely preserve the short-long
bond-length pattern of the ground state as observed for the
first CASSCF minimum, while CASPT2 and CCSD give
three middle bonds of almost equal length. At the CASPT2
level, we also investigated extensively the existence of a
bond-inverted minimum by starting the excited-state opti-
mization from geometries biased toward bond inversion but

Figure 5. VMC bond lengths (Å) in the excited state of the
PSB3(1) model (B) computed with two different wave func-
tions. In one case, only the CI and Jastrow parameters are
optimized within energy minimization in a state-average
fashion while, in the other, all (orbital included) parameters
are optimal. Planar symmetry is imposed.

Figure 6. Bond lengths (Å) of the PSB3(0) model (A)
optimized in the ground (panel a) and excited (panel b) states
with the CC2, CCSD, CASSCF, CASPT2, and VMC methods.
The DFT/B3LYP and MP2 ground states are also shown. The
cc-pVDZ basis is used and planarity imposed. CASSCF
displays two minima in the excited state.
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could not locate a second minimum. Our CASSCF and
CASPT2 results are consistent with the study by Page and
Olivucci20 using the 6-31G(d) basis set.

Surprisingly, adding a methyl group to the minimal model
(A) to generate model B has profound effects on the bond
lengths, as shown in Figure 7. In particular, there is now
only one CASSCF minimum which exhibits a pronounced
bond length inversion as compared to the ground state and
is at variance with the results obtained with all other
approaches. The differences among the results obtained with
the other methods is instead significantly smaller. The CC2
geometry of model B is similar to model A with a
lengthening of most bonds and a largely preserved bond-
length pattern with respect to the ground state. Similarly to
model A, CASPT2 yields close to equal bond lengths for
the three middle bonds, with the C12-C13 bond being the
longest, while CCSD gives the middle C11-C12 bond as being
slightly larger. The VMC minimum displays a similar bond
length pattern as CASPT2 but shorter absolute bond lengths,
which can be explained as a basis set effect as explained
above.

When going to larger models, we find that CASSCF yields
only one minimum where the short-long bond-length pattern
is inverted with respect to the ground state as in the case of
model B. In Figure 8, we show the excited-state bond lengths
for model C and observe that the CASSCF minimum with
bond-length inversion is at variance with all other ap-
proaches. The CASPT2 and CC2 are very close to each other
and exhibit a largely preserved bond length pattern and
overall lengthening of most bonds with respect to the ground
state. The CCSD geometry displays no distinct bond-length
pattern and an overall lengthening of most bonds, and the
VMC gives a similar bond-length pattern as CCSD but
shorter bond lengths as seen above.

In Figure 9, we show the excited-state bond lengths of
model D, which has the full conjugated chain of the retinal
chromophore and only misses the �-ionone ring. For this
model, we only show the bond lengths obtained with the
CASSCF and CASPT2 approaches. In addition, we also show

CASPT2 results obtained with the ANO-L-VDZP basis set.
As for models B and C, CASSCF gives a structure
characterized by bond-length inversion with respect to the
ground state. However, it is now the CASPT2 approach
which gives two profoundly different minima. The first
CASPT2 minimum (solid line) is similar to the CASPT2
geometry of model C with a preserved bond length pattern
and overall lengthening of most bonds as compared to the
ground state. The second CASPT2 minimum (dashed line)
is very close to the CASSCF geometry and is about 0.045
eV higher in energy than the first CASPT2 minimum.
Importantly, we note that the first CASPT2 minimum is
found when starting from the ground-state geometry, while
the second CASPT2 minimum is reached when starting from
the CASSCF excited-state geometry. Moreover, the existence
of this second minimum is dependent on the choice of the
basis: The two CASPT2 minima obtained with the cc-pVDZ
basis are also found when the 6-31G(d) basis set is used
(not shown in the figure), while only the first CASPT2
minimum with no bond length inversion is obtained regard-
less of the starting geometry when the ANO-L-VDZP basis

Figure 7. Bond lengths (Å) of the PSB3(1) model (B)
optimized in the excited state with the CC2, CCSD, CASSCF,
and CASPT2 methods. The DFT/B3LYP ground-state bond
lengths are also shown. The cc-pVDZ basis is used and planar
symmetry imposed. Differently from model A without the
methyl (Figure 6), CASSCF only displays here one minimum.

Figure 8. Bond lengths (Å) of the PSB4(1) model (C)
optimized in the excited state with the CC2, CCSD, CASSCF,
CASPT2, and VMC methods. The DFT/B3LYP ground-state
bond lengths are also shown. The cc-pVDZ basis is used and
planar symmetry imposed.

Figure 9. Bond lengths (Å) of the PSB5(1) model (D)
optimized in the excited state with the CASSCF and CASPT2
methods and the cc-pVDZ basis. We also show the CASPT2/
ANO-L-VDZP results. CASPT2 displays two minima in the
excited state with the cc-pVDZ basis and only one minimum
with the ANO-L-VDZP basis. The DFT/B3LYP ground-state
bond lengths are also shown. Planar symmetry is imposed.
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set is used. These results seem to indicate that the bond-
inverted CASPT2 structure is a spurious local minimum with
no chemical significance, which is not reached when the
optimization is started from the ground-state structure, that
is, upon photoexcitation. We finally observe that a previous
CASSCF and CASPT2 study by Page and Olivucci20 using
the 6-31G(d) basis set reports an excited-state CASPT2
structure of model D characterized by bond inversion. This
finding can be easily explained by the fact that they started
the CASPT2 geometrical optimization from the excited-state
CASSCF minimum and were thus not able to reach the other
minimum.

In summary, we see that the CASSCF excited-state
geometries are at variance with the CASPT2, CC, and QMC
results with the exception of the minimal model (A) where
CASSCF displays two minimum structures, one of which is
in agreement with the geometries obtained by the other
approaches. The minimal model appears however to be a
special case since the addition of a single methyl group in
model B changes the picture and breaks the agreement
between CASSCF and the other approaches. The inadequacy
of CASSCF in describing in-plane excited structures of the
retinal chromophore is also apparent from the results obtained
for all the larger models.

7. Out-of-Plane Relaxation

7.1. Minimum Energy Paths. We determine the excited-
state MEP of the retinal models B and C using the CASSCF
and CASPT2 approaches. Ground- and excited-state CASS-
CF MEPs have previously been calculated for several retinal
models,15,16,18,22,33 and the common assumption is that the
effect of dynamical correlation can be in part recovered by
simply computing the CASPT2 energy on the final CASSCF
geometries (CASPT2//CASSCF). Our aim here is to assess
the validity of this assumption for the retinal chromophores
by comparing the CASSCF and CASPT2 MEPs. To the best
of our knowledge, the CASPT2 method has not been used
to determine MEPs for the retinal models since CASPT2
energy gradients are substantially more expensive than
CASSCF ones and still considered too costly for the routine
investigation of these systems.38,55 In the literature, we only
found a CASPT2 study performing a constrained excited-
state potential energy surface scan for the minimal model
(A).41

The MEP calculations are performed using the steepest
descent path optimization scheme implemented in MOLCAS
7.2 and described in ref 94. The procedure consists of a series
of constrained geometrical optimizations in mass-weighted
coordinates and yields the intrinsic reaction path. In each
optimization, the potential energy is minimized on a hyper-
sphere of a chosen radius, centered at a given reference
structure. The CASSCF and CASPT2 ground-state geom-
etries define the Franck-Condon point and initial reference
structure for the corresponding MEP calculations. The radius
of the hypersphere is either 0.06 or 0.1 au for model B and
0.1 au for model C. Upon convergence of the constrained
geometrical optimization, the obtained minimum structure
on the hypersphere is taken as new reference structure, and

the procedure is iterated. As in the planar optimizations, the
state averaging in the CASSCF and CASPT2 includes only
the ground (S0) and first excited state (S1) since the next
state is significantly higher in energy and does not play an
active role (see Supporting Information).

We define the torsional angle θ as the C10-C11-C12-C13

dihedral angle and the torsional angle γ ) 180° - φ where
φ is the C11-C12-C13-C14 dihedral angle and γ is taken in
the range from -180° to +180°. Both torsional angles have
a value of 0° in the ground state and indicate the deviation
for planarity. These angles correspond to the torsional motion
around the C11-C12 and C12-C13 bonds which are double
and single in the ground state, respectively. We note that
geometries corresponding to the angles (θ, γ) and (-θ, -γ)
are equivalent since the molecules are planar in the ground
state and there is no preferential direction for torsion.

In Figure 10, we show the results from the MEP calcula-
tion for model B and report the energies, the bond lengths
for the formal double and single bonds along the conjugated
chain, and the torsional angle θ for the central C11-C12 cis
bond. The CASSCF MEP is characterized by two sequential
modes. The initial relaxation is toward a planar structure
similar to the CASSCF Cs minimum discussed above, which
exhibits bond-length inversion with respect to the ground
state, with the central C11-C12 bond being the longest in
the excited state. This in-plane motion is followed by a
torsion around the central bond toward an angle θ of about
65°, where a conical intersection region is encountered and
the excited-state MEP is stopped. The CASSCF MEP is
barrierless, while there is a small barrier of about 0.1 eV in
the CASPT2//CASSCF energies.

The CASPT2 MEP is distinctly different from the CASS-
CF one even though the final outcome of the photoisomer-
ization process is similar. The first difference is that the initial
planar relaxation is toward a structure similar to the CASPT2
Cs minimum, which is therefore not characterized by bond
inversion. The three middle bonds become almost equal, and
the C12-C13 bond, which is long in the ground state, is the
longest in the excited state. The subsequent torsional motion
is around the central C11-C12 bond where we observe a
plateau in the excited-state energy up to an angle θ of about
22°. When θ is about 17°, the three middle bonds begin to
change dramatically: The central C11-C12 bond lengthens
while the two neighboring bonds shorten, so their lengths
become similar to those of the CASSCF MEP. The excited-
state energy starts then decreasing at a faster pace, and the
torsional motion continues toward θ ≈ 69° where a conical
intersection region is encountered and the excited-state MEP
is stopped. A similar behavior is observed in the constraint
excited-state optimization of the minimal model (A) in ref
41, where an energy plateau is observed for θ between 0°
and 25°, followed by a sudden drop in the energy and change
in geometry between 25° and 30°. In addition, studies on
the minimal model (A) have found that conical intersection
geometries obtained with CASSCF and CASPT2 are very
similar.19,20,23 This is consistent with the results obtained
here as the CASSCF and CASPT2 MEPs show similar
structures near the conical intersection.
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To investigate the effect of lengthening the conjugated
chain, we compute the MEP of model C, as shown in Figure
11. The CASSCF and CASPT2 approaches give a different
isomerization mechanism, and the relevant torsional angles
are not only θ around the C11-C12 bond (formal double)
but also γ around the C12-C13 bond (formal single). The
CASSCF MEP is similar to the one of model B and is
characterized by two sequential modes, namely, an initial
in-plane bond-length inversion followed by a torsional
motion around the C11-C12 bond until the conical intersection

region is encountered at θ ≈ 88°. There is also a small torsion
around the C12-C13 bond with an angle γ ≈ 13° at the end
of the MEP. Differently from model B, the CASPT2//
CASSCF excited-state energies show no barrier.

The CASPT2 MEP is rather different from the CASSCF
one. The initial relaxation is toward a planar structure which
is similar to the CASPT2 Cs minimum and exhibits a largely
preserved bond-length pattern with respect to the ground state

Figure 10. CASSCF and CASPT2 excited-state MEPs for
the PSB3(1) model (B), obtained with a CAS(6,9) expansion
and the cc-pVDZ basis. We report the CASPT2//CASSCF and
CASPT2//CASPT2 ground- and excited-state energies (a), the
bond lengths for formal double (b) and single bonds (c), and
the absolute value of the torsional angle θ around the central
C11-C12 bond (d). All energies are relative to the ground-state
energies of the CASSCF and CASPT2 ground-state geom-
etries, which are the starting point of the corresponding MEPs.

Figure 11. CASSCF and CASPT2 excited-state MEPs for
the PSB4(1) model (C), obtained with a CAS(8,8) expansion
and the cc-pVDZ basis. We report the CASPT2//CASSCF and
CASPT2//CASPT2 ground- and excited-state energies (a), the
bond lengths for formal double (b) and single bonds (c), and
the absolute values of the torsional angles θ and γ around
the C11-C12 and the C12-C13 bonds, respectively (d). For
CASSCF, θ < 0° and γ < 0°, while, for CASPT2, θ > 0° and
γ < 0°. All energies are relative to the ground-state energies
at the CASSCF and CASPT2 ground-state geometries, which
are the starting point for the corresponding MEPs.

1286 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Valsson and Filippi



and an overall lengthening of most bonds. This in-plane
motion is followed by a concerted increase of θ (also active
in the CASSCF isomerization) and γ up to a MEP coordinate
of 0.5 au. Beyond this point, γ keeps increasing while θ
changes only slightly, so the molecule is twisting only around
the C12-C13 bond (formal single), while all bond lengths
remain almost constant. At a MEP coordinate of 1.5 au (γ
≈ -49°), a barrier is encountered and the MEP optimization
cannot proceed further. Both the ground- and excited-state
energies vary very little along the whole MEP, and both states
display a long plateau. At the final MEP coordinate, the
excited-state energy is only 0.20 eV lower than the
Franck-Condon point and the ground-state energy higher
by about 0.44 eV, so the vertical excitation has decreased
from 3.44 to 2.80 eV.

In order to compare the CASSCF and CASPT2 isomer-
ization mechanisms with the CC2 results, we also perform
straight geometrical excited-state optimization with all three
approaches since the code we use to perform CC2 calcula-
tions does not have the capability of computing MEP. For
consistency, all optimizations are started from the DFT/
B3LYP ground-state geometries. For model B, all the
approaches yield isomerization around the central C11-C12

bond and proceed toward the same final point in the conical
intersection region. However, from the CASSCF and CASPT2
MEP results, we know that the isomerization proceeds rather
differently even though the final structures are equivalent.
Therefore, we cannot infer too much about the behavior of
CC2 from the agreement of the method on the final structure
of model B but proceed with model C, where the final
outcomes of the CASSCF and CASPT2 MEP are distinc-
tively different.

We show the optimal CC2 and CASPT2 excited-state
structures of model C in Figure 12. We observe that CC2
isomerizes around the C12-C13 bond as CASPT2, while
CASSCF is consistent with the MEP behavior and yields
isomerization around the C11-C12 bond (not shown in the
figure). The CASPT2 optimal geometry has a torsional angle
γ ) 43.6° and is energetically between the MEP geometries
at 1.3 and 1.4 au. Even though the isomerization is around
the same bond, the optimal CC2 torsional angle of γ )
100.1° is however significantly different from the CASPT2
value. To understand this difference, we investigate the
possible existence of a barrier in the CASPT2 potential
energy surface and perform a constrained excited-state
geometrical optimization in CASPT2 by varying the angle
γ between 45° and 85°. The resulting excited-state energies
are shown in Figure 13 and display a small barrier of about
0.03 eV. If we perform an excited-state CASPT2 optimiza-
tion starting from the constrained structure just beyond the
barrier, we recover a minimum excited-state structure which
has a torsional angle of γ ) 112.7° (Figure 12c) and is in
much closer agreement with the CC2 optimal geometry. The
CASPT2 excited-state energy is only 0.09 eV lower than
the value for the minimal structure at γ ) 43.6°. An analysis
of the CASPT2 geometries along the constrained path of
Figure 13 reveals that the origin of the barrier is due to steric
interactions of the methyl group with the nearby hydrogens
since the main difference between the geometries before and

after the barrier is a small rotation of the methyl group. We
also note that a previous CC2 investigation on model C
without the methyl group [PSB4(0)] found a small barrier
of 0.01 eV at γ ≈ 30° and an absolute minimum at about
100°.29 Therefore, the apparent presence/absence of a barrier
in the CASPT2/CC2 optimization may possibly be due to
the particular geometrical optimization algorithm used in the
different codes or to slightly different initial configurations
in the optimization procedure.

Figure 12. CC2 (a) and CASPT2 (b) excited-state optimal
structures of the PSB4(1) model (C), obtained by starting the
optimization from the DFT/B3LYP ground-state geometry. The
CC2 torsional angles are γ ) 100.1° and θ ) 2.6°, while
CASPT2 yields γ ) 43.6° and θ ) -10.5°. The CASPT2
structure (c) is obtained by starting the optimization from the
constrained structure just beyond the barrier (γ ) 75°) in
Figure 13 and has angles γ ) 112.7° and θ ) 8.1°.

Figure 13. CASPT2 excited-state energies of the PSB4(1)
model (C) optimized at constrained torsional angles, γ, from
45° to 85°. The energy is shown relative to the ground-state
value at the starting point of the CASPT2 MEP (Figure 11). A
CAS(8,8) expansion and the cc-pVDZ basis set are used.
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7.2. Reactive versus Nonreactive Paths. The CASPT2
MEP of the retinal model C gives isomerization around a
single bond, does not lead to a conical intersection region,
and corresponds to a nonreactive path. To investigate whether
a rotation around a double bond may give a reactive path
and lead to a photoproduct, we optimize the excited-state
CASPT2 geometry of model C at constrained torsional
angles, θ, around the C11-C12 cis bond and show the results
in Figure 14.

At θ ) 0°, the molecule is unstable toward single-bond
rotation, which is not surprising since the CASPT2 MEP
gives isomerization around the same single bond and is

always characterized by small values of the angle θ (less
than 10°). The resulting constrained geometry has an angle
γ of about 51° and is in fact very similar to the last point of
the CASPT2 MEP. If we increase θ from 0° to 35°, the angle
γ diminishes while the bond lengths become closer to the
values in the initial part of the CASPT2 MEP. Concurrently,
the excited-state energy rises and displays a small barrier of
about 0.06 eV, which peaks at θ ) 35°. The barrier is
overcome at θ ) 40°, where we suddenly observe bond
inversion and a large increase in the ground-state energy and
a decrease in the excited-state energy. The degree of bond
inversion is however not as pronounced as in the CASSCF
MEP, and the geometries are characterized by a larger
residual rotation around the single bond. If we further
increase θ, the excitation energy continues to decrease, and
we encounter a conical intersection region. The CASPT2
isomerization around the double bond corresponds therefore
to a reactive path which is characterized by a small barier
and eventually leads to a conical intersection region whose
topology is rather similar to the CASSCF one.

To assess the behavior of the CC approach, we also
perform constrained CC2 optimization around the double
bond. The CC2 optimization at small values of θ leads to a
single-bond rotation with very large values of γ (greater than
90°). This is compatible with the previous observation that
the small steric barrier observed in CASPT2 (see Figure 13)
is practically absent in the single-bond isomerization at the
CC2 level. If we increase θ up to 60° and always start
the optimization from the optimal constrained geometry at
the previous angle, we cannot sufficiently reverse the large
rotation around the single bond and the excited-state energy
increases instead of decreasing. To assess the existence of a
path leading to a conical intersection, we follow therefore a
different procedure and simply compute the CC2 energies
on the optimal constrained CASPT2 geometries of Figure
14. We find that the ground- and excited-state CC2 energies
are in very good agreement with the CASPT2 values up to
θ ) 45°. As expected and also discussed in ref 37, CC2
encounters convergence problems at larger values of θ as
the system is approaching the conical intersection region.
Consequently, the use of CC2 confirms the existence of a
reactive path which corresponds to double-bond rotation,
displays a small barrier, and leads to lower excited-state
energies. However, the approach is not suitable for following
the system through the conical intersection toward a
photoproduct.

8. Discussion and Conclusions

We have presented a systematic investigation of model retinal
chromophores in the gas phase with special emphasis on
geometrical relaxation in the excited state. One aim of the
work is to assess the relative performance of very diverse
computational approaches as CASSCF, CASPT2, CC, and
QMC in describing conformational changes in the excited
states. The other major goal is to determine the validity of
the generally accepted picture resulting from CASSCF
calculations that the excited-state relaxation of retinal chro-
mophores proceeds via bond inversion and torsional motion
around formal double bonds. Differently from previous

Figure 14. CASPT2 excited-state optimization of the PSB4(1)
model (C) at constrained torsional angles, θ, from 0° to 60°.
We report the CASPT2//CASPT2 ground- and excited-state
energies (a), the bond lengths for formal double (b) and single
bonds (c), and the absolute value of the torsional angle γ
around the C12-C13 bond (d). The quantities computed at the
CASPT2 Franck-Condon (FC) point are also shown in all
panels. A CAS(8,8) expansion and the cc-pVDZ basis set are
used. For the torsional angle, θ < 0° and γ > 0°.
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studies, we employ approaches such as CASPT2 and QMC,
which are superior to CASSCF as they offer a balanced
description of both dynamical and static correlations.

We have also computed the vertical excitations of the
retinal models using CASPT2, CC, and QMC, and we begin
our discussion with a few comments on these results. We
find that the CC and DMC methods give similar excitations
for all retinal models and that the CASPT2 excitations are
quite sensitive to the internal parameters of the theory. In
particular, the excitations computed with the IPEA zero-order
Hamiltonian are in close agreement with the CC and DMC
values, while resorting to the original CASPT2 formulation
lowers the excitations by as much as 0.3 eV. The IPEA
Hamiltonian was developed to give on average more accurate
excitations,79 and its use is here corroborated by the good
agreement with other highly correlated approaches. We also
find that the IPEA excitations are more robust as they
converge faster with the size of the CAS expansion and are
less sensitive to the use of a single- or multistate approach.

For a comparison with experiments, we consider the 11-
cis chromophore where gas phase photodestruction spec-
troscopy experiments are available.92 To interpret the
complex absorption spectrum of retinal chromophores, we
follow the recent reassessment of similar experiments on a
different chromophore93 and suggest that the lowest-energy
peak may correspond to the adiabatic transition while the
vertical lies in the broad shoulder around 2.34 eV. Our
CASPT2 and DMC vertical excitations computed on the DFT
and MP2 ground-state geometries span an energy range of
2.2-2.4 eV, which is consistent with this experimental
estimate especially given that we did not include vibrational
effects which are strong in this system. The excitations
computed on the CASSCF geometry are instead significantly
higher but can be discarded as our CASPT2 optimizations
of planar retinal models show that DFT and MP2 give more
accurate geometries than the CASSCF approach.

We discuss now the core of our work and analyze the
performance of the various theoretical approaches in describ-
ing the excited-state relaxation of retinal models. Our in-
plane optimization of the retinal chromophores indicates that
the excited-state structures optimized with CASPT2, CC2,
CCSD, and VMC agree rather closely, while they are at
variance with the CASSCF geometries. The CASSCF
approach gives strong bond inversion in the excited state,
which is not observed when optimizing the structures with
the other approaches. According to CASPT2, CC, and VMC,
photoexcitation weakens all bonds, which stretch and become
partly more similar in length while preserving the general
bond-length pattern of the ground state. To investigate a
nontrivial out-of-plane relaxation, we need to consider a
chromophore larger than the model with three double bonds
(A or B) since we find that model B isomerizes around the
central bond at both the CASPT2 and CASSCF levels, even
though the initial skeletal relaxation proceeds rather differ-
ently in the two approaches. Therefore, we investigate the
minimal energy path for the out-of-plane motion of model
C with four double bonds and find that excited-state
relaxation at the CASPT2 level proceeds preferentially via
a torsional motion around a bond which is formally single

in the ground state in agreement with the previous CC
calculations by Send and Sundholm.29,31,35,37 This torsional
motion stops at an angle of about 45° and does not lead to
a conical intersection region. On the other hand, in the
CASSCF approach, bond inversion is followed by torsion
around the cis bond, and the molecule is immediately
funneled into a conical intersection region from where
isomerization can proceed toward the trans product. To
investigate the existence of a reactive path at the CASPT2
level, we also consider the constrained excited-state opti-
mization of model C around the cis double bond and find a
small barrier to isomerization at rather large angles of
rotation. Beyond this barrier, the model finally reaches the
conical intersection region similarly to the CASSCF approach.

In summary, our CASPT2 results support the picture of a
very flexible retinal chromophore in the excited state, where
photoexcitation lengthens all bonds so that torsional motion
around nearly any bond may contribute to the dynamics.
These findings are consistent with recent CC studies37 which
show that retinal models in the excited state have small or
vanishing torsional barriers around both formal single and
double bonds. This picture must be contrasted to the results
of CASSCF calculations, which give a stiff chromophore
that can only twist around formal double bonds. The flex-
ibility of the excited chromophore in the gas phase observed
in CASPT2 and CC calculations is also compatible with the
observation in solution experiments of the existence of
multiple minima possibly corresponding to different torsional
conformations.67 Moreover, it has been proposed that the
multiexponential decays observed in solution are related to
the possible presence of multiple excited-state paths, some
of which are reactive and lead to the photoproduct via the
crossing of a conical intersection region, while others are
nonreactive, do not lead to conical intersection, and are
dominant in solution.67 This interpretation is compatible with
our observation of torsional motion around formal single
bonds, which is favored starting from the Franck-Condon
region, stops at intermediate angles, and does not lead to
photoproducts via a conical intersection.

Finally, our results demonstrate the importance of includ-
ing a balanced description of dynamical and static correlation
in the computation of the excited-state gradients. The
favorable comparison with the CASPT2 approach indicates
that the CC2 method is a useful tool for the study of retinal
systems (at least far from the conical intersection region)
and that QMC can give accurate gradients when all param-
eters in the wave function are optimized in energy minimiza-
tion. Our results raise serious concerns about the common
use of the CASSCF approach to investigate the geometrical
relaxation of retinal systems and show that computing single-
point CASPT2 excitations on CASSCF geometries to
partially include the neglected dynamical correlation is
generally not a valid procedure to obtain reliable potential
energy surfaces. In conclusion, our findings call for a
reinvestigation of the photoisomerization mechanism of
retinal chromophores in the gas phase as well as in the protein
environment with higher-level methods than the CASSCF
approach.
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(46) Andruniów, T.; Ferré, N.; Olivucci, M. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 17908–17913.

(47) Röhrig, U. F.; Guidoni, L.; Laio, A.; Frank, I.; Rothlisberger,
U. J. Am. Chem. Soc. 2004, 126, 15328–15329.
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Abstract: The electrostatic and hydrophobic interactions that dominate the behavior of proteins
and other biomolecules exhibit fundamentally different thermodynamic characteristics, and the
correct reproduction of these differences is likely to be an important requirement for models
that aim to predict the thermodynamics of protein stability and protein-protein interactions. To
assess the abilities of some current models to capture these differences, we report here the
results of molecular dynamics (MD) simulations examining the association of acetate-methyl-
ammonium and methane-methane pairs at 11 different temperatures from -12.5 to 112.5 °C.
Simulations were performed using two popular water models (TIP3P and TIP5P), with a total
simulation time of 22 µs. With both water models, we find that the acetate-methylammonium
salt-bridge interaction is significantly more stabilized by high temperatures (e.g., over the range
25 to 100 °C) than is the methane-methane hydrophobic interaction. At low temperatures
however, the two models exhibit quite different behavior, with the TIP5P model predicting little
change in the relative stabilities of the two types of interaction in the range -12.5 to 50 °C; this
surprising result has potential implications for understanding adaptation to life in psychrophilic
organisms. Fitting the ∆G data to the Gibbs-Helmholtz equation allows the ∆H, ∆S, and ∆Cp

of interaction to be obtained, thereby yielding a complete thermodynamic characterization of
the different types of interaction in the temperature range 0 to 100 °C: despite significant
quantitative differences, both water models correctly capture the opposite signs of the ∆Cp of
electrostatic and hydrophobic interactions. Finally, we show that at high temperatures a Poisson-
based continuum solvation model provides good agreement with the explicit-solvent MD results,
but only when the atomic radii used in the continuum calculations are scaled with temperature.

Introduction
In order to fully understand the thermodynamics of protein
folding and protein-protein interactions, it is important to
know the basic thermodynamic characteristics of the various
forces, such as charge-charge and hydrophobic interactions,
that drive these processes. A comprehensive thermodynamic
characterization of these fundamental types of interactions
requires, in turn, not only knowledge of the attendant change
in free energy (∆G) but also the changes in the enthalpy
(∆H), the entropy (∆S), and the heat capacity (∆Cp)

throughout the temperature range of interest. Since there are
“extremophilic” organisms that can survive and thrive at
temperatures of 0 °C1-3 and others that live happily at ∼100
°C,4-7 a comprehensive understanding of biomolecular
thermodynamics in aqueous solution requires us to consider
a temperature range of 0° to 100 °C.

Experimental methods such as differential scanning cal-
orimetry and isothermal titration calorimetry have been
widely used to study the thermodynamics of protein
folding8-14 and protein-protein interactions,15-21 respec-
tively, and correlations of the resulting data with structural
characteristics of proteins have allowed very useful estimates* Corresponding author e-mail: adrian-elcock@uiowa.edu.
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to be obtained of, for example, the heat capacity change
associated with the burial of hydrophobic surface area.8,22-26

Given, however, that many different types of interactions
act simultaneously to determine the thermodynamic proper-
ties of proteins, it can be difficult to unambiguously resolve
the exact contribution made by a particular type of interac-
tion.25 One profitable way to circumvent this problem is to
apply the same kinds of experimental methods to the study
of small molecules that are representative of the components
of proteins.8,27-38 Even here, however, there can be dif-
ficulties of interpretation; it is not completely clear, for
example, how good a model the commonly used N-
methylacetamide is as a model of the polypeptide backbone
of proteins.38

An alternative but complementary approach to direct
experimentation is to use molecular simulation methods to
directly measure the thermodynamic features of chosen types
of interactions. Although computational results are always
subject to concerns about the quality of the underlying force
fields,39,40 the simulation approach has the significant
advantage of allowing contributions made by specific types
of interactions to be resolved in a highly detailed and
structurally unambiguous way: thermodynamic profiles can,
for example, be obtained as a function of the distance
between the interacting groups in a way that would be
difficult, if not impossible, to achieve experimentally. A very
large number of molecular simulation studies have already
addressed the thermodynamics of hydrophobic associations
in this way,41-56 an abundance of literature that reflects the
hydrophobic interaction’s apparently dominant role in driving
protein folding.57 The first computed free energy profile for
the association of two hydrophobic molecules in explicit solvent
was reported many years ago.58 Subsequent studies51,55 explored
the temperature dependence of the interaction and found, in
common with experiment,59,60 that it became stronger as the
temperature increased. Only comparatively recently however
have simulation studies been conducted at a sufficient number
of different temperatures to allow the ∆Cp of hydrophobic
association to be computed precisely.50,52-54 Continuing this
trend, a comprehensive study of the force field dependence
of the ∆Cp for hydration and association of hydrophobic
atoms has recently been reported,55 showing that, while the
various simulation models lead to quite different magnitudes
of the computed ∆Cp, they all correctly reproduce the signs
of these ∆Cp’s. That a qualitatively correct reproduction of
the sign of the ∆Cp for hydrophobic association is a robust
prediction of explicit-solvent simulation studies is quite
important, since the negatiVe ∆Cp is perhaps the defining,
thermodynamic characteristic feature of protein folding.61

In contrast to the wealth of simulation studies that have
examined the thermodynamics of the hydrophobic interac-
tion, far less attention has been paid to using explicit-solvent
molecular simulations to obtain complete thermodynamic
characterizations of the other types of interactions that are
present in proteins. In particular, very few studies have
addressed the thermodynamics of attractive charge-charge
interactions beyond measuring the free energy at, for
example, 25 °C.62 Such interactions are, however, likely to
be of special interest from a thermodynamic perspective

given the apparently critical role of salt bridges (i.e.,
oppositely charged ion pairs) in the adaptation of proteins
to stability at high temperatures.4-7 Free energy profiles for
the association of a Na+:Cl- ion pair were first computed
using molecular dynamics (MD) simulations many years ago,
and a comparison of results obtained at 25° and 100 °C
indicated that the higher temperature favored the formation
of a contact ion pair.62 More recently, MD simulations have
been used to simulate the diffusive association of lysine and
glutamate residues at 25°, 50°, 75°, and 100 °C and to
compute free energy profiles for the formation of a proto-
typical salt bridge at the same temperatures;63 again, these
studies showed the salt bridge interaction to be stabilized
by increasing temperature. All of these studies fall far short
however of providing the coverage of different temperatures
necessary to obtain the ∆Cp associated with the formation
of salt bridge interactions. In fact, the only works that we
are aware of that have applied molecular simulation methods
to explore heat-capacity-related properties of charged groups
in aqueous solution are the pioneering studies conducted by
the Sharp group aimed at understanding the origins of the
∆Cp of hydration.64-68 These authors used explicit-solvent
molecular dynamics (MD) simulations to identify structural
features of the hydration shells of hydrophobic and charged
atoms that correlate with their opposite signs of the ∆Cp of
hydration observed experimentally; since all of their MD
simulations were performed at a single temperature, however,
they did not explicitly compute the ∆Cp directly from MD
simulations.

This work describes the use of MD simulations to obtain
a complete thermodynamic characterization of the association
of a model salt bridge, the acetate-methylammonium pair,
in explicit water and compares its thermodynamic features
with those of a model hydrophobic association, the
methane-methane interaction, for which we also report new
results. Given the demonstration that the magnitudes of ∆Cp

estimates can vary significantly depending on the water
model used,55 we have performed complete sets of simula-
tions of both the acetate-methylammonium and methane-
methane interactions with two popular water models, TIP3P69

and TIP5P;70 these models produced, respectively, the smallest
and largest estimates of the ∆Cp of the hydrophobic interaction
in the recent wide-ranging study referred to above.55 The results
reported here indicate that both water models reproduce the key
qualitative feature that the ∆Cp for the formation of salt bridge
and hydrophobic interactions are positive and negative, respec-
tively, although, as expected, they differ significantly in their
magnitudes. In addition, the results demonstrate that MD
simulations in which associating molecules are allowed to freely
diffuse can produce data of sufficient precision to allow ∆Cp

to be reliably computed and provide a set of “gold standard”
explicit-solvent data against which to compare the predictions
of a commonly used implicit-solvent model based on continuum
electrostatics.

Methods

Simulation Setup. Molecular dynamics (MD) simulations
were conducted at 11 independent temperatures in the range
from -12.5 to 112.5 °C: -12.5°, 0°, 12.5°, 25°, 37.5°, 50°,
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62.5°, 75°, 87.5°, 100°, and 112.5 °C using the GROMACS
v3.3 software.71,72 All simulations contained either one
acetate molecule and one methylammonium molecule or two
methane molecules immersed in a 25 × 25 × 25 Å box of
water molecules; separate simulations were performed using
the TIP3P69 and TIP5P70 water models. As in our previous
work,73 the partial charges and van der Waals parameters
for the acetate and methylammonium were adapted from
those assigned to glutamate and lysine respectively in the
OPLS-AA parameter set.74 A 10 Å cutoff was used for van
der Waals and short-range electrostatic interactions, and the
Particle Mesh Ewald (PME) method was used to describe
all long-range electrostatic interactions.75 Covalent bonds
were constrained with the LINCS algorithm,76 enabling a 2
fs time step to be used. Simulations were performed in the
NPT ensemble, with the pressure being maintained at 1 atm
with the Parrinello-Rahman barostat77 and the temperature
being maintained at the desired value with the Nosé-Hoover
thermostat.78,79 Prior to MD, energy minimization was
carried out for 100 steps using the steepest-descent algorithm.
Each system was then equilibrated for 10 ns before a
production simulation lasting 500 ns was conducted, during
which atomic coordinates were saved at 0.1 ps intervals,
producing 5 million structural snapshots per simulation for
analysis. Since all simulations at all temperatures were run
for 500 ns, it was possible to obtain converged free energy
estimates in almost all cases; the only exceptions were for
desolvation barrier regions with the TIP5P water model at
<12.5 °C: this water model has a tendency to freeze at low
temperatures,80 which in turn drastically decreases the
number of diffusive encounters of the two solutes sampled
during each simulation period (Figure S1, Supporting
Information).

Free Energy Surface Construction. Two different kinds
of free energy surfaces (FESs) were used to describe the
association thermodynamics of the molecule pairs. The
simplest kind was a one-dimensional FES (also known as a
“potential of mean force”; PMF) constructed from histograms
of the intermolecular distances extracted from the simulation
snapshots.63 For the acetate-methylammonium pair, this
distance was defined in terms of the carboxyl carbon of the
acetate molecule and the amino nitrogen of the methylam-
monium molecule; for the methane-methane pair, the
separation distance was defined as the distance between the
two carbons. The second kind of FES, used exclusively for
the acetate-methylammonium system, was a more detailed,
two-dimensional (2D) free energy surface constructed from
histograms of the charge-charge separation distance defined
above, and the hydrophobic-hydrophobic separation dis-
tance, defined as the distance between the two methyl groups
of the two molecules.73 Each histogram ranged from 2.1 to
28 Å, with bins of 0.1 Å width. As in our previous work,
the solute-solute configurational entropy term,73 which
always strongly favors the dissociated state, was removed
from consideration by comparing the MD-derived 2D
histogram with a reference 2D histogram constructed by 100
million random placements of the two molecules into the
same simulation box. The MD-derived histogram (which
describes the solute-solute distribution obtained when the

two solutes interact with each other in water) and the
reference histogram (which describes the distribution ex-
pected when the two solutes are noninteracting in a vacuum)
are used together to calculate the (excess) free energy of
interaction for the ith 1D FES bin according to the equation:
∆G°(i,j) ) -RT ln[Pinteracting(i)/Pnoninteracting(i)] or the i,jth 2D
FES bin according to the equation ∆G°(i,j) ) -RT ln-
[Pinteracting(i,j)/Pnoninteracting(i,j)], where P indicates the prob-
ability of finding the two solutes at the separation distance(s)
covered by the histogram bin. The resulting relative 2D-
FESs were placed on an absolute scale using a protocol
similar to the one we previously described:73 free energy
offsets were obtained from a linear regression between the
MD-derived and continuum electrostatic-derived direct in-
teraction free energies performed using histogram bins in
which both the intercharge and intermethyl distance were
between 10 and 15 Å (full details of the continuum solvent
calculations are provided below).

As shown in our previous work, one complication of the
use of PME electrostatics in MD simulations is that long-
range electrostatic interactions between the solutes occur not
only “directly” (i.e., between the two copies that are closest
to each other) but also “indirectly” (i.e., with periodic
images), and if no account is taken of these long-range
indirect interactions, an incorrect view of the long-range
direct interaction can be obtained.73 In our previous work,
we corrected for the presence of the periodic, indirect
interactions by use of Poisson calculations in which two
additional “layers” of solute images were included. In the
present work, we have used a simpler but better protocol
that makes use of the continuum electrostatics program
DelPhi:81,82 this program has the ability to rapidly perform
Poisson calculations both with and without periodic boundary
conditions. In fact, DelPhi’s speed was found to be sufficient
enough that it could be used to perform calculations on all
5 million structural snapshots from each MD simulation. The
indirect energy for each snapshot was therefore obtained by
taking the difference of the electrostatic energy computed
from two near-identical Delphi calculations: one of the
system with periodic boundary conditions applied in all three
dimensions and one without periodic boundary conditions;
importantly, all other parameters, including the grid mapping
of the molecules, were identical in both calculations. The
total number of solutions of the Poisson equation obtained
during this analysis therefore amounted to 220 million. In
all calculations, the grid spacing was set to 1 Å, and the
molecule dielectric constant was set to 2; the solvent
dielectric constant was set to the appropriate value for water
at the temperature of interest (see below).83 It is to be noted
that the comparatively coarse grid spacing of 1 Å is
acceptable for the calculations described above owing to the
fact that their purpose is to calculate comparatively long-
range electrostatic interactions between periodic images:
although the use of a coarse grid would certainly lead to
errors in calculations of the direct interaction between the
two molecules, these errors would exactly cancel when
calculations performed in nonperiodic and periodic conditions
are compared. Having calculated indirect energy contribu-
tions for all 5 million snapshots obtained at each temperature,
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2D-FESs describing these contributions could be constructed
and subtracted from the 2D-FESs computed directly from
the MD simulation data: the final, resulting 2D-FESs shown
in the Results therefore describe only the thermodynamics
of direct interaction between a single pair of interacting
molecules.

Thermodynamic Characterization. To obtain the ad-
ditional thermodynamic parameters ∆H, ∆S, and ∆Cp, the
∆G values obtained at the different temperatures were fit to
the Gibbs-Helmholtz equation:50,52

where T0 is a reference temperature (chosen in this case to
be 50 °C since it is at the center of the temperature range
studied) and ∆H0 and ∆S0 are the respective interaction
enthalpies and entropies at that temperature. Nonlinear fits
of the simulation data to the above equation were conducted
independently for all histogram bins by minimizing the mean
square deviation between the ∆G values obtained from the
MD simulations and the ∆G values predicted by the
Gibbs-Helmholtz equation, allowing ∆Cp, ∆H0, and ∆S0

to be free parameters. In the case of the acetate-methyl-
ammonium system, since these fits were performed inde-
pendently for each bin in the 2D-FES, it was possible in
turn to construct two-dimensional surfaces for ∆Cp, ∆H0,
and ∆S0 (see the Results). All fits were conducted with
Microsoft Excel (http://office.microsoft.com). As written
above, and as used in previous simulation studies,50,52,55 ∆Cp

is assumed to be independent of temperature. In the present
study, however, we found that the precision of the simulation
data, when plotted as a function of a single distance, was
sufficiently high that it was also possible to discern a
meaningful temperature dependence to ∆Cp by assuming a
simple linear dependence on temperature, i.e., ∆Cp(T) )
∆Cp,0 + RT (see the Results).

Continuum Solvation Calculations. To test whether the
acetate-methylammonium 2D-FESs obtained from costly,
explicit-solvent MD simulations could be reproduced by a
faster implicit-solvent modeling scheme, additional calcula-
tions were performed with a combined continuum electro-
static + surface-area-based hydration model that one of us
previously used84,85 at the temperatures -12.5°, 25°, 62.5°,
and 100 °C. “Direct” electrostatic contributions to association
were computed using the Poisson-Boltzmann electrostatics
program UHBD86 following a protocol very similar to that
used in our previous work.73 Briefly, 15 structural snapshots
from each bin on the 25 °C 2D-FES (obtained with the TIP3P
water model) were randomly selected, and each was used to
perform a series of Poisson calculations of (a) the methyl-
ammonium alone, (b) the acetate alone, and (c) the two
molecules together, in the aqueous phase at each temperature
of interest. All Poisson calculations were conducted in two
stages: first, a 50 × 50 × 50 grid of spacing 1 Å was used,
with boundary potentials assigned using the Coulombic
approximation, and then a second, “focusing” calculation
using a 100 × 100 × 100 grid of spacing 0.25 Å was
performed. In all cases, the dielectric constants of the solutes
were set to 2, while that of the solvent was set to the
appropriate value for water at the temperature of interest,

e.g., 78.45 for 25° and 55.57 for 100 °C.83 The atomic
charges used in all calculations were the same as those used
in the MD simulations, and the atom radii were obtained
from a previous extension to the PARSE parameter set87

made by one of us to allow the parameter set’s use at a wide
range of temperatures.84 In the extended PARSE model, the
atomic radii are temperature dependent, increasing in size
through the use of a radius scaling factor (RSF) as the
temperature increases: different RSFs are applied to the atoms
of the amino, carboxyl and methyl groups. As in the original
PARSE scheme,87 an additional surface-area based term was
used to model nonelectrostatic contributions to association.
In order to calculate these contributions at each temperature
of interest, UHBD was first used to compute changes in
solvent accessible surface areas due to association (with a
probe radius of 1.4 Å), and these were then scaled by
appropriate proportionality constants, γaliphatic and γpolar,
parametrized in our previous work.84 The total implicit-
solvent interaction free energy at each bin of the 2D-FES
was then obtained as the sum of these electrostatic and
nonelectrostatic contributions: ∆G ) ∆Gelec + ∆Gnonelec.

Results

Temperature Dependence of the Free Energies of
Association. Unconstrained molecular dynamics (MD) simu-
lations of acetate-methylammonium and methane-methane
pairs in explicit solvent were performed at 11 temperatures
with two different but commonly used water models. The
resulting computed excess free energies of interaction, ∆G,
plotted versus the intermolecular distance, are shown for both
types of association and for both types of water model in
Figure 1 (note that different scales have been used for the
two interaction types). As noted previously from simulations
performed at 25 °C,63 the computed ∆G for forming the salt
bridge contact (left-hand panels) is significantly more favor-
able than for forming the methane-methane contact (right-
hand panels); this remains true for all temperatures and with
both water models. For both types of interaction, there is a
general tendency for the ∆G’s to become progressively more
favorable as the temperature increases. This trend, while
operative at all intermolecular distances, is especially ap-
parent for the direct contact free energy minima, which are
located at separation distances of 3.3 Å and 3.8 Å for the
salt bridge and methane-methane interactions, respectively;
the temperature dependencies of these contact minima are
highlighted as insets in Figure 1. The latter plots also lead
to two more significant observations. First, and most obvi-
ously, the plots of ∆G versus T are nonlinear and curve in
opposite directions for the hydrophobic and charge-charge
interactions. Second, the extents of curvature are much
greater for the simulations performed with the TIP5P water
model than for the TIP3P model. As is considered in more
detail later, these aspects of the plots report directly on the
different ∆Cp’s of interaction.

Performing global fits of the free energy data to the
Gibbs-Helmholtz equation provides smoothed estimates of
the ∆G of interaction at all temperatures (see the Methods
section); the quality of such fits, for both the charge-charge
and hydrophobic interactions, can be assessed by examining

∆G(T) ) ∆H0 + ∆CP(T - T0) - T∆S0 - T∆CP ln(T/T0)
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the solid lines of the insets to Figure 1. In Figure 2, we show
the difference, ∆∆G, between the smoothed ∆G values
of the direct charge-charge and hydrophobic interactions
as a function of the temperature for the two water models.
The ∆∆G is negative at all temperatures due to the
considerably greater affinity computed for the charge-charge
interaction (see above). But a much more interesting result

concerns the temperature dependence of this ∆∆G. Between
∼40° and 100 °C, both the TIP3P and TIP5P water models
predict essentially identical behavior: the ∆∆G increases in
magnitude as the temperature increases, indicating that,
relative to the hydrophobic contact, the charge-charge
contact becomes progressively stronger at higher tempera-
tures.63 Between 40° and 0 °C, however, there is a clear
difference between the two water models: while the TIP3P
curve continues to show a significant temperature depen-
dence, the TIP5P curve flattens completely and predicts
effectivelynochange in therelatiVestrengthsofcharge-charge
and hydrophobic interactions over this temperature range.
As is considered in detail in the Discussion section, this result
may have implications for understanding the relative roles
played by hydrophobic and salt bridge interactions in proteins
from psychrophilic, mesophilic, and hyperthermophilic
organisms.

Gibbs-Helmholtz Fits of the 1D Free Energy Func-
tions. Globally fitting ∆G data to the Gibbs-Helmholtz
equation not only allows smoothed estimates of ∆G to be
obtained but it also allows a deeper thermodynamic under-
standing to be obtained from examination of the fitted ∆H,
∆S, and ∆Cp values (see the Methods section). The resulting
computed ∆H’s of the charge-charge and hydrophobic
interactions are plotted versus temperature in Figure 3a;
corresponding plots of the ∆S are shown in Figure 3b. The
different qualitatiVe temperature dependences of the charge-
charge and hydrophobic interactions are apparent from both
figures: the slope of the ∆H for the charge-charge interaction

Figure 1. Excess free energy of interaction of acetate-methylammonium (a, c) and methane-methane pairs (b, d) plotted as
a function of the intermolecular distance for all temperatures in the range -12.5° to 112.5 °C. Panels a and b are for the TIP3P
water model; panels c and d are for TIP5P. The insets show a close-up of the behavior of the global free energy (contact
configuration) minima.

Figure 2. Plot of the difference between the smoothed ∆G
values for the direct charge-charge and hydrophobic contacts
plotted versus temperature for TIP3P (blue circles) and TIP5P
(red circles) water models. Error bars represent the standard
deviation obtained from three independent Gibbs-Helmholtz
fits: for the charge-charge contact, fits were performed using
data at separation distances of 3.2, 3.3, and 3.4 Å; for the
hydrophobic contact, fits were performed using data at
separation distances at 3.7, 3.8, and 3.9 Å.
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(circles), for example, is of opposite sign to the slope of the
∆H for the hydrophobic interaction (triangles). The signifi-
cant quantitatiVe differences between the results obtained
with the two water models, on the other hand, can be seen
by comparing the very different slopes of the red (TIP5P)
and blue (TIP3P) symbols.

One issue that is especially notable in Figure 3a and b
concerns the temperature at which the ∆H and ∆S of the
hydrophobic interaction approach zero (triangles). Experi-
mentally, it has been shown that the values of the hydration
∆H, of unfolding of a wide range of proteins tend to zero at
∼90 °C, and that the corresponding ∆S values tend toward
zero at 112-118 °C;33,35,36,88-90 the origins of this effect,
and what it tells us about the hydrophobic effect, have been
the subject of considerable study.33,35,36,91-95 Interestingly,
the ∆H and ∆S values of the hydrophobic interaction
computed with the TIP5P water model reach zero, or are
extrapolated to reach zero, at ∼87 °C and ∼108 °C,
respectively, both of which values are in very good agree-
ment with the experiment. The ∆H and ∆S values obtained
with the TIP3P water model, on the other hand, reach zero
at ∼83 °C and ∼187 °C, which is qualitatively correct (in
the sense that the zero-point temperature for ∆S is higher
than that for ∆H), but in poor quantitative agreement. On
the basis of this comparison, therefore, one might conclude
that the TIP5P water model gives a more realistic description
of the effects of temperature on biomolecular association
thermodynamics.

As noted above, the curvatures apparent in the insets of
Figure 1 are indicative of a nonzero ∆Cp for the charge-charge
and hydrophobic interactions. For the TIP5P water model,
the ∆Cp values obtained from Gibbs-Helmholtz fitssin
which ∆Cp is assumed to be temperature-independentsare
+60 and -35 cal/mol/K for the charge-charge and hydro-
phobic contact interactions, respectively; for TIP3P, the
corresponding numbers are +19 and -6 cal/mol/K, respec-
tively. Both water models therefore correctly reproduce the
fact that the ∆Cp for charge-charge and hydrophobic
interactions, being dominated by hydration terms, will be of
opposite sign,24,26,30,96-98 with the TIP5P model, as expected,
producing the larger estimates. For the hydrophobic interac-
tion, the computed ∆Cp values can be compared with values
derived by regression analyses of experimental protein
folding thermodynamics data8,22-24 and small-molecule
solubility data.99 The experimental data are typically ex-
pressed in a form normalized by the degree of buried
nonpolar surface area; typical regressed values of the
nonpolar ∆Cp contributions are -1.9,8 -1.4,22 -1.2,23 and
-2.124 J/mol/K/Å2. Normalizing our computed estimates by
the amount of surface area buried in the direct contact
configuration (64.3 Å2), we obtain ∆Cp contributions of -2.3
and -0.4 J/K/mol/Å2 for TIP5P and TIP3P, respectively; as
might have been anticipated, therefore, the two water models
give estimates that straddle the corresponding experimental
estimates.

Analysis of the computed ∆Cp behavior can in fact be
taken a stage further by exploring potential temperature
dependences of the charge-charge and hydrophobic ∆Cp

values (see the Methods section); this has been done by
repeating the Gibbs-Helmholtz fits under the assumption
that ∆Cp is a linear function of temperature. For the TIP3P
water model, the much smaller absolute values of the ∆Cp’s
make it difficult to be certain of any trend, but for TIP5P a
clear temperature dependence is apparent: for all interaction
distances less than 8 Å, the ∆Cp of the charge-charge
interaction becomes progressively more positive as temper-
ature increases while ∆Cp of the hydrophobic interaction
becomes progressively more negative (Figure 4a). The
temperature dependence of ∆Cp for both types of interaction
at their contact distances are illustrated in Figure 4b and
compared with Privalov and Makhatadze’s experimental
estimates34 of the polar and nonpolar ∆Cp contributions made
to protein folding in Figure 4c. The behavior obtained with
the TIP5P water model is in surprisingly good qualitative
agreement with that seen experimentally.

A More Detailed View of the Acetate-Methyl-
ammonium Interaction. A more detailed view of the effects
of temperature on the interaction thermodynamics of the
acetate-methylammonium pair offers an opportunity to
examine the simultaneous operation of charge-charge and
hydrophobic interactions.73 This can be done by constructing
two-dimensional free energy surfaces (2D-FESs) in which
the x coordinate is the charge-charge distance (the
Ccarboxyl-Namino distance) and the y coordinate is the distance
between the hydrophobic groups (the Cmethyl-Cmethyl dis-
tance). Representative two-dimensional free energy surfaces
(2D-FESs) obtained with the TIP5P water model are shown

Figure 3. Plots of ∆H (a) and ∆S (b) versus temperature for
acetate-methylammonium (AM; circles) and methane-
methane (MM; triangles) systems. Results for TIP3P (3P) and
TIP5P (5P) water models are shown as blue and red symbols,
respectively. Error bars were computed in the same way as
described in the legend to Figure 2.
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for 0°, 50°, and 100 °C in Figure 5; complete results for all
11 temperatures and for both water models are provided in
Figures S2 and S3 (Supporting Information). On each 2D-
FES, there are three pronounced minima. The first, the global
minimum configuration, is the direct charge-charge contact
(i.e., a conventional salt bridge) located at coordinates (x, 3
Å; y, 5 Å) on the 2D-FES; the two other (local) minima are
a solvent-separated charge-charge interaction at coordinates
(x, 5.5 Å; y, 7 Å) and a broad methyl-methyl hydrophobic

contact at (x, 5-6 Å; y, 4 Å). The same features appear on
the 2D-FESs obtained with the TIP3P water model, with the
only notable differencesssuch as a broader minimum for
the methyl-methyl contactsbeing caused by TIP5P having
a lower free energy barrier to the dissociation of the
charge-charge contact (apparent from comparing Figure 1a
and c; see also Figure S4, Supporting Information).

As anticipated from the behavior of the one-dimensional
free energy functions shown in Figure 1, increasing the
temperature stabilizes all three of the local minima on the
2D-FES. The differing degrees of stabilization of the three
local minima, however, become more apparent in the form
of 2D-FES-difference maps obtained by subtracting 2D-FESs
at 100 and 25 °C (Figure 6a,b). From such plots, it is apparent
that for both water models the direct charge-charge interac-
tion is much more strongly stabilized by increasing temper-
ature than the other modes of interaction. Interestingly, a
plot of the data points from the TIP3P 2D-FES-difference

Figure 4. (a) Temperature dependence of ∆Cp, R, plotted
versus intermolecular distance for acetate-methylammonium
(AM; blue circles) and methane-methane (MM; red circles)
systems, data obtained with the TIP5P water model. (b)
Computed ∆Cp for the direct charge-charge (AM; blue circles)
and hydrophobic (MM; red circles) contacts versus temper-
ature, data obtained with the TIP5P water model. (c) Experi-
mental ∆Cp versus temperature for cytochromeC (blue circles),
ribonuclease (red circles), lysozyme (green circles), and
myoglobin (yellow circles) folding, data taken from ref 34. Error
bars shown in a represent the standard error obtained from
the Gibbs-Helmholtz fit performed in SigmaPlot.122 Error bars
for b were computed in the same way as described in the
legend to Figure 2.

Figure 5. 2-Dimensional (excess) interaction free energy
surfaces (2D-FESs) for acetate-methylammonium for three
temperatures, data obtained with the TIP5P water model. The
insets show close-ups of the 2D-FES in the region of the
charge-charge contact, replotted on energy scales that allow
identification of the global minimum.
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map versus the corresponding data points from the TIP5P
2D-FES-difference map showssfor the temperature range
25° to 100 °Csa high degree of correlation (R2 ) 0.83),
with a slope (0.89) indicating a slightly greater temperature
dependence for the TIP3P model (Figure 6c). As explored
in detail below, these 2D-FES-difference maps provide a
critical test for continuum solvation models intended to
describe the temperature dependence of biomolecular inter-
actions at high temperatures.

As with the 1D free energy functions, it is possible to
extract further thermodynamic information by globally fitting
the 2D-FESs to the Gibbs-Helmholtz equation: doing so
allows 2D surfaces for the ∆H, ∆S, and, most importantly,
the ∆Cp of the interaction to be derived (see the Methods
section). Examples of the kinds of fits that are obtained are

shown in Figure S5 (Supporting Information) for the three
major free energy minima on the TIP5P 2D-FES; similar
results obtained with the TIP3P model are shown in Figure
S6 (Supporting Information). As might be expected, the best
fits to the Gibbs-Helmholtz equation are obtained in those
regions on the 2D-FESs that are most frequently sampled
during the MD simulations: for example, in the case of the
three regions shown in Figures S5 and S6 (Supporting
Information), the fit is clearly better for the global minimum
configuration. This connection between sampling efficiency
and quality of the Gibbs-Helmholtz fits is shown in a 2D
surface representation for both water models in Figure S7
(Supporting Information): from these plots, the tendency for
errors to be greatest in the regions of the surface that are
poorly sampled is clear, especially in those regions corre-
sponding to desolvation barriers. In fact, for certain parts of
the 2D-FES, the adequacy of sampling was questionable for
the TIP5P water model at the three lowest temperatures
studied (-12.5°, 0°, and 12.5 °C); these 2D-FESs were
therefore omitted from the global Gibbs-Helmholtz fits.
Despite this cautionswhich, it should be noted, does not
apply to the free energies when plotted as a function of a
single dimension (Figure 1)sthe ∆G values computed
directly from these low temperature simulations were usually
in good agreement with the ∆G values extrapolated from
the Gibbs-Helmholtz fits to the 8 higher temperatures (see
open symbols in Figure S5).

Two-dimensional surfaces illustrating the ∆H and T∆S of
interaction at a number of temperatures are shown in Figures
S8 and S9 (Supporting Information); the more interesting
quantity to examine however is the heat capacity, ∆Cp, which
is shown in a 2D representation for both water models in
Figure 7. The TIP3P water model (Figure 7a) produces a
very slightly positive ∆Cp of interaction over much of the
2D surface. The TIP5P water model (Figure 7b), in contrast,
produces a strongly positive ∆Cp for the direct charge-charge
contact, and a strongly negative ∆Cp for the hydrophobic
contact (which matches well with the behavior seen in the
methane-methane simulations). With the TIP5P model,
therefore, it is possible to discern distinct modes of interaction
between the same two molecules that have qualitatively
different ∆Cp behaviors; moreover, effecting such a qualita-
tive change in the ∆Cp requires only a shift in relative
orientation of the two molecules of a few Ångstroms.

Comparison with Implicit Solvation Calculations. The
availability of explicit solvent free energy surfaces computed
over a range of temperatures provides an excellent op-
portunity to test the ability of implicit (continuum) solvent
models to capture temperature dependent effects. In what
follows, therefore, the interaction thermodynamics obtained
from MD are compared with corresponding results obtained
using the current “gold standard” implicit solvent model, the
Poisson(-Boltzmann) method.100-102 Two sets of Poisson
calculations were carried out: one in which the only
temperature-dependent parameter in the calculations was the
solvent dielectric constant and one in which, additionally,
the atomic radii were adjusted by a temperature-dependent
radius scaling factor (RSF) empirically derived previously84

to reproduce the experimental hydration free energies of

Figure 6. (a) 2D-FES difference surface (∆∆G100-25°C) for
the TIP3P water model. (b) 2D-FES difference surface
(∆∆G100-25°C) for TIP5P. (c) Correlation of data points from
the TIP5P 2D-FES difference surface with those from the
corresponding TIP3P 2D-FES difference surface; only data
points with a charge-charge separation between 2.9 and 20
Å are plotted. The red line is the linear regression line with
slope ) 0.8934, intercept ) -0.0182, and R2 ) 0.8306.
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amino acids over a wide range of temperatures. Nonpolar
contributions to the acetate-methylammonium interaction
were calculated using a temperature-dependent solvent
accessible surface area (SASA) term (see the Methods
section).

2D-FES-difference maps showing the effects of changing
the temperature from 25° to 100 °C are shown for both
Poisson calculation protocols in Figure 8a and b; these
implicit-solvent surfaces should be compared with the
explicit-solvent surfaces shown in Figure 6a and b. Such a
comparison indicates that treating the atomic radii as
temperature dependent with the RSF results in much better
agreement with the explicit solvent MD results, especially
in terms of describing the temperature dependence of the
direct charge-charge interaction. In fact, linear regression
of the Poisson-computed free energy differences with those
obtained from the TIP5P simulations shows significant
improvements in the slope, the intercept, and the r2 value
when the RSF is included (see Figure 9a and b, respectively).
A qualitatively identical finding is obtained when the implicit
solvent results are compared instead to the TIP3P results
(Figure S10, Supporting Information).

Discussion

As noted in the Introduction, the studies reported here have
been conducted with two water models that have been chosen
to provide what are thought to be extreme descriptions of
the likely effects of temperature on biomolecular interac-
tions.55 While significant differences are certainly found
between the two models (see below), it is striking that they
make very similar predictions of the temperature’s effects on

the free energies of the hydrophobic and charge-charge
interactions at medium-to-high temperatures. Increasing the

Figure 7. 2D surfaces showing the heat capacity change of
interaction, ∆Cp, for the (a) TIP3P and (b) TIP5P water
models.

Figure 8. 2D-FES difference surfaces (∆∆G100-25°C) obtained
from Poisson-Boltzmann calculations performed (a) without
radius scaling factor (RSF) and (b) with RSF.

Figure 9. Correlation of ∆∆G100-25°C calculated from
Poisson-Boltzmann calculations and from TIP5P MD simula-
tions. (a) PB calculations performed without RSF: slope )
0.4513, intercept ) -0.1059, r2 ) 0.7313. (b) PB calculations
performed with RSF: slope ) 0.8506, intercept ) -0.0263,
r2 ) 0.7873.
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temperature from 25° to 100 °C changes the ∆G of the direct
charge-charge interaction by -0.76 and -0.77 kcal/mol with
the TIP3P and TIP5P models, respectively (Figure 1a,c) and
changes the ∆G of the methane-methane interaction by -0.23
and -0.36 kcal/mol with TIP3P and TIP5P, respectively (Figure
1b,d). Importantly, as we discuss next, this close correspondence
between the two explicit solvent water models at medium-to-
high temperatures allows unambiguous conclusions to be drawn
about the use of implicit solvent (Poisson) calculations for
investigating the effects of high temperatures on biomolecular
interaction thermodynamics.

Poisson and Poisson-Boltzmann calculations are widely used
to provide insights into electrostatic contributions to biomo-
lecular interactions100-102 and have been especially exploited
to investigate the contributions of salt bridges to the stability
of proteins from hyperthermophilic organisms.85,103-108 A
number of the latter studies have attempted to compare salt
bridge interaction thermodynamics at low and high temper-
atures by comparing calculation results105,107,108 obtained
with the solvent dielectric constant set to the appropriate
experimental value for water (the dielectric constant of water
changes from 87.9 at 0 °C to 55.6 at 100 °C83). Ideally,
altering the solvent dielectric constant in this way would be
the only change required in order for implicit solvent models
to capture accurately the effects of changing temperature on
interaction thermodynamics. Previous work carried out by
one of us,84 however, found that the temperature dependence
of amino acid hydration free energies was systematically
underestimated (compared with the experiment) when this
approach was followed; in order to obtain agreement with
the experiment, it was found necessary to adjust the atomic
radii by an empirically determined radius scaling factor84

(RSF). Since changes in hydration play such a critical role
in determining the thermodynamics of interactions between
charged residues,85,103 it is to be anticipated that the
requirement for adjustable atomic radii might reappear in
attempts to match temperature dependent changes in as-
sociation free energies. The explicit solvent MD results
reported here have provided the opportunity to examine this
issue. While the overall agreement between the 2D-FES-
difference maps obtained from explicit solvent (Figure 6)
and implicit solvent (Figure 8) calculations is far from
perfect, the overall trend is pretty clear: the free energy
change obtained when the solvent dielectric constant is the
only parameter changed in the implicit solvent calculations
is much smaller than that obtained from explicit solvent
simulations, but the free energy change obtained when the
RSF is used is much closer in magnitude. With regard to
continuum solvation calculations, therefore, the basic conclu-
sion to be drawn from the present study is the following.
On the basis of two independent lines of evidences
comparisons with (a) the experimental temperature dependence
of amino acid hydration free energies84 and (b) the MD-
simulated temperature dependence of salt bridge association free
energies (shown here)sa strong case can be made that atomic
radii should be adjusted with a RSF in Poisson or Poisson-
Boltzmann calculations aimed at modeling temperature de-
pendent changes in biomolecular thermodynamics.

As noted above, this conclusion can be drawn with
confidence owing to the fact that the quite different TIP3P
and TIP5P water models make essentially identical predic-
tions about the overall magnitude of ∆G changes in the range
25° to 100 °C; another way of saying this is that the
computed first derivative of ∆G with respect to temperature
(in this temperature range) is very similar for both models.
Where the two water models produce quite different results
is in the more subtle quantity ∆Cp, which describes the
second derivative of ∆G with respect to temperature (i.e.,
its curvature). The next question to ask is of course which
of the ∆Cp predictions, if any, should be believed? Owing
to the fact that the TIP5P water model was specifically
devised in order to correct inadequacies in the treatment of
temperature effects on water’s density,70 one might im-
mediately anticipate that it would also provide the more
accurate description of temperature effects on interaction
thermodynamics. Certainly, we know from the work of others
that TIP5P provides a good description of the temperature
dependence of water’s dielectric constant. Specifically, it has
been shown to produce dielectric constant values of 82 and
60 at 25 and 100 °C, respectively,70 which compare well
with the experimental values of 78.5 and 55.6;83 unfortu-
nately, we cannot make a corresponding comparison for
TIP3P as we have been unable to find estimates of its
dielectric constant at 100 °C. An additional piece of
quantitative evidence in favor of TIP5P is reported here: we
find that the temperatures at which ∆H and ∆S of the
hydrophobic interaction equal zero are in good accord with
experimental estimates for the TIP5P model but are not for
TIP3P. Other observations provide suggestions, but not
outright proof, that TIP5P’s description is better than that
of TIP3P. With the acetate-methylammonium system, for
example, only the TIP5P model provides clear evidence of
differently signed ∆Cp’s for the charge-charge and methyl-
methyl interactions. With both systems, only the TIP5P
model gives a discernible trend in the temperature depen-
dence of the ∆Cp’s of interaction, and this, in turn, is in good
qualitative correspondence with the trend seen in the
experimental data.34

That said, there are other aspects of behavior of the two
water models that lead to more equivocal conclusions. For
example, a recent comprehensive simulation study of the heat
capacity change, ∆Cp, accompanying the hydration of
methane (modeled with the OPLS united atom model)
produced estimates of 145 and 265 J/K/mol for the TIP3P
and TIP5P water models, respectively.55 The experimental
estimates of the same quantity range from 209 to 242 J/K/
mol99 and so lie somewhere in between the predictions of
the two models. Similarly, as outlined in the Results section,
comparison of the computed ∆Cp values of the hydrophobic
interaction obtained with the two water models (-2.3 and
-0.4 J/K/mol/Å2 for TIP5P and TIP3P, respectively) shows
that they lie on either side of estimates obtained from
regressions of experimental data.8,22-24 There are even some
respects in which TIP5P is clearly not as good as TIP3P.
For example, the freezing and boiling points reported recently
for the TIP3P water model (269 and 357 K, respectively109)
are considerably better than those reported in the same work
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for the TIP5P model (266 and 337 K, respectively;109 the
latter has also been independently estimated at 348 K110).
In addition, the computed heat capacity of pure TIP5P water
(29.2 J/K/mol) is in somewhat worse agreement with the
experiment (18.0 J/K/mol) than are the heat capacities of
the simpler TIP3P, SPC, and TIP4P water models (Cp values
of 20.0, 20.2, and 20.4 J/K/mol, respectively).111 This latter
result indicates, as noted by Mahoney and Jorgensen, that a
better treatment of structural properties does not always lead
to a better modeling of thermodynamic quantities.70 It is
certainly possible, therefore, that other water models might
reproduce aspects of temperature-dependent thermodynamics
somewhat better than TIP5P.

Before leaving the subject of ∆Cp, it is worth noting that
the same regression studies of experimental data referred to
above have also indicated that, when expressed in units of
buried surface area, the magnitude of the (positive) contribu-
tion to ∆Cp made by the burial of polar groups is consider-
ably smaller than that of the (negative) contribution to ∆Cp

made by the burial of nonpolar groups: the reported respec-
tive ∆Cp values for burial of polar vs nonpolar groups are
+1.1 vs -1.9 J/mol/K/Å,2,8 +0.7 vs -1.4 J/mol/K/Å,2,22

+0.4 vs -1.2 J/mol/K/Å,2,23 and +0.9 vs -2.1 J/mol/K/Å.2,24

It is noticeable that the magnitude of the MD-computed ∆Cp

for the charge-charge interaction is some 2-3 times larger
than that of the hydrophobic interaction: with the TIP5P
model, the ∆Cp for formation of the direct charge-charge
contact is +60 cal/mol/K while that for formation of the
hydrophobic (methane-methane) contact is -35 cal/mol/
K. For TIP3P, the ∆Cp for formation of the direct charge-
charge contact is +19 cal/mol/K, while that for formation
of the hydrophobic (methane-methane) contact is -6 cal/
mol/K. The most likely explanation of this apparent dis-
crepancy is simply that, in the regressions of the experimental
data, the “polar” contribution encompasses neutral, hydrogen
bonding groups (especially the peptide backbone) in addition
to charged groups; formation of neutral hydrogen bonding
interactions, which have not been studied here, are likely to
make much smaller contributions to heat capacity changes.

The qualitative difference between the ∆Cp values associ-
ated with the formation of charge-charge and hydrophobic
contacts has consequences for their relative stabilities at both
high and low temperatures (Figure 2). The finding that a salt-
bridge interaction becomes progressively more stable than
a hydrophobic interaction at high temperatures (∼40-100
°C) is not especially new, since we have found much the
same result previously using both implicit85 and TIP3P-based
explicit solvent simulations.63 It is nevertheless notable,
however, that the same basic result is obtained with the
TIP5P water model, despite the large quantitative differences
between the TIP5P and TIP3P ∆Cp values. This indicates
that the basic conclusions drawn previously63 are not
dependent on the water model. The thermodynamic behavior
obtained in both the present and previous simulations
provides an attractive explanationsthough not the only one
imaginable104-107sfor the unusual abundance of salt bridge
interactions in proteins from hyperthermophilic organisms.4,112

The more novel result of the present study is that, with
the TIP5P water model, the relative strengths of salt-bridge

and hydrophobic interactions are largely unchanged between
0° and 40 °C. Just as the preference of salt bridges for high
temperatures has apparent implications for understanding the
adaptation mechanisms of hyperthermophilic organisms,4 this
new finding may have implications for understanding organ-
isms adapted to life at very low temperatures (psychrophiles).
If it is indeed true that the relative stabilities of electrostatic
and hydrophobic interactions remain essentially unchanged
as the temperature drops to 0 °C, then there should be no
selective advantage to accumulating or losing salt bridges
at low temperatures: the relative numbers of salt bridges and
hydrophobic interactions should therefore be very similar in
mesophiles and psychrophiles. Since a number of crystal
structures of proteins from psychrophilic organisms have
recently become available, the accuracy of the above
prediction can be directly examined. In fact, in the majority
of cases that have been reported so far, the numbers of salt
bridges in psychrophilic enzymes are indeed very similar
to113-115 or somewhat lower than116-118 those found in their
mesophilic homologues. One interesting exception that we
know of is citrate synthase: the psychrophilic (and hyper-
thermophilic) versions of this enzyme have increased num-
bers of salt bridges relative to their mesophilic cousin,
although in the case of the psychrophile, only intra-subunit
salt bridges are found to be increased.107 Exceptions are
perhaps to be anticipated: obtaining unambiguous views of
the adaptation mechanisms operating in psychrophiles is
likely to be more difficult than for hypthermophiles since
the former face the challenge of simultaneously retaining
not only stability but also activity in their chosen environ-
mental conditions.1-3

Summary

The complete thermodynamic characterization of two types
of molecular interactions in the range 0° to 100 °C shows
that there are areas in which typical simulation water models
are likely to produce essentially identical behavior and areas
in which they will differ markedly. Both water models can
capture the qualitative result that the ∆Cp for formation of
salt bridge interactions is positiveswhich is something that
has not been shown beforeswhile the ∆Cp for formation of
hydrophobic interactions is negative; the models differ
drastically however in their predictions of the magnitude of
the ∆Cp. Both water models predict that on raising the
temperature from ∼40° to 100 °C salt-bridge interactions
are significantly more stabilized than are hydrophobic
interactions. But they differ drastically in their predictions
of what happens when the temperature drops from 40° to 0
°C. As noted above, the similarity of the models’ predictions
at high temperatures enables us to draw some firm conclu-
sions regarding protocols for implicit solvent calculations
at high temperatures; it also argues that for molecular
dynamics simulations aimed at investigating biomolecular
behavior at high temperatures the choice of water model may
not be especially important. But the very significant differ-
ences observed at low temperatures on the other handswhich
on balance appear to favor the TIP5P modelssuggest that a
closer examination of behavior at low temperatures may be
important for force field development. Finally, it should be
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noted that, while we have explicitly compared the thermo-
dynamic characteristics of hydrophobic and favorable
charge-charge interactions here, these are not the only types
of interactions to play important roles in determining
biomolecular stability. It will in particular be of interest to
explore similar issues for the thermodynamics of hydrogen
bonding119 and cation-π120,121 interactions.
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Abstract: In this work, we propose a highly parallelizable sampling scheme designed for
atomistic simulations of glassy materials in the vicinity of the glass-transition temperature Tg,
based on the idea of inherent structures (IS). Glassy dynamics is envisioned as a combination
of two types of motions: (a) an “in basin” vibrational motion in the vicinity of a potential energy
minimum (IS), and (b) transitions from one basin to another. In order to perform efficient
dynamical sampling in the vicinity of Tg, we propose an “on the fly” definition of metabasins
(i.e., collections of basins communicating via fast transitions in which the system spends a
sufficient time before moving on to a neighboring collection). Our criterion for defining metabasins
is based on the rate of identification of new basins in the course of a canonical molecular
dynamics (MD) run. In order to compute individual rate constants between basins and
metabasins, we propose to follow a swarm of microcanonical MD trajectories initiated at phase-
space points sampled by a canonical MD run that is artificially trapped within a metabasin. The
execution time required by this highly parallelizable scheme is reduced dramatically, since no
information exchange takes place between the microcanonical trajectories. Results from our
parallel methodology are compared against results from artificially trapped canonical MD runs,
in terms of the evaluated rate constants, and found to be in very good agreement. Parallel
simulations have been conducted on up to 250 processors, achieving almost linear scaling.
The validity of our definition of metabasins is confirmed by analysis of the resulting network of
basins.

Introduction

Glassy materials have assumed an important role in our life
and consequently attract the interest of the scientific com-

munity in both applied and basic research. Over the years,
glasses have been categorized according to various criteria:
(a) based on the temperature dependence of dynamic
viscosity,1 into strong and fragile glass-forming liquids, and
(b) based on the intramolecular interactions responsible for
dynamical entrapment,2 into repulsive and attractive glasses.
Repulsive glasses are usually observed at high densities,
where repulsive interactions become dominant, whereas
attractive glasses appear due to a strong short-range attractive
interaction.3
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The research work described in this article is focused on
studying the dynamics of glass-forming materials. Unfortu-
nately, the broad range of time scales for molecular motion
present in glassy systems poses severe limitations for
molecular simulation in the vicinity of and below the glass-
transition temperature Tg. Any discrete numerical solution
of the time evolution equations of a microscopic model is
bound by the time step of the discretization, which has to
be smaller than the characteristic time of the fastest process
present, thereby limiting our ability to track the time
evolution out to the desired longest time scales. Therefore,
brute force MD simulations are doomed to describe only a
very short part of the spectrum of time scales characterizing
motion in a glassy system. In order to address this problem,
we will try to elucidate the dynamics of glassy materials in
terms of their potential energy landscape.

One of the most important features of the potential energy
landscape is the local minima of the energy, or “inherent
structures” (ISs),4,5 around which the system is expected to
spend most of its time trapped, at least at low temperatures.
Throughout this article, we will use the term “basin” to
denote the set of configuration space points from which a
steepest descent construction in the potential energy leads
to a given IS.4 The entire multidimensional configuration
space can be tessellated into basins.

As in all molecular simulation methods, the size of the
system is part of the simulation conditions and the macro-
scopic behavior can only be obtained as a thermodynamic
limit. In the inherent structure approach, the condition that
will minimize system size effects is the independence of
cooperatively rearranging domains (in three-dimensional
space) during the individual transitions from one basin to
another. Assuming that the simulation system is sufficiently
large, extensivity will result in independent transitions being
executed by its various parts. For example, if one considers
a model system of size double that of the original simulation
system, one will observe elementary transitions, each of
which involves a molecular rearrangement in only one of
the two halves of the augmented system. Each of these
rearrangements would have been detected as a single
transition in an analysis of individual configurations of the
original model system. Since each of the two sets of
rearrangements (one set for each half of the doubled system)
involves a different set of degrees of freedom, and the two
sets of degrees of freedom are practically uncoupled, the rate
constants for the individual rearrangements will be the same
in the doubled system, as computed for the original system.
Thus, the descriptions of dynamics on the basis of the original
system and of the doubled system are equivalent, provided
the original system is sufficiently large, in comparison to
the size of “cooperatively rearranging domains”. In this
respect, basins of the original system would continue being
relevant to the dynamics of the doubled system as well.

A prerequisite, of course, for this picture of extensivity to
hold is that both the small and the large system configurations
have been sampled from a distribution that is representative
of the real glass under a given formation history. If this is
the case, an inherent structure of the large model system will
be essentially a combination of mutually independent inher-

ent structures of smaller subsystems, into which the large
system can be spatially decomposed. Consequently, the
partition function of the large system trapped in the vicinity
of one of its inherent structures will be essentially a product
of partition functions of the subsystems, each trapped in the
vicinity of its own inherent structure. It is this factorization
that leads to rate constants for subsystem rearrangements
being the same as computed for the individual subsystems
and for the large system. This has been properly demon-
strated in the work of Doliwa and Heuer,6 where they
examined finite-size effects in the same model. In their work
they conclude that “a system of N ) 130 particles behaves
basically as two noninteracting systems of half the size.”

Below Tg, the importance of ISs and basins to simulations
of a variety of condensed matter systems has been extensively
explored.7-21 The “inherent structure picture” has been used
as a tool to investigate and characterize the dynamics and
the thermodynamics of atomistic systems in terms of their
“landscape.” Some of the most widely used concepts are the
disconnectivity graphs8-11,17,18,21 and the configurational
entropy.22-28 Another popular approach is the numerical
validation, via simulations, of the theoretical predictions of
the mode coupling theory and its extensions.29-32 For
extensive reviews on the subject, we refer the reader to the
work of Heuer,33 Sciortino,22 Debenedetti, and Stillinger.26

It is worth noting that disconnectivity graphs have been
used to visualize the energy landscape of the same model
glass-former system studied here.17-19 These studies have
been conducted from both a thermodynamic perspective via
the use of parallel tempering sampling19 and from a
dynamical perspective via extensive analysis of the local
connectivity and the presence of “metabasins” in terms of
the cage-breaking17 process relevant to many transitions at
the atomic level.18

Mapping long atomistic dynamics onto a discrete network
of states has been used to analyze the folding pathways in
protein-folding simulations.34-41

Most of the attempts described above are related with
analyzing simulation results in terms of the IS picture. On
the other hand, there are attempts to use IS ideas as a basis
for accelerating the dynamical sampling. In view of the vast
size and extensive nature of the potential energy landscape,
it is crucial to sample the dynamical evolution between
potential energy minima in an efficient manner. This has been
demonstrated to be possible via the discrete path sampling
(DPS) algorithm of Wales,11,21 which is able to evaluate the
most probable path of first-order transitions between potential
energy minima linking two regions of the potential energy
landscape, upon the assumption of an intermediate set of
potential energy minima acting as the “activated” state.

One alternative attempt is the dynamical integration over
a Markovian web (DIMW) methodology, developed by
Boulougouris and Theodorou13 in their effort to simulate the
dynamics of an atomistic model of glassy atactic polystyrene
over more than 10 orders of magnitude on the time scale at
temperatures far below Tg. DIMW is also an alternative to
kinetic Monte Carlo sampling, which enables the direct
evaluation of the time-dependent probability of occupancy
of states (here, basins) for a system undergoing successive
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transitions with first-order kinetics between basins in a
landscape of infinite extent.

Although the DPS11,21 and DIMW13 algorithms can, in
principle, be combined, their “philosophy” can be seen as
complementary. DIMW creates a network of states through
a breadth-first search that invokes no assumptions about
ending and intermediate states, tracking a diffusion-like
process in configuration space; DPS, on the other hand, may
be seen as a depth-first search toward a known part of the
landscape, upon the, most of the times logical, assumption
of a rate-controlling intermediate region. Another important
difference between the two methods is that the DIMW
method aims at retrieving all dynamical information up to a
certain time, that is the whole relaxation spectrum accessible
to the potential energy landscape dynamics, whereas DPS,
to our understanding, needs to include as target regions the
ones that will potentially be relevant to a relaxation mech-
anism. The exhaustive dynamical information provided by
DIMW may be of great importance. As discussed below,
Boulougouris and Theodorou have recently shown42 that
knowledge of the spectrum of relaxation times, along with
the eigenvectors of the dynamical transition matrix provided
by the DIMW method, can be used in order to compute the
time autocorrelation function and the dynamical relaxation
spectrum of any observable; in this “EROPHILE” approach,
a relaxation mode can be identified as a Euclidean vector in
state probability space that decorrelates in a single expo-
nential way. Thanks to the EROPHILE approach and the
DIMW method, the creation of a complete basis set is
guaranteed. DIMW can also be viewed as an extension to
kinetic Monte Carlo of the integration over a Markovian web
(IMW) method,43 which allows the enrichment of ensemble
averages and the combination of multiple integration levels.
Based on DIMW, it is possible to construct an ever-
expanding network of known or “explored” states, bounded
by a set of “boundary” states, starting from an initial (small)
set of states. For each explored state, all relevant transitions
connecting it with its neighboring states have been located,
and the corresponding transition rate constants computed by
atomistic infrequent-event analysis. Boundary states are
connected to explored states, but are not yet explored
themselves. The time-dependent probability distribution
among explored states is determined via analytical solution
of the master equation for the “explored” states under
absorbing boundary conditions for the “boundary” states. The
set of explored states is expanded systematically whenever
necessary, through a stochastic scheme that each time selects
to include in the set of explored states a boundary state,
according to the probability flux to that state. In their work
Boulougouris and Theodorou13 used multidimensional transi-
tion-state theory, within the harmonic approximation, in
combination with a saddle-point search method44-47 (specif-
ically, the dimer method46) in order to locate and evaluate
transitions and rate constants out of the states being explored
on the fly. We note that the “dimer method” is actually an
alternative implementation of hybrid eigenvector following,
first described in ref 44.

Approaching Tg from below, the number of “relevant”
minima and saddle points increases dramatically. As a

consequence, the computational cost for saddle-point calcula-
tions becomes prohibitively high. In order to overcome this
obstacle, we have investigated the role of ISs in the
vitrification process of glass-forming materials using a simple
methodology, which is based on a combination of MD and
potential energy minimization and on an extension of hazard
plot analysis. This approach48 showed that the dynamical
transitions between basins can be described by a first-order
kinetic scheme. More precisely, it was shown49 that it is
possible to reconstruct completely the dynamics of the
atomistic system at a finite temperature, below Tg, based on
the first-order kinetic network of interbasin transitions. This
reconstruction corresponds to a “lifting”50 of the coarse-
grained Poisson process model of a succession of interbasin
transitions to the detailed atomistic level. The excellent
agreement obtained with full atomistic MD for temperatures
around and below the glass transition temperature showed
that an approach based on infrequent, uncorrelated transitions
between basins is able to reproduce the full dynamics of the
atomistic glassy system, where the Poisson approximation
is valid.

The IS approach offers an additional advantage. The slow
dynamics of the glassy systems described by the analytical
solution for the time-dependent probability of occupancy of
discrete states (basins around ISs) can be used for the
identification of the molecular mechanisms that govern the
dynamics. For this purpose, Boulougouris and Theodorou42

developed a statistical mechanical-geometric formulation
(EROPHILE) that expresses both state probabilities and all
observables in the same Euclidean space, spanned by the
eigenvectors of the symmetrized time evolution operator.
EROPHILE is a general framework for computing the
equilibrium and nonequilibrium behavior of systems evolving
through a succession of transitions between discrete states.
It provides a geometric representation of relaxation modes
in a dual representation: (a) a mode corresponds to a
perturbation from the equilibrium probability distribution
among states that decays with time along a single exponen-
tial, and, most importantly, (b) a mode is identified with a
linear combination of observables that, upon any perturbation
from equilibrium, will return to equilibrium in a single
exponentially decaying fashion. By applying EROPHILE to
an atomistic model of a-PS, Boulougouris and Theodorou
provided a molecular mechanism for the delta relaxation of
a-PS, that of a net rotation of a single phenyl group around
its stem.

As described above, well below Tg, the IS picture, coupled
with infrequent event analysis, has been proven to be a
reliable computational tool. Well above Tg classical MD
simulation is, in most cases, an efficient strategy. The vicinity
of Tg, however, still remains a complex problem. Addressing
this problem is very important since, as one expects, the
temperature region in the vicinity of Tg determines the
quality,hence, the properties of the glass that we will obtain
when we cool our glass-forming material far below Tg.

49 This
happens for the simple reason that, in the temperature region
far below Tg, the system practically “freezes” in the
neighborhood of configurational space that it sampled just
before the temperature dropped.
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A necessary step for coarse graining the dynamics into
the IS picture is the evaluation of rate constants for basin-
to-basin transitions. This can be done with a variety of
methods.44-47,51-55 In the past we have used two distinct
approaches for the rate calculations: a saddle-point search
in combination with Fukui’s intrinsic reaction coordinate
(IRC) construction56 and a harmonic approximation,13 and
MD simulations48,49 in combination with hazard plot
analysis.57,58 The applicability of each approach depends on
its computational demands. For temperatures far below Tg,
an approach based on MD would suffer, since the system
remains trapped in the vicinity of a handful of basins and
does not escape even for times so long as to be inaccessible
by classical MD, while a saddle-point search/IRC will show
a much weaker dependence on barrier height and, therefore,
will be preferable. On the other hand, for temperatures above
Tg, saddle-point search suffers from the tremendous multitude
of basins (several thousands in the course of nanoseconds
for the model system sizes considered here) that need to be
sampled, while brute force MD is expected to perform more
efficiently. For the temperature range that is of primary
interest here, in the vicinity of Tg, both methods suffer. The
large number of visited basins makes the saddle-point search
method computationally unaffordable, while classical MD
must be pushed to its limits. The objective of this paper is
to develop an efficient sampling method for this temperature
range by achieving maximum parallelization. In a continu-
ation of this work, we will show that it is even possible to
accelerate the MD and sample rate constants over a very
broad window of time scales with practically the same cost
in real-time computation.

Theory

In previous work,48,49 the dynamics of a glassy material has
been described by mapping onto a sequence of transitions
between few basins, each basin constructed around an IS.
As in that work, the system under study here was a mixture
of Lennard-Jones (LJ) spheres that has been used widely to
model glassy materials.24,59,60 The mixture, initially proposed
by Kob et al.,60 consists of two different types of atoms, A
and B, with atomic fractions 80% in A and 20% in B. The
parameters of the model have been selected60 in such a way
that demixing is suppressed in order to suppress nucleation.
Despite the fact that A atoms are larger than B atoms, they
are assumed to have the same mass mA ) mB ) 6.634 ×
10-26 kg. The LJ interaction parameters are εAA ) 1.65678
× 10-21J, σAA ) 3.4 × 10-10m, εBB ) 0.82839 × 10-21J,
σBB ) 2.992 × 10-10m, εAB ) 2.48517 × 10-21J, and σAB

) 2.72 × 10-10m. The unit for reducing time is selected59,60

as [mAσAA
2 /(48 εAA)]1/2 ) 3.10 × 10-13 s, and the unit for

temperature is εAA/kB ) 120 K. If the above LJ interaction
parameters are reduced61 by the values of the A-A interac-
tion parameters, they read:60 εAA ) 1.0, σAA ) 1.0, εBB )
0.5, σBB ) 0.88, εAB ) 1.5, and σAB ) 0.8. In all calculations
reported here, the molecular density of the system will be
1.1908 σAA

-3 .
For this system in the supercooled state, Kob59 and Shell

et al.24 have performed extensive studies, on the basis of
which the mode coupling critical temperature Tc is reported

as 0.435 in reduced units (∼52.2 K).59 For the same system,
the glass transition temperature has been predicted24 to be
Tg ) 0.32, that is to say, roughly equal to 38.4 K.

Most previous studies have focused on the region above
Tg close to the mode coupling29-32 temperature Tc, where
the system starts to deviate from ergodic sampling according
to the mode coupling theory. It was shown that the number
of basins visited per unit time by a N ) 641 particle system
depends strongly on the temperature of the system. For
temperatures far below Tg, the system remains trapped in
the vicinity of a handful of basins, even for times significantly
longer than those accessible by conventional MD simulations
(microseconds). As one increases the temperature approach-
ing Tg, the number of basins sampled by traditional MD
increases, and the temperatures close to and above Tg, it
grows to several hundreds. For temperatures well above Tg

and Tc, MD sampling is sufficient to capture the basin-to-
basin dynamics and reproduce the cage effect59 and the
process of atomic diffusion at long times.49 Furthermore, it
has been shown48,49 that, for temperatures up to Tg, using
artificially trapped MD simulations within each one of the
visited basins and determining the transition rates out of the
basins, it is possible fully to describe the system’s atomistic
dynamics in terms of both the coarse-grained motion from
basin to basin and the intrabasin motion. The efficiency of
such a procedure depends on the relation of the accessible
simulation time to the time that the system needs to reach
the basin boundary.

In this work, we introduce a self-consistent methodology
that allows optimal use of MD over a wide range of
temperatures. Here, by the term “optimal use”, we refer to
the ability of the method to automatically tune the length of
MD trajectories used in order to sample inter- and intrame-
tabasin transitions in an uncoupled fashion. For short times
and low temperatures, the transitions between individual
basins are rare events, while at higher temperatures, close
to Tg, traditional MD can sample several basin-to-basin
transitions, but the rare event is now the transition between
collections of basins. Figure 1 shows results from a simula-
tion in the NVT ensemble, which started from an equilibrated
melt configuration (at 55K), under constant temperature close
to Tg (T ) 37K). As one can see clearly in the inset, the
system moves between three groups of basins (MB1, MB2,
and MB3), where the transitions between groups are sig-
nificantly slower in comparison to transitions between basins
belonging to the same group. Following Heuer et al.,62-64

we will refer to a collection of basins connected to each other
through fast transitions as a “metabasin” (MB). Note that
the reason why different MBs can be visually identified in
Figure 1 is the “irreversible” nature (overall downhill
direction of energy change) of the cooling process. Our target
is to create a general autotuned method that enables the
identification of a collection of basins and its characterization
as a MB and that allows calculation of the transition rates
from MB minima toward basins lying outside the MB
boundary.

In the literature, several definitions have been proposed
for the identification of a MB. Heuer65 proposed an algorithm
based on the IS trajectory, which can be summarized in the
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following steps: (a) determine the time regions between the
first and the last occurrence for each IS; and (b) group into
a MB all basins for which there is an overlap in the
corresponding time regions beyond a predefined time scale
set to discard recrossing phenomena. Within this approach,
the whole trajectory can be regarded, a posteriori, as a
succession of different MBs. An alternative definition,
independent of a specific trajectory, has been proposed66,67

by Mauro and Loucks. Starting from rates between inherent
structures, subsets are identified based on whether equilibra-
tion can be achieved within a prefixed time. As compared
to the previous definitions, this allows one in some limit (no
unbalanced transition rates)66 to perform a partitioning of
the configuration space into MBs, where the relaxation times
within a MB are short compared to that of an observation
time scale (prefixed time). However, in practice, many details
of the potential energy landscape have to be discarded for
the application of this approach. More details regarding MBs
in glass-forming systems can be found in the review article
of Heuer.68 Recently,18 the existence of MBs has been
correlated with specific changes in the configuration space
governed by the potential energy landscape, more precisely
with the extent of cage-breaking (i.e., the molecular mech-
anism where the first neighbors of individual atoms are
changing).

Another obstacle that one has to face when dealing with
efficient sampling of basins and MBs is the existence of high-
lying basins at the outskirts of the “most probable” basins
that the system may visit. The reverse rate constant for
leaving these basins to go back to the “probable” basins and
MBs is much higher than the forward rate constant, and
therefore, the actual probability of being in these peripheral
basins is very small. On the one hand, one cannot discard
such high-energy basins, since they may constitute passages
to a different part of the landscape that may also be very
“probable”, once it has been reached. On the other hand,

one does not want to spend equal computational effort
exploring the probable and improbable parts of the landscape.
On the contrary, one would like to distribute the computa-
tional effort according to the probability of observing the
system in each part of the landscape. Thus, besides the
definition of MBs, an additional goal of our work is to
implement the methodology in such a way that exploring
states which do not belong to an important MB (i.e., which
are occasionally visited by the system but are very quickly
abandoned, as the system returns to a dominant MB) does
not consume disproportionally large computational time.

A key feature of our methodology is the use of MD
simulation itself in order to automatically tune the “dynami-
cally accessible” part of the landscape under any conditions
of temperature and density, given the available simulation
time. In practice, we track the rate of exploring new minima
by proper bookkeeping of the minima that have already been
visited by our initial canonical MD run. When, for a given
time interval, a plateau in the plot of the number of identified
inherent structures versus simulation time is observed, which
implies that the system configuration circulates within a
confined collection of basins, we consider that the MB
consists of the basins identified up to that point. In this way,
we accomplish to group into a MB all the minima that are
accessible from a starting minimum for a specific time
window and to discriminate them from all other minima,
for which sufficient sampling will require more computa-
tional effort. If our methodology is applied for low temper-
atures far below Tg, the MB is determined by a handful of
minima or by even a single minimum (in the limiting case).

By construction, transitions from one MB toward its
neighboring MBs will occur at a significantly longer time
compared to the inner basin-to-basin transitions and to the
simulation time used to define the MB. Therefore, the
efficient sampling of transitions between MBs is, at least,
an order of magnitude more demanding than sampling the
inner MB. To accomplish such vigorous sampling, we
developed an approach that allows the distribution of load
within a parallel procedure that demands the same compu-
tational cost as the corresponding conventional MD run, but
the results are obtained on a real-time scale more than two
orders of magnitude faster. We propose a highly paralleliz-
able scheme to achieve an efficient sampling of the MB
dynamics. In this scheme, a long canonical MD trajectory
is considered equivalent to a collection of microcanonical
trajectories initiated at phase-space points sampled by a
relatively short canonical MD simulation entrapped within
the MB. Each microcanonical MD trajectory is terminated
as soon as it exits the MB. The evaluation of the rate
constants is based on hazard plot analysis of either the time
difference between exiting and entering a basin, within the
MB, or the measuring of the time that it takes the system to
leave a basin (or the whole MB), given an equilibrated
initialization within the same basin (or MB).

Hazard plot analysis is based on an evaluation of the
cumulative hazard. The hazard rate, h(t), is defined such that
h(t)dt is the probability that a system, which has survived a
time t since its last transition, will undergo a transition at a
time between t and dt. The cumulative hazard is defined as

Figure 1. Distribution of the potential energies of inherent
structures visited upon cooling the model system from T )
55 to 37 K at a rate of 6 K/ns. In the inset to the diagram, the
time evolution of the IS trajectory is given. The simulation time
was 3 ns. Three metabasins can be identified visually.

An “On the Fly” Definition of Metabasins J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1311



H(t) ) ∫0
t h(t′)dt′. The probability that a transition occurs in

time less than t since the last transition is P(t) ) 1 -
exp[-H(t)]. For a Poisson process, the hazard rate is constant
h(t) ) λ, the cumulative hazard is H(t) ) λt, and the
probability is

In our case of a Poisson process, the rate λ can be extracted
as the slope of a plot of the cumulative hazard H versus the
residence time t at long times, when the effect of recrossing
events has subsided, or as the negative slope of a plot of the
quantity ln(1 - Pcum(t)) versus the residence time. The last
expression is based on solving eq 1 for λt and replacing P(t)
with its corresponding estimate Pcum(t). The cumulative
probability Pcum(tk) at a specific time tk can be determined
as the ratio of the number of transitions that occurred with
residence time up to tk divided by the total number of
transitions. For a set of microcanonical trajectories, initiated
at phase-space points sampled according to the Boltzmann
weight that corresponds to the canonical ensemble, it is
possible to group the transitions under the approximation
that the system is at “local” equilibrium.

Consider that a set of transitions out of a given state with
residence times less than or equal to tk is observed at m
energy levels (E1, E2, ..., Em). We denote by nEi

the number
of transitions that occurred in time less than tk under energy
Ei. The number of transitions k that occurred in time up to
tk is k ) nE1

+ nE2
+ ... + nEm

. The total number of transitions
out of the considered state is equal to n.

We can now estimate the cumulative probability as

Let uEi
be the number of transitions (at any residence time)

out of the considered state observed under constant energy
Ei. Then we can write eq 2 as

In our scheme, when the system is at local equilibrium,
the terms uEi

/n will approximate the probabilities p(E,T) to
observe, in a canonical simulation under constant temperature
T, the system at energy Ei.

Therefore, we can transform eq 3:

The term nEi
/uEi

is the ratio of the number of transitions
that occurred with residence time less than or equal to tk

under constant energy Ei during the simulation to the total
number of transitions (at any residence time) under the same
energy Ei. This ratio corresponds to the probability of
observing a transition, at time less than or equal to tk, if the
simulation occurred under constant energy Ei in the micro-
canonical ensemble. We replace in eq 4 all the terms nEi

/uEi

with PNVE
cum (tk):

where ∫ pest(E,T)dE ) 1. We have now expressed the
probability to observe a transition in time etk at a specific
temperature T as an ensemble average over microcanonical
trajectories initiated at phase-space points sampled in the
course of an equilibrium canonical simulation. The initial
points of each microcanonical trajectory are sampled based
on the canonical ensemble in our algorithm.

Alternatively, one can derive eq 5 based on a superposition
ansatz for the residence time distribution. Consider a system
evolving along an NVT MD trajectory. We focus on
transitions of the system into and out of a given state (basin
or MB). The NVT trajectory will be assumed long enough
to achieve local equilibration within a confined region of
configuration space (MB or group of MBs, respectively) in
which the system is temporarily trapped and which contains
the considered state. In practice, the NVT MD trajectory is
generated by coupling the system with a heat bath (e.g.,
through an extended ensemble technique). The time constant
governing exchange of energy between the system and the
heat bath must be long in comparison to the mean residence
time in the state on which we focus; otherwise, our
observations will be perturbed by interactions with the heat
bath and will not reflect the true dynamics dictated by the
potential energy hypersurface and the masses of system
particles. Typically, each transition into and out of the state
will primarily involve a relatively small subset of degrees
of freedom of the system. The energy associated with this
subset does fluctuate at a faster rate than the total energy of
the system. Under these conditions, the total energy E of
the system between entry and immediately following the exit
from the considered state will remain practically constant.
By definition, then, the residence time distribution dP/dt|NVT

determined in the course of a long NVT MD trajectory that
allows the system to go in and out of the considered state
can be related to the residence time distribution dP/dt|NVE

that would be observed in the course of NVE MD trajectories
conducted at energy levels E as

P(t) ) 1 - exp[-λt] (1)

PNVT
cum (tk) )

k
n
)

nE1
+ nE2

+ ... + nEm

n
)

nE1

n
+

nE2

n
+ ... +

nEm

n
(2)

PNVT
cum (tk) )

nE1

n
+

nE2

n
+ ... +

nEm

n
)

nE1

n

uE1

uE1

+

nE2

n

uE2

uE2

+ ... +
nEm

n

uEm

uEm

, or

PNVT
cum (tk) )

nE1

uE1

uE1

n
+

nE2

uE2

uE2

n
+ ... +

nEm

uEm

uEm

n

(3)

P̂NVT
cum (tk) )

nE1

uE1

pest(E1,T) +
nE2

uE2

pest(E2,T) + ... +

nEm

uEm

pest(Em,T) (4)

PNVT
cum (tk) ) PNVE1

cum (tk)p
est(E1,T) + PNVE2

cum (tk)p
est(E2,T) + ...+

PNVEm

cum (tk)p
est(Em,T), or

PNVT
cum (tk) ) ∫PNVE

cum (tk)p
est(E, T)dE

(5)
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Integrating with respect to time, this gives

In eqs 6 and 7, p(E,T) is the probability of observing the
system at energy E. The latter probability, however, is, by
construction of the considered long, locally equilibrated NVT
trajectory, proportional to the Boltzmann factor of the energy,
retrieving eq 5.

Thus, we have expressed the cumulative probability to
have undergone a transition at time t at a specific temperature
T as an ensemble average of the corresponding cumulative
probabilities calculated along microcanonical (NVE) trajec-
tories. The initial phase-space points of the microcanonical
trajectories are sampled by a canonical ensemble NVT MD
simulation that has achieved local equilibration among a
group of states to which the considered state belongs. The
proposed approach can be envisioned as the reconstruction
of an ensemble of NVT trajectories from a weighted
ensemble of NVE trajectories. The correct dynamics can be
sampled via either an NVE simulation or an NVT simulation
in the limit where the thermostat interacts weakly with the
system, in a way that does not perturb the system’s time
correlation functions. Nevertheless, our approach of using a
swarm of NVE trajectories has a significant computational
advantage; in the traditional NVT ensemble, once the
interaction with the thermostat is weakened, the necessary
time for thermal equilibration increases, whereas in our case,
this is overcome by the proper weighting of each dynamical
path. Despite the advantages of using NVE trajectories
discussed above, we have actually tested whether it is
possible to use NVT trajectories instead of NVE, and we
have shown that, in practice, there is no significant difference.

Molecular Simulation approach. The first step in our
methodology is to determine “on the fly” the local potential
energy landscape that constitutes the MB, using a small-
duration canonical MD simulation. Along an atomistic NVT
MD simulation, at regular time intervals, the potential energy
was minimized with the method of conjugate gradients69 in
order to identify the ISs of the MB. For the identification of
ISs, Stillinger4 proposed the use of the steepest descent
method. In this work, we have chosen to use the method of
conjugate gradients, which leads to the same IS as steepest
descent in the overwhelming majority of cases but is
significantly faster than steepest descent. To each one of the
visited ISs we attribute an identity, storing its potential energy
and its configuration. At this stage, we can have an estimate
of the rate constants based on our previous work:48,49 For
each IS, we may choose to collect the transition times toward
neighboring basins and their corresponding conditional
probabilities and to compare the results of this stage with
the final result of the proposed parallel scheme. The criterion
we use to ascertain that the current MB has been sufficiently
explored is based on the rate of identification of new (not
already visited) basins of the potential energy and reflects
the achievement of local equilibrium within the MB. Under
these conditions, the system configuration circulates within

a confined collection of basins, and a plateau in a plot of
the number of identified ISs versus simulation time is
observed. We consider that our MB consists of the number
of basins identified up to that point. In Figure 2, we present
a plot of the number of identified ISs versus the simulation
time for a specific MB comprised of 290 minima.

This approach can easily be combined with the DIMW
methodology for creating an ever-expanding network of MBs
based on the following steps: (a) Define a MB based on short
NVT MD runs, as described above; (b) Evaluate rate
constants with the proposed methodology for all interbasin
transitions within the MB and for basin-to-basin transitions
terminating outside the MB; (c) Select an unexplored basin
that lies outside of, but is connected to, the current (explored)
MB based on the DIMW methodology; this is a starting point
for identifying an additional MB; and (d) Loop back to step
(a) to conduct an NVT MD out of the selected basin, but
now, if the MD run reaches an explored basin of an explored
MB, then go to step (b) and choose to leave the explored
MB from a new unexplored basin (which can be one of the
basins that are grouped as the additional MB). Continue the
MD run until the rate of finding new MBs drops below a
preset value. Note that, in this way, every new MB is not
independent of the previous ones, but the union of identified
MBs defines a set of basins in which the system will spend
“sufficient” time before exploring new basins.

In order to evaluate the rate constants necessary for step
(b), we proceed in the following manner: We produce an
equilibrium sampling of phase-space points within the basins
belonging to the MB via the execution of artificially trapped
long canonical MD simulations. The artificial entrapment is
implemented using reflective conditions at the MB bound-
aries. That is, once the system exits the MB, we invert the
momenta (of the atoms and thermostat) stepping the system
backward, returning it to the MB, following the procedure
introduced in our previous work, where the inversion of the
momentum was used to trap the system in individual
basins.48,49 The inversion of momenta is followed by an
appropriate Gaussian randomization (that preserves the
canonical distribution) of the momenta. This is used to
perturb the system away from the original trajectory and

dP
dt |

NVT
) ∫ dP

dt |
NVE

p(E, T)dE (6)

P(t)|NVT ) ∫P(t)|NVE p(E, T)dE (7)

Figure 2. Number of explored minima as a function of time
at T ) 37 K. When a plateau is observed for a prefixed time
interval, the explored minima are considered to belong to the
same MB.
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assist the chaotic character of the system dynamics in
sampling nearby trajectories. The new atomic momenta
correspond to the imposed temperature of the canonical
simulation, via the equipartition theorem, and sum to a total
momentum of zero, as in the initial state. The duration of
the artificially trapped simulation is ten times longer than
that of the canonical MD that was used for the identification
of the MB (step a). During the artificially trapped canonical
simulation we store phase-space configurations of the system
at constant time intervals. At the same time intervals, we
minimize the potential energy of the system under constant
volume and, thereby, make an assignment of sampled phase-
space points to basins. Thereby, we can ensure that the stored
phase-space point belongs to the sampled MB or record it
as belonging to another MB. Within the simulation, we
identify and store all transitions between basins belonging
to the sampled MB and between basins of the sampled MB
and unexplored basins lying outside the MB. It should be
noted that the idea of a trapped simulation has been inspired
by the novel methods pioneered by Voter54,55 for studying
the dynamics of rare events. Our aim is to combine these
novel ideas with hazard plot analysis58 for the calculation
of rate constants via generation of a simple ensemble of MD
trajectories in a high-dimensional energy landscape.

At this point, we propose a highly parallelizable scheme
to achieve an efficient sampling of the MB dynamics by
considering the canonical molecular dynamics trajectory as
equiValent to a collection of microcanonical trajectories at
total energies that have been chosen according to a Boltz-
mann weight corresponding to the canonical ensemble. To
ensure that the initial states have been chosen with the
appropriate Boltzmann weight, we confirm that the total
energy distribution of the selected phase-state points provides
a good estimate of the total energy distribution of the long
canonical simulation along which they were sampled.

Out of each initial phase-space point, stored in the course
of the “locally equilibrated” trapped long canonical MD
simulation, we start two microcanonical (NVE) MD trajec-
tories, one forward and one backward (by reversing the
momentum of each particle). We continue our conjugate
gradient potential energy minimizations at regular time
intervals along each of these microcanonical trajectories, and
we identify the minima based on the energy and on an
Euclidean distance in configurational space (where atoms are
considered distinguishable; swapping the identities of two
particles results in a different basin). Each microcanonical
MD simulation is terminated once the system visits an
“unexplored” basin that does not belong to the current MB.
We collect all the transitions between basins belonging to
the sampled MB and between MB basins and unexplored
basins lying outside the MB and perform hazard plot analysis
on them as we have proposed for the basin-to-basin case.48,49

We then determine the rate constant for each transition by
ensemble averaging over the entire swarm of microcanonical
trajectories according to eq 5.

This scheme of conducting a swarm of microcanonical
MD simulations can be highly parallelized, since it does not
require any communication between the simulations out of
the different phase-space points. All necessary steps for the

implementation of the parallel scheme are shown in Figure
3. In Figure 4, we provide a schematic representation of a
configuration space, depicting the basic steps of the proposed
methodology.

Parallel Implementation. The parallel computational
work was conducted at the Supercomputing Center CINECA
in Bologna, Italy. The simulations were performed on the
IBM BCX/5120 cluster, which is mainly used for massively
parallel applications and special high-end projects. The
cluster consists of 2180 nodes, where each node is supplied
with 2 Opteron dual core processors at 2.6 GHz. The nodes
communicate via infiniband (5Gb/s) network. More informa-
tion about the cluster can be found at http://www.cineca.it.

The implementation of the parallel scheme has employed a
noncommercial MD code developed by the authors, using the
Message Passing Inteface (MPI) library for distribution of the
computational load. As we described above, we need to perform
two microcanonical MD runs for each one of the stored phase-
space points. Since these MD runs are completely independent,
we use MPI to distribute the initial phase-space points among
the available processors. Each processor performs a set of MD
trajectories that start from the phase-space points assigned to it
and end once the system has reached the “boundaries” of the
MB. Energy minimization is performed, with the method of
conjugate gradients,69 at regular time intervals of the order of
0.1 ps. Each microcanonical MD simulation is completed when
the system comes out of the MB, that is when, after the
minimization procedure, the system is found in an “unexplored”
IS that does not belong to the current MB. Thus, by construc-
tion, the simulation times of the independent microcanonical
trajectories vary, and so does their corresponding execution time.

In order to share the computational cost into the parallel
procedure, we developed two implementations: equally and
unequally distributed configurations. In the first implementa-
tion, before the parallel simulation starts, we assign to the
processors equal numbers of initial phase-space points. Each
processor knows the number and identity of the phase-space

Figure 3. Flow of calculations according to the proposed
parallel scheme.
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points for which it will execute microcanonical simulations.
This simplified parallel implementation was constructed
conveniently, since the required programming cost is small.
We proceeded to develop a more complex implementation,
that of unequally distributed configurations, which aims at
equalizing the distribution of computational load. Within this
implementation, from the N processors used, one (e.g.,
node0) is dedicated to “dealing” initial phase-space points
out to the remaining N - 1 processors. Initially, node0
distributes, via the MPI library, one phase-space point to each
processor. As soon as a processor (from the set of N - 1)
completes the simulation of its assigned phase-space point,
it communicates, via the MPI library, with node0, and a new
phase-space point is assigned to it, until all phase-space
points finish their microcanonical simulation.

Results and Discussion

In order to validate the proposed scheme we compare, for a
specific well-sampled basin of the identified MB, the
transition rate obtained for exiting it from our proposed
parallel methodology and from the artificially trapped
canonical MD simulation in the MB. As one can clearly see
in Figure 5, the resulting rates (long-time slopes of the
cumulative hazard with respect to residence time) are in very
good agreement. The comparison of Figure 5 has been
performed for all the basins that constitute the MB.

One of the advantages of using the hazard plot analysis is
that, on top of the evaluation of the rate constant, the method
validates whether the process is first order or not, since the
linearity in the hazard plot is equivalent to an exponential
distribution of the associated residence times. As has been
described in our previous work, our hazard plot analysis has
been designed to evaluate the sum of rates out of a basin or

Figure 4. A two-dimensional (2D) cartoon representation of a configuration space depicting the basic steps of the proposed
methodology: (a) (Red regions) representation of inherent structures/basins which constitute the sampled MB. (b) (Black line)
configuration space projection of the NVT MD trajectory used to define the MB. (c) (Green regions) neighboring basins, which
are not part of the MB. (d) (Small white circles) configuration space projections of points in phase space sampled during an NVT
MD trajectory (represented again by the black line) entrapped within the MB; these points are employed as the starting points
for the swarm of NVE MD trajectories used to evaluate the rate constants. (e) Ending points of the NVE MD trajectories, i.e.,
points at which these trajectories leave the MB. (f) Two NVE MD trajectories (yellow and green) started from two of the stored
phase-space points. For reasons of clarity, only one NVT MD trajectory is drawn here (black line). In reality we use two, one for
the initialization of the MB and one for the collection of the NVE MD starting points. In blue, we depict the inaccessible (high
potential energy) part of the configuration space; in reality, this constitutes a very large fraction of the configuration space.

Figure 5. Comparison between the results obtained from an
artificially trapped trajectory in the canonical ensemble and
the proposed parallel scheme for the calculation of the
cumulative hazard to exit a specific basin of configuration
space at temperature T ) 37 K.
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a metabasin. Under the assumption of a Poisson process, each
rate is the sum of the individual transition rates to any other
basin or MB, through single or multiple routes. As has been
described in our previews work,48,49 basin-to-basin transitions
are clearly of first order at low temperatures, whereas at
temperatures higher than Tg, one has to look for MB-to-MB
transitions to recover a clear first-order character.

Note that we have used two different but equivalent
methods to determine the rate constants from our microca-
nonical MD trajectories based on hazard plot analysis. First,
we have used the traditional idea proposed by Helfand58 of
analyzing the residence time within each of our discrete states
(basins), i.e., the difference between the exit and entrance
times. On the other hand, we also chose to analyze (again
via hazard plot analysis) the ensemble of times that it takes
to exit a basin (or a MB) when the initial phase-space point
has been chosen according to the local equilibrium conditions
within the state. We use the second hazard plot approach
when we calculate the rate constants out of both the basin
of the initial “stored” phase-space point and the MB itself
toward the basins of neighboring MBs. Whereas, we use the
first hazard plot approach when we calculate the rate
constants between all other basins that we encounter after
the initial one, until we reach the final basin of the trajectory.
Our hazard plot calculations are performed along the
canonical or the swarm of microcanonical MD trajectories.

In Table 1, we can see that using classical MD we observe
only 3910 transitions between basins in the MB, while using
the proposed parallel methodology this number becomes six
times larger (24 271). In Table 2, we present a comparison
of the computational cost and the simulation time between
the classical MD and the parallel method. The simulation
time of our parallel MD scheme is 20 times longer that that
of the corresponding artificially trapped MD, and the total
computational cost of the parallel scheme is also around 20
times larger.

To quantify the parallelizability of this scheme, we studied
the speedup factor (Sp) and the parallel efficiency (Ep) as
functions of the number of processors used. The speedup

factor is defined by the following equation: Sp ) T1/Tp, where
p is the number of processors used, T1 is the execution time
of the sequential run, and Tp is the execution time of the
parallel scheme with p processors. The parallel efficiency is
defined as: Ep ) Sp/p.70,71

Results for the equally distributed configurations are
presented in Figures 6 and 7 (0). As one can clearly see in
these figures, this implementation for our proposed parallel
application manages to reduce the execution time of our
simulations even using up to 1000 processors. The speedup
factor of this implementation indicates that using 1000
processors, with computational cost approximately six times
larger than the corresponding sequential simulation (E1000

≈ 0.164 ≈ 1/6.11), we shorten the execution time by a factor
of 163 (S1000 ≈ 163). The parallel efficiency obtained from
this implementation is significantly lower than the optimum
value that can be achieved by our parallel scheme. Since it
does not demand any communication between the microca-

Table 1. Comparison of the Number of Saddle Points
(Corresponding to Transitions between the MB minima)
Identified with MD and with the Proposed Parallel
Methodologya

saddle points
saddle points per

execution time (h-1)

MD 3910 326
parallel scheme 24 271 1867

a Both applied within a MB. The MB consists of 290 minima.

Table 2. Comparison of the Execution Time, the CPU
Cost and the Simulation Time between MD and the
Proposed Parallel Methodologya

execution
time (h)

CPU
cost (h)

simulation
time (s)

MD 12 12 3 × 10-9

parallel scheme 12 + 1 250 7.7 × 10-8

a The CPU cost for the parallel scheme is given by the product
of the execution time of the “slowest” processor and the number of
processors used.

Figure 6. Dependence of the efficiency factor (Ep) on the
number of processors used for the implementation of equally
distributed configurations (0) and for the implementation of
unequally distributed configurations (2).

Figure 7. Dependence of the speedup factor (Sp) on the
number of processors used for the implementation of equally
distributed configurations (0) and for the implementation of
unequally distributed configurations (2).
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nonical simulations, the proposed parallel scheme should
allow higher values for the speedup factor (approaching linear
dependence on the number of processors used - linear
scaling) and for the parallel efficiency (approaching unity).
The implementation of the equally distributed configurations
suffers from load-balancing problems, due to the heterogene-
ity of the total simulation times of each processor. The
distribution of execution times of the various processors for
this implementation is presented in Figure 8 (gray area).
Since completion of our parallel simulation demands that
the simulation on the “slowest” processor be finished
(computational cost is charged according to this rule in the
supercomputing centers), the execution time of the overall
simulation is determined by the execution time of the
“slowest” processor. In order to solve this load-balancing
problem, we developed the implementation of unequally
distributed configurations. The dependence of the parallel
efficiency and the speedup factor on the number of processors
used, for this implementation, is presented in Figures 6 and
7, respectively. The distribution of execution times for a
simulation on 250 processors, using the implementation of
unequally distributed configurations, is presented in Figure
8. Using this implementation, as we can clearly see in Figure
6, we overcome the load-balancing problem plaguing the
implementation of equally distributed configurations. As a
result, we achieve an almost linear scaling for the speedup
factor, even if we use a large number of processors (S250 ≈
238) and reduce the computational cost very significantly,
close to the computational cost of the sequential simulation
(E250 ≈ 0.92). A great advantage of this implementation is
that almost linear scaling is achieved by our parallel scheme,
even if we use a large number of processors (250),
independently of the simulated system size. For high-
performance parallelization of MD simulations to be realized
by domain decomposition into a large number of processors,
most simulation software requires very big systems (of the
order of 1 × 105 atoms) to be simulated. The implementation
we propose here achieves its high performance even for very

small systems, such as the system of Lennard-Jones spheres
studied here (641 atoms).

The self-consistent methodology proposed for the defini-
tion of the MB aims at an automated selection of potential
energy basins, among which local equilibration can be
assumed to be established over the (long) time scales of
interest. Equivalently, this can be translated into the require-
ment that the mean time spent in each of these minima is
significantly longer than the time required for the achieve-
ment of local equilibration. For a system whose dynamics
can be envisioned as a succession of transitions, with kinetics
described by a first-order law, the response to any perturba-
tion from the equilibrium probability distribution among
states (in our case, basins) can be resolved into modes, each
mode corresponding to a projection on an eigenvector of the
matrix of transition-rate constants describing the dynamics
of the system, appropriately symmetrized.9,42,72,73 The matrix
of transition-rate constants K is defined as follows:

where kifj is the rate constant for the elementary transition
from basins i to j.

As in the “EROPHILE” approach, the N-dimensional
vector P(t) of state probabilities for observing the system at
time t in each one of the N distinct states P(t) ≡ (P1(t), ...,
Pi(t), ..., PN(t)) is transformed into a reduced vector P̃(t) with
elements P̃i ) Pi/�Pi(∞). The elements of the transition-
rate constant matrix are correspondingly transformed as K̃ij

) Kij�Pj(∞)/�Pi(∞). Under the condition of microscopic

Figure 8. Representation of the distribution of the execution
times of all processors for a simulation on 250 processors
using the implementations of equally and unequally distributed
configurations. The broken and solid arrows point at the
maximum execution time for the first and second implementa-
tions, respectively.

Figure 9. Comparison of the mean residence time in a MB
that has been identified at 37 K, calculated by summing all
rates for exiting the MB from any one of its basins, each
weighted with the equilibrium probability of the corresponding
basin (2) and by hazard plot analysis over the artificially
trapped microcanonical MD trajectories (0). The inverse
minimum (nonzero) absolute eigenvalue of the rate-constant
matrix for the specific MB is also shown, for comparison (9).
The comparison has been performed for three temperatures
(the basins constituting the MB are the same in all tempera-
tures; what is changed is the temperature of the artificially
trapped MD simulations).

Kij ) kjfi∀i * j, Kii ) -∑
j

kifj (8)
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reversibility (detailed balance) on the rate constants (kifjPi(∞)
) kjfiPj(∞)) the matrix K̃ is symmetric and similar to the
transition-rate constant matrix K. Since they are similar
matrices, they have the same eigenvalues, which have to be
all real due to the symmetry of the K̃ matrix. On the other
hand, the form of K guarantees that there is at least one 0
eigenvalue and that all other eigenvalues are negative. We
denote these eigenvalues by λ0 ) 0 g λ1 g, ..., g λN-1 and
symbolize by ũn ) (ũ1n, ũ2n, ..., ũin, ..., ũNn), the eigenvector
of K̃ corresponding to eigenvalue λn, 0 e n e N - 1. The
solution of the time-dependent state probabilities can be
written as

or, in vector form:

The eigenvectors ũn form an orthonormal basis set: ũm ·
ũn ) δmn, 0 e m, n e N - 1, with δmn being the Kronecker
delta. They also satisfy ∑n ) 0

N-1 ũi,nũj,n ) δij.
Whereas eq 9 has been proposed in the past9,73 in order

to describe the time evolution of the state probabilities, in
the work of Boulougouris and Theodorou, referred to as the
“EROPHILE” approach,42 the Euclidean orthonormal basis
set created by the eigenvectors ũn is used for the first time,
to our knowledge, to describe not only the state probabilities
but also any real observables (i.e., their time-dependent
averages and auto- and cross-correlations). For any observ-
able A, it is possible to perform a transformation in the
“EROPHILE” space, creating a Euclidean vector with
components Ãi ) Ai�Pi(∞), where Ai is the value of the
observable in state i of the system. The Euclidean vector
Ã(t) can then be expressed in the same basis set as the state
probability vector P̃(t).

EROPHILE is able to identify a relaxation mode either
as a redistribution of the state probabilities in such a way
that the return to equilibrium will occur along a single
exponentially decaying function or, equivalently, as an
observable for which the autocorrelation function will decay
as a single exponential. From eq 10 it becomes obvious that
each projection on every one of the eigenvectors evolves
independently and, as the system approaches equilibrium,
all mode contributions except the one corresponding to the
0 eigenvalue tend to 0 in an exponentially decaying fashion
(eλnt). Therefore, for times longer than the inverse minimum
absolute value (nonzero) eigenvalue of the rate constant
matrix, any perturbation of the system, no matter how big
or improbable, will have been damped, and the system will
have attained local equilibrium. To judge whether or not the
system has achieved local equilibrium before leaving a given
set of states, one has to compare the negative inverse of the
smallest in absolute value nonzero eigenvalue of the transi-

tion rate matrix, -1/λ1, with the average time it takes to leave
the given set of states. In our case, we validate our “on the
fly” identification of MBs by performing this comparison of
-1/λ1 against the mean residence time in the MB, as obtained
from hazard plot analysis of our MD trajectories. As is shown
in Figure 9, the former is three times smaller than the latter
at 37 K and remains smaller at 40 and 43 K. An additional
strong indication that local equilibration has been achieved
within the MB is the equality between the values predicted
for the mean residence time in the MB, as calculated directly
via hazard plot analysis of the artificially trapped microca-
nonical MD trajectories and as estimated via summation of
the rates for exiting the MB from any basin belonging to it,
each weighted by the equilibrium probability of the basin,
assuming local equilibrium (see Figure 9):

Note that pi
eq values are normalized to 1 in this calculation.

As mentioned above, this model system has been thor-
oughly studied in the past17-20 and has provided very useful
insights into the molecular motion relevant to relaxation in
the vicinity of the glass transition, namely the “cage-
breaking” process. More precisely, the change in the number
of first neighbors accompanying a transition in the potential

Pi(t) ) ∑
n)0

N-1

∑
j)1

N √Pi(∞)

√Pj(∞)
ũi,nũj,ne

λntPj(0), or

P̃i(t) ) ∑
n)0

N-1

∑
j)1

N

ũi,nũj,ne
λntP̃j(0) (9)

P̃(t) ) ∑
n)0

N-1

[ũn·P̃(0)]eλntũn ) P̃(∞) + ∑
n)1

N-1

[ũn·P̃(0)]eλntũn

(10)

Figure 10. Schematic representation of a cage-breaking
event in a single jump from one potential energy minimum to
a neighboring one. The positions of the atoms that participate
in the transition are plotted with different sizes (initial: big; final:
small), and vectors are drawn to indicate their displacements
accompanying the transition. With red color we represent the
atoms that remain first neighbors to the central atom expe-
riencing the cage-breaking event, which is also shown in red.
Cyan represents atoms that used to be first neighbors of the
central atom but cease being so after the transition; their new
positions are shown in yellow. Dark blue represents atoms
which were not first neighbors of the central atom but come
into its first coordination shell after the transition; their new
positions are shown in orange. The blue surface depicts the
volume accessible to the central molecule initially and the red
finally, illustrating the cage change accompanying the transition.

kMBfout ) ∑
i

pi
eq kifj, i ∈ MB, j ∉ MB (11)

〈t〉MBfout ) 1/kMBfout (12)
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energy landscape has been thoroughy examined in the work
of Souza and Wales.17 In our work, we also see cage-
breaking events, as depicted in Figure 10, where a “central”
atom jumps to a new cage after a single transition. On the
other hand, when we investigate MB-to-MB transitions, we
do not only see an enhancement of this process but also
observe more complex relaxation mechanisms (Figure 11),
wherein a number of atoms take each other’s positions
moving in a, more or less, stringlike fashion, as if they were
“dancing” in accordance with the “stringlike cooperative
motion” demonstrated by the work74 of Donati et al. In their
work, by analyzing the van Hove correlation function
produced via MD simulation for the same model system,
Donati et al. showed that there is a fraction of mobile
particles that at a characteristic time replace each other,
executing a stringlike cooperative motion. Our result suggests
that such a motion can be seen as a basin-to-basin transition
intimately linked with the MB-to-MB transitions. We plan
to investigate these more complex motions further in the
future, since they require a great deal of cooperation between
the atoms involved but may entail a less unfavorable energy
barrier than the single cage-breaking events which move a
molecule from one cage to another, bypassing (or pushing
out) its first neighbors.

Conclusions

We have developed an automated self-consistent method
which can operate on the fly within a molecular dynamics
(MD) simulation, allowing the identification of collections
of basins and their characterization as metabasins (MBs).
The criterion used to define MBs from short MD runs is

based on the rate of identification of new, not already visited,
basins. In practice, when for a given time interval we observe
a plateau in the number of identified inherent structures (ISs)
versus simulation time, implying that the system configu-
ration circulates within a confined collection of basins, we
consider that a MB has been identified, consisting of the
basins visited up to that point. The proposed approach gives
the ability to calculate the presence of a MB on the fly, the
“minute” the system is trapped in a part of its configuration
space; it does not require a postprocessing of the dynamics
after the visit of several (at least two) MBs, as some
previously proposed methods do.

The identification of a MB is followed by a calculation of
the individual rate constants governing transitions between the
basins constituting the MB and transitions toward basins that
do not belong to the current MB. The computational cost
for this calculation, which demands minimization of the
potential energy for basin identification at regular time
intervals, is significantly high, so we proceeded to develop
a methodology that overcomes this obstacle. Our methodol-
ogy distributes the vast computational cost associated with
this calculation into a series of small duration-independent
microcanonical MD simulations, conducted in parallel. Initial
phase-space points for these microcanonical simulations are
taken from a canonical MD simulation trapped within the
MB. The execution time of the parallel microcanonical
simulations is reduced dramatically, since our methodology
does not require any information exchange between the
simulations. Our results from the parallel methodology were
compared against results from long artificially trapped
canonical MD simulations and found to be in very good
agreement. By implementing a scheme of unequally distrib-
uted configurations, wherein the parallel microcanonical MD
runs are assigned to available processors in a manner that
ensures good balancing of the computational load, we were
able to achieve almost linear scaling (E250 ≈ 0.92) on up to
250 processors, at a total computational cost similar to the
cost of the corresponding sequential simulation. Additional
advantages of our parallel methodology are that its ap-
plicability is independent of the system size (its high
parallelization speedup and efficiency can be achieved even
with very small systems, contrary to what happens with
domain decomposition), and independent of the cluster
architecture (shared memory or not). Using the proposed
parallel methodology, we have examined the validity of our
definition of the MB from the point of view of achievement
of local equilibration among the basins that constitute the
MB. To do so, we have compared the mean residence time
between entry to and exit from the identified MB, calculated
in two independent ways, with the time for decay of any
perturbation away from local equilibrium within the MB.
We observed that the mean residence time is significantly
longer, indicating that local equilibrium has been achieved
and that the MB has been successfully defined. The proposed
parallel methodology distributes the vast computational cost
of our calculation into practically independent runs, making
it ideal as a backfill job on computing clusters. On the other
hand, using a “workload management system” in scheduling
the independent molecular dynamics runs has proved es-

Figure 11. Schematic representation of a more complex
relaxation event that takes place in a single jump from one
potential energy minimum to a neighboring one, belonging to
a different MB. Coloring is as in Figure 10. We have also
drawn cyan and light-brown spheres representing the first
coordination shell, centered at the initial and final positions
of the atom with the largest displacement. In this complex
elementary move, atoms look like they are moving in a
concerted way, exchanging their positions in a dance-like
fashion.
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sential to efficiency. Beyond the usual benefits of parallel
implementation, the Poisson character of our process (ex-
ponential distribution of the residence time) causes the
individual independent runs to have widely varying com-
putational cost.

This work is designed to extend the sampling ability of
traditional MD simulation by utilizing an exremely efficient
parallel approach. The approach is developed specifically to
overcome some of the most vicious obstacles in the simula-
tion of glassy systems, by turning them into an advantage.
For example, the separation of time scales between intra-
and intermetabasin transitions, which “immobilizes” tradi-
tional MD sampling, is now turned into an advantage,
allowing for automated definition of fast and slow processes
relative to the MD sampling ability. The novelty of the
proposed approach lies in its design to overcome specific
problems in simulating glass-forming systems. Furthermore,
this is one of only few successful attempts to parallelize with
high efficiency the calculation of dynamical properties. Last
but not least, the use of the idea of a swarm of NVE
trajectories to estimate the distribution of residence times in
the NVT ensemble, and from that the rate constants, is, to
our knowledge, novel and far from trivial.

The design of the algorithm aims at, as simple as possible,
an implementation on the top of any existing MD package.
The necessary tools are an MD simulator with the ability to
perform minimizations; reflection and randomization of
momentum48,49 at specific intervals, depending on the result
of the minimization; and a simple book-keeping procedure
for visited minima. Furthermore, in all probability the
proposed algorithm will be integrated into a general-purpose
simulation package (probably as a tool in the MAPS
program75 of Scienomics SARL) based on a open-source MD
platform.

Acknowledgment. This paper is part of the 03ED375
research project, implemented within the framework of the
“Reinforcement Programme of Human Research Manpower”
(PENED) and cofinanced by National and Community Funds
(20% from the Greek Ministry of Development-General
Secretariat of Research and Technology and 80% from E.U.-
European Social Fund). Computational work was carried out
under the HPC-EUROPA project (RII3-CT-2003-506079),
with the support of the European CommunitysResearch
Infrastructure Action under the FP6 “Structuring the Euro-
pean Research Area” Program. The authors would like to
thank Dr. Loukas Peristeras for his contribution to the
development of the parallel code.

References

(1) Angell, C. A. Structural instability and relaxation in liquid
and glassy phases near the fragile liquid limit. J. Non-Cryst.
Solids 1988, 102, 205–221.

(2) Dawson, K. A.; Foffi, G.; Sciortino, F.; Tartaglia, P.; Zac-
carelli, E. Mode-coupling theory of colloids with short-range
attractions. J. Phys.: Condens. Matter 2001, 13, 9113.

(3) Boulougouris, G. C.; Frenkel, D. Novel Monte Carlo scheme
for systems with short-ranged interactions. J. Chem. Phys.
2005, 122, 244106.

(4) Stillinger, F. H.; Weber, T. A. Hidden structure in liquids.
Phys. ReV. A: At., Mol., Opt. Phys. 1982, 25, 978–989.

(5) Theodorou, D. N.; Suter, U. W. Detailed molecular structure
of a vinyl polymer glass. Macromolecules 1985, 18, 1467–
1478.

(6) Doliwa, B.; Heuer, A. Finite-size effects in a supercooled
liquid. J. Phys.: Condens. Matter. 2003, 15, S849–S858.

(7) Theodorou, D. N. In Principles of molecular simulation of
gas transport in polymers; Yampolskii, Y., Pinnau, I.,
Freeman, B. D., Eds. John Wiley: Hoboken, NJ, 2006; pp
47-92.

(8) Wales, D. J.; Miller, M. A.; Walsh, T. R. Archetypal energy
landscapes. Nature 1998, 394, 758–760.

(9) Becker, O.; Karplus, M. The topology of multidimensional
potential energy surfaces: Theory and application to peptide
structure and kinetics. J. Chem. Phys. 1997, 106, 1495–1517.

(10) Wales, D. J.; Doye, J. P. K.; Miller, M. A.; Mortenson, P. N.;
Walsh, T. R. Energy landscapes: from clusters to biomol-
ecules. AdV. Chem. Phys. 2000, 115.

(11) Wales, D. J. Discrete path sampling. Mol. Phys. 2002, 100,
3285–3306.

(12) Wales, D. J. Calculating rate constants and committor prob-
abilities for transition networks by graph transformation.
J. Chem. Phys. 2009, 130, 204111.

(13) Boulougouris, G. C.; Theodorou, D. N. Dynamical integration
of a Markovian web: A first passage time approach. J. Chem.
Phys. 2007, 127, 084903.

(14) Jain, T. S.; de Pablo, J. J. Investigation of Transition States
in Bulk and Freestanding Film Polymer Glasses. Phys. ReV.
Lett. 2004, 92, 155505.

(15) Riggleman, R. A.; Douglas, J. F.; de Pablo, J. J. Characteriza-
tion of the potential energy landscape of an antiplasticized
polymer. Phys. ReV. E: Stat., Nonlinear, Soft Matter Phys.
2007, 76, 011504.

(16) Papakonstantopoulos, G. J.; Riggleman, R. A.; Barrat, J. L.;
de Pablo, J. J. Molecular plasticity of polymeric glasses in
the elastic regime. Phys. ReV. E: Stat., Nonlinear, Soft
Matter Phys. 2008, 77, 041502.

(17) Souza, V. K. d.; Wales, D. J. Connectivity in the potential
energy landscape for binary Lennard-Jones systems. J. Chem.
Phys. 2009, 130, 194508.

(18) Souza, V. K. d.; Wales, D. J. Energy landscapes for diffusion:
Analysis of cage-breaking processes. J. Chem. Phys. 2008,
129, 164507.

(19) Calvo, F.; Bogdan, T. V.; Souza, V. K. d.; Wales, D. J.
Equilibrium density of states and thermodynamic properties
of a model glass former. J. Chem. Phys. 2007, 127, 044508.

(20) Middleton, T. F.; Wales, D. J. Comparison of kinetic Monte
Carlo and molecular dynamics simulations of diffusion in a
model glass former. J. Chem. Phys. 2004, 120, 8134–8143.

(21) Wales, D. Some further applications of discrete path sampling
to cluster isomerization. Mol. Phys. 2004, 102, 891–908.

(22) Sciortino, F. Potential energy landscape description of super-
cooled liquids and glasses. J. Stat. Mech.: Theory Exp. 2005,
P05015.

(23) La Nave, E.; Sastry, S.; Sciortino, F. Relation between local
diffusivity and local inherent structures in the Kob-Andersen
Lennard-Jones model. Phys. ReV. E: Stat., Nonlinear, Soft
Matter Phys. 2006, 74, 050501.

1320 J. Chem. Theory Comput., Vol. 6, No. 4, 2010 Tsalikis et al.



(24) Shell, M. S.; Debenedetti, P. G.; Panagiotopoulos, A. Z. A conformal
solution theory for the energy landscape and glass transition of
mixtures. Fluid Phase Equilib. 2006, 241, 147–154.

(25) Debenedetti, P. G.; Stillinger, F. H.; Shell, M. S. Model Energy
Landscapes. J. Phys. Chem. B 2003, 107, 14434–14442.

(26) Debenedetti, P. G.; Stillinger, F. H. Supercooled liquids and
the glass transition. Nature 2001, 410, 259–267.

(27) Crisanti, A.; Ritort, F. Inherent Structures, Configurational
Entropy and Slow Glassy Dynamics. J. Phys. Condens.
Matter 2002, 14, 1381–1395.

(28) Chowdhary, J.; Keyes, T. Energy Landscapes Composed of
Continuous Intertwining Equipotential Ribbons. J. Phys.
Chem. B 2004, 108, 19786–19798.
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Abstract: We present a method and a computer code for accurate calculation of electrostatic
potential in an arbitrary crystalline lattice modeled using a finite system. The method is based
on complementing a lattice unit cell with a set of point charges in order to annihilate
simultaneously all components of any number of the lowest multipole moments. The positions
and the values of the complementary charges are determined analytically. The electrostatic
potential produced by each modified cell is short range, and the corresponding lattice series
converges absolutely, which makes it convenient to use in embedded cluster calculations of
solids, surfaces, and low-dimensional structures. The method is illustrated by application to the
rutile TiO2 and R-quartz SiO2 lattices and to those of several complex minerals.

1. Introduction

In embedded cluster and quantum mechanics/molecular
mechanics (QM/MM) methods, a QM description of a part
of the system, called a “region of interest”, is combined with
the empirical description of its surroundings. These methods
are paticularly advantageous to use in cases where electronic
states, associated with the region of interest, and those,
associated with its environment, are separated in space and
in energy. Numerous implementations of these techniques
(see, for example, refs 1-14) and their applications to studies
of large organic molecules,15 solutions,13,16,17 nanoparticles,18

molecular crystals,19,20 excitons21,22 and reactions and prop-
erties of defects23-27 have been reported.

The QM/MM methods often use a finite system (which
will be referred to as a nanocluster or NC) to model the
bulk, the surfaces, and the complex interfaces in crystals. It
is well-known that the electrostatic potential (EP) inside a
finite system depends on the choice of the structural element
used to construct it. We illustrate this idea on the example
of a nanocluster constructed as a 5 × 5 extension of a crystal

unit cell, as shown schematically in Figure 1a. If the unit
cell has zero dipole (D) and nonzero quadrupole (Q)
moments, the electrostatic potential V in the inner region of
the nanocluster, indicated with a circle, depends on the details
of the nanocluster structure. As the size of the nanocluster
increases, the potential converges to the Ewald potential
shifted by a constant, which can adopt any value from -∞
to +∞, depending on the shape of the nanocluster.

This creates problems if absolute positions of energy levels
need to be calculated. In particular, the values of the
ionization energies and the electron affinities, calculated for
surface defects, depend on the EP in a nanocluster modeling
this surface and, therefore, on the particular way the
nanocluster is constructed. Accurate prediction of these
properties is important for understanding a wide range of
processes. For example, theoretical prediction of the MgO
(001) surface ionization potential5,28 has helped to map out
the energy levels of surface oxygen vacancies, hydrogen
defects, and nanoscale structural defects,5,29,30 with respect
to both the top of the surface valence band and the vacuum
level. These theoretical results have been used successfully
to develop mechanisms of complex photoinduced processes
including charge transfer,31 site-selective chemical reac-
tions,32 and atom desorption.33,34 Recent similar results
obtained for silica surfaces25 may need to be reconsidered
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because, unlike the MgO case, structural elements used to
generate silica nanoclusters possessed nonzero quadrupole
moments. The ambiguity in the values of the EP makes it
difficult to set up a common reference for the bulk and
surface defects in the same system and to compare results
obtained for defects in different materials.

In this work, we suggest a method, together with a
computer code,35 which eliminates these problems. The
method is based on complementing a lattice unit cell with
point charges, which zero out all multipole moments of the
cell up to any predefined M (see Figure 1b). If M g 2, the
potential in the inner region of the nanocluster converges
absolutely to the result of the Ewald summation as the size
of the nanocluster increases.36 The complementary charges
inside the nanocluster cancel each other out exactly by
construction. Nonzero charges are situated only on the
periphery of the nanocluster in a “skin” layer, thickness of
which depends on the value of M. Thus, the complementary
charges provide corrective contribution to the EP inside the
nanocluster without modifying the lattice structure in its inner
region. This construction is convenient for embedded cluster
calculations of crystalline systems and can be used to model
bulk, surface, and low-dimensional structures.

Existing methods for constructing electrostatic embedding
potential can be broadly divided into three categories:

Grouping. The crystal lattice can be divided into groups
so as they have zero charge, dipole, and higher multipole
moments.37,38 The potential produced by each of these groups
is short range, and the sum over the groups converges
absolutely if the first nonzero moment is octupole. For
example, the lattice building blocks for the rock-salt and
perovskite (Figure 2a and b, respectively) structures can be
selected so as their first nonzero multipole moments are m
) 6 and 4, respectively.

Fitting. The difference between the EPs produced by a
finite system and the corresponding infinite solid is fitted

using a finite set of point charges.8,39-41 This usually
involves three steps: (i) calculating the Madelung potential
using the Ewald summation method; (ii) introducing dis-
cretization in order to define the number of fitting charges
and their positions; and (iii) solving a system of linear
equations to find the best fit.

Lattice Summation. The difference between the Made-
lung and EPs due to a finite cluster can be also reproduced
using multipoles associated with the lattice ions42 or ac-
counted for using the Ewald summation over infinite
lattice.14,43

An implicit limitation of the fitting and lattice summation
approaches is in their reference to the infinite lattice model
and the periodic boundary conditions, which makes them
difficult to apply to, for example, nonperiodic systems and
irregular surfaces. In addition, the procedures related to the
charge discretization and to operating with differences
between the Madelung potential and the potential produced
by a finite cluster are user dependent. In particular, the
accuracy of the potential can vary depending on the
complexity of the system, size, and shape of the nanocluster
and on the choice of the number and location of the fitting
charges.

The method suggested here regularizes the grouping
approach. It neither requires calculating the EP of an infinite
system nor involves fitting. Moreover, the electrostatic
embedding potential is reproduced by a finite set of point
charges, which makes it easy to employ standard codes for
ab initio calculations.

2. Regularization of the Electrostatic
Potential Series

Consider a crystalline lattice with lattice vectors Rk ) k1a1

+ k2a2 + k3a3, where a1, a2, and a3 are elementary translation
vectors, and k1, k2, and k3 are integers. If the position and
the net charge of a jth atom in the unit cell are defined as Fj

and ej, respectively, the EP for this lattice is given by the
equation:

where index j runs through all atoms in the unit cell, and
index k runs through all unit cells of the system. In the case
of infinite periodic lattices, the result of this summation
depends on the order in which it is carried out.

The sum in eq 1 is not absolutely convergent, which means
that, according to the Riemann series theorem, it can be made

Figure 1. Electrostatic potential V in the inner region of a
nanocluster (top panels) depends on the lattice unit cell
(bottom panels) used to generate it. (a) If the unit cell has
zero dipole (D) and nonzero quadrupole (Q) moments, then
V(r) converges to VEwald(r) + C with increasing size of the
nanocluster, where constant C can adopt any value depending
on the shape of the nanocluster. (b) If the unit cell is
complemented with point charges so as both D ) 0 and Q )
0, V(r) converges to VEwald(r) absolutely. The complementary
charges (bold dots) are situated at the points equivalent to
the unit cell corners. The boundaries of the nanocluster are
indicated with bold solid lines.

Figure 2. Examples of high-symmetry lattice build-
ing blocks: (a) MgO:Mg(1/2Mg)12(1/2O)6(1/8O)8; (b) SrTiO3:
Sr(1/8Ti)8(1/4O)12; (c) ZrO2:(1/2Zr)6(1/8Zr)8O8.

V(r) ) ∑
kj

ej

|r - Rk - Fj|
(1)
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to converge to any desired value from -∞ to +∞ by a
suitable rearrangement of the terms. Ewald44 has proposed
a summation procedure which regularizes eq 1 and trans-
forms it into a sum of two absolutely converging series. This
regularization is achieved by interchanging an integration
and an infinite summation, which does not converge uni-
formly (see, for example, ref 45). Physical implication of
this regularization are discussed elsewhere.38

An alternative approach, suggested by Madelung,46 is
based on regrouping the terms in eq 1:

where N is the number of centers in the group, so as the
infinite sum over k becomes absolutely convergent. For this,
it is necessary and sufficient to define the groups so as their
zeroth, first, and second multipole moments, i.e., charge,
dipole, and quadrupole, are all equal to zero simultaneously.
The group of N centers does not have to coincide with the
crystallographic unit cell but being translated with the
corresponding lattice vectors should reproduce the whole
infinite lattice.

Examples of such groups for MgO and SrTiO3 are shown
in Figure 2a and b, respectively. However, this method is
difficult to generalize to complex lattices. It is straightforward
to either select a unit cell or complement it with four fictitious
charges,47 so as to eliminate its dipole moment. However,
eliminating the quadrupole and the higher electric moments
in a general case is not trivial, and even in the case of cubic
ZrO2, the structural element shown in Figure 2c has nonzero
components of the quadrupole moment.48

In the following, we consider a crystal unit cell which,
being translated along its vectors, fills up the lattice without
voids and overlaps. We demonstrate that for any, however
complex, crystal such a cell can be complemented with a
set of point charges so as: (i) all of its electric moments up
to and including any finite M are eliminated simultaneously,
and (ii) being translated with all possible lattice translation
vectors, the modified unit cell reproduces the original lattice.
The EP inside a finite system, formed of these groups,
converges with the size of the system absolutely if M g 2
and if the rate of the convergence is controlled by few well-
defined numerical parameters.

Components of the mth multipole moment of a crystalline
cell are defined as

where N0 is the number of atoms in the cell, and m1 + m2 +
m3 ) m. For each m, sets (m1, m2, m3) can be represented as
points with integer coordinates in the first octangle, as shown
in Figure 3a.36 The zero moment component Q0(0, 0, 0),
i.e., the unit cell charge, corresponds to the point at the origin
in Figure 3b. Components Q0(1, 0, 0), Q0(0, 1, 0), and Q0(0,
0, 1) of the first moment, i.e., the unit cell dipole, correspond
to the three points shown in Figure 3c. Points corresponding

to components of the quadrupole (m ) 2) and octupole (m
) 3) moments are shown in Figure 3 d and e, respectively.

In general, all components of all multipole moments up
to m ) M can be associated with integer-coordinate points
inside a tetrahedron TM with vertices at (0, 0, 0), (M, 0, 0),
(0, M, 0), and (0, 0, M ).36 Such tetrahedron for M ) 3 is
shown with dashed lines in Figure 3a. For convenience, point
(0,0,0) will be referred to as the main vertex of the
tetrahedron.

We exploit this correspondence so as to eliminate multi-
pole moments of the original unit cell. For that we introduce
a set of point charges e(n) at

where n ) (n1, n2, n3). Since the tetrahedron defined for
components of multipole moments and the tetrahedron
defined for charges e(n) are equivalent, it is always possible
to obtain such values of e(n) that the multipole moments
due to these charges cancel out the multipole moments of
the original unit cell exactly:

In principle, this system of linear equations can be solved
with respect to e(n) using standard matrix diagonalization
algorithms. However, the matrix elements can vary by several
orders of magnitude, resulting in the loss of accuracy of the
numerical solutions.

A general method for solving this system of equations
analytically has been proposed in ref 36. Here we generalize
this method in order to account for the fact that the EP
function in a system has the same symmetry as the system
itself. To this end, the tetrahedra TM

R (R ) 1, 2, ..., 8) and
the corresponding set of extra charges are associated with
each corner of the lattice unit cell.

For convenience, we will use fractional coordinates and
assume that the corners of the unit cell are at the points (-1/
2, -1/2, -1/2), where each combination of signs defines
one of the corners and corresponds to one of the values of
R. Then, positions of the main vertices of the tetrahedra TM

R

are given by

Figure 3. Correspondence between points occupying sites
with integer coordinates m1, m2, and m3 and components of
multipole moments xm1ym2zm3, where the moment m is given
by m1 + m2 + m3.

V(r) ) ∑
k

U(r - Rk) ) ∑
k

( ∑
j)1

N ej

|r - Rk - Fj|)
(2)

Q0(m1, m2, m3) ) ∑
j)1

N0

ejFjx
m1Fjy

m2Fjz
m3 (3)

F(n) ) n1a1 + n2a2 + n3a3, n ∈ TM (4)

∑
n∈TM

e(n)Fx
m1(n)Fy

m2(n)Fz
m3(n) ) -Q0(m), m ∈ TM

(5)
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where parameter V defines the shift of TM
R with respect to

the corresponding corner of the unit cell, and the charges
eR(n) are positioned at (compare with eq 4)

The values of charges eR(n) for each of the tetrahedra can
be calculated separately in order to eliminate a fraction of the
multipole moments of the original unit cell. For simplicity, for
each R we choose, the coordinate system in which r0

R ) 0, and
require that the extra charges associated with a tetrahedron TM

R

cancel 1/8th of the unit cell multipole moments, i.e., PR(m) )
(1/8)P0(m), where P0(m) defines multipole moments of the
original unit cell calculated in the same coordinate system and
expressed in fractional coordinates. Then, eq 5 becomes

where the signs are defined by the orientation of TM
R and are

opposite to those in eq 6.
This system of equations can be solved analytically with

the help of auxiliary functions:36

which, for integer values of the argument, become

Functions Gk(x) are polynomials of x:

and their coefficients g(k, m) can be calculated analytically
using recurrence equations:

In one-dimensional case, the system of eqs 8 transforms
into

where we adopted the( sign instead ofR (R) 1, 2). Multiplying
these equations by (( 1)mg(k, m) and summing over m we obtain

where k ) 0, ..., M. The right side of this equation is known and,
for brevity, is denoted as f ((k), while the left side contains the
expansion of Gk(n) over powers of n:

Taking into account the properties of Gk(n) (see eq 10), we obtain
backward relations for the charges e(n):

and

where k ) M - 1, M - 2, ..., 0.
Similar, although more complex, backward recurrence relations

can be obtained for the three-dimensional case36 and for any
tetrahedron TM

R . For simplicity, we omit the explicit indexR, since
the reference to each tetrahedron is incorporated in the choice of
signs for ((1)mi (i) 1, 2, 3) in eq 8 and the values of the multipole
moments P(m), calculated in the coordinate system selected for
each tetrahedron, as described above.

We renumerate points (k1, k2, k3) of a tetrahedron TM from
1 to NM, using a single index k ) �(k1, k2, k3) and the explicit
relation (see ref 36 for details):

In this numeration, the first index k ) 1 corresponds to the
point (0,0,0) and the last index k ) NM corresponds to the
point (M,0,0) of the tetrahedron.

Using the single index numeration, we introduce functions:

and

where f̃(k) is known

and the choice of signs is defined by that in eq 8. Then, the
recurrent relations analogous to eqs 16 and 17 can be written as

r0
R ) -(1

2
+ V)a1 - (1

2
+ V)a2 - (1

2
+ V)a3 (6)

FR(n) ) r0
R ( n1a1 ( n2a2 ( n3a3 (7)

∑
n∈TM

R

eR(n)((n1)
m1((n2)

m2((n3)
m3 ) -PR(m), m ∈ TM

R

(8)

Gk(x) ) {0 if k ) 0

∏
j)0

k-1

(x - j) if k > 0
(9)

Gk(n) ) {0 if n < k
n!

(n - k)!
if n g k

(10)

Gk(x) ) ∑
m)0

k

g(k, m)xm (11)

g(k + 1, 0) ) kg(k, 0) ) g(1, 0) ) 0

g(k + 1, k + 1) ) g(k, k) ) g(0, 0) ) 1

g(k + 1, m) ) g(k, m - 1) - kg(k, m), m ) 1, ..., k
(12)

∑
n)0

M

((n)me((n) ) -P((m), m ) 0, 1, ..., M (13)

∑
m)0

k

∑
n)0

M

g(k, m)nme((n) ) - ∑
m)0

k

((1)mg(k, m)P((m) (14)

∑
n)0

M

Gk(n)e((n) ) f ((k), k ) 0, ..., M (15)

e((M) ) 1
M!

f ((M) (16)

e((k) ) 1
k!(f((k) - ∑

n)k+1

M
n!

(n - k)!
e((n)) (17)

k ) �(k1, k2, k3) )

1
6

k1[3M 2 + 12M + 11 - 3(M + 2)k1 + k1
2]

+k2(M + 1 - k1) -
1
2

k2(k2 - 1) + k3 + 1 (18)

ẽ(n) ) e(n1, n2, n3)

G̃k(n) ) Gk1
(n1)Gk2

(n2)Gk3
(n3)

f̃(k) ) f ((((k1, k2, k3) (19)

f̃(k) ) - ∑
m1)0

k1

∑
m2)0

k2

∑
m3)0

k3

PR(m)((1)m1((1)m2((1)m3

× g(k1, m1)g(k2, m2)g(k3, m3) (20)

ẽ(NM) ) 1

G̃N+M
(NM)

f̃(NM)
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where k ) NM - 1, NM - 2, ..., 0, and

We note that for nanoclusters with characteristic size of
more than 2M unit cells, there is a finite inner region in
which all charges e(n) belonging to the same tetrahedron
TM will occupy the same lattice site exactly once. Since the
sum of such complementary charges is zero for neutral cells
(see eq 5), these charges cancel each other out. Hence,
nonzero complementary charges remain only on the periph-
ery of the nanocluster.

3. Details of the Calculations

In the following, we apply the method described in Section
2 to several crystalline lattices. In each case, a lattice unit
cell is complemented with a set of charges e(n) so as to
eliminate several of its multipole moments. These modified
unit cells are used to generate a series of finite systems (see
Figure 4) as their

extensions, i.e., a finite system is constructed by repeating
the lattice building block (2k1k + 1), (2k2k + 1), and (2k3k
+ 1) times along the lattice vectors a1, a2, and a3,
respectively. Thus, parameters k1, k2, and k3 define the shape
of the cluster, and parameter k defines its size.

The convergence of the EP is investigated as a function
of the system size and shape, the largest eliminated multipole
moment M, the number of tetrahedra TM

R , and the values of
the shift parameter V.

To assess the convergence of the EP, we calculate the
potential produced by all centers of the system at the atom

sites of the central unit cell, i.e., the on-site potential (Vsite)
and the potential in the space between the atoms, which is
calculated on a three-dimensional grid (V grid) in the central
unit cell. In this work, we used a regular grid of 213 points,
from which we removed the points if they are within 0.6 Å
of any lattice atom. Thus, the total number of remaining grid
points was close to 8000.

To characterize convergence of the EP, we consider
deviations from the reference potential calculated using the
Ewald method (VEwald) for each point i

and the root-mean-square (rms) and the standard deviation
of ∆Vi:

where

is the mean of ∆Vi, and index i runs through all atoms of
the central unit cell in the case of the on-site potential (V )
Vsite) and through all grid points in the case of the potential
calculated on the grid (V ) Vgrid).

Structural parameters of the materials selected for this
study are summarized in Table 1. The first group includes
binary oxides in which the unit cell period is comparable to
the interatomic distances: rock-salt MgO, rutile TiO2, and
R-quartz SiO2. Due to the high symmetry of the rock-salt
lattice, the unit cell used for MgO has zero dipole and
quadrupole moments. In the case of rutile, only one
component of the dipole moment and three components of
the quadrupole moment are equal to zero.

The second group of materials includes complex oxides
with ∼50-100 atoms per cell and with a lattice period
significantly larger than typical interatomic distances. The
EP function in these materials has a complex character
combining potential variations on the scale of cation-anion
distances with longer range variations on the scale of the
lattice period.

4. Results

In this section we will investigate the convergence of the
EP inside finite systems constructed of building blocks, for
which the first M electric multipole moments are exactly
zero. In Section 4.1, we demonstrate that if M < 2, then the
EP depends on the shape of the finite systems and illustrate
how the absolute convergence of the EP can achieved using
larger M. The dependence of the EP on the parameter V (see
eq 6) is discussed in Section 4.2. In Section 4.3, we
demonstrate that using charges e(n) of eight tetrahedra TR

can improve the EP convergence. Finally, in Section 4.4,

Figure 4. Schematics of the finite clusters constructed
according to the (2k1k+1) × (2k2k+1) rule for k1 ) k2 ) 1
(top) and k1 ) 1 and k2 ) 2 (bottom). The central unit cell is
shown with bold lines.

ẽ(k) ) 1

G̃k(k)(f̃(k) - ∑
n)k+1

NM

G̃k(n)ẽ(n)) (21)

G̃k(n) )
n1!

(n1 - k1)!

n2!

(n2 - k2)!

n3!

(n3 - k3)!
, k e n

(22)

(2k1k + 1) × (2k2k + 1) × (2k3k + 1) k ) 0, 1, 2, ...
(23)

∆Vi ) Vi
Ewald - Vi (24)

∆Vrms ) � 1
N ∑

i

N

(∆Vi)
2 (25)

σ ) � 1
N ∑

i

N

(∆Vi - ∆V)2 (26)

∆V ) ∑
i

N

∆Vi (27)
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we investigate the EP convergence in the lattices of minerals,
which have large unit cells and complex character of the EP
function.

4.1. Size- and Shape-Dependence of The EP. To il-
lustrate the dependence of the EP inside a finite system on
the shape and the size of this system, we applied the (2k1k
+1) × (2k2k +1) × (2k3k +1) rule, schematically illustrated
in Figure 4, to construct a series of rutile TiO2 clusters. We
note that for a fixed set of numbers ki (ki g 1, i ) 1, 2, 3)
increasing parameter k to infinity corresponds to the sum-
mation over the infinite lattice, while parameters k1, k2, and
k3 define a particular order of this summation.

In this set of the calculations, we used eight tetrahedra
TM

R and fixed the value of the parameter V (see eq 6) to V )
0.5. We considered three sets of k1, k2, and k3:

and varied parameter k from 1 to 5. The dependence of ∆V rms
site

on k and ki, calculated for several different M, is shown in
Figure 5.

We emphasize that the original rutile TiO2 unit cell has
two nonzero components of the dipole moment [Q(0, 1, 0)
) Q(0, 0, 1) ) -9.2 eÅ] and three nonzero components of
the quadrupole moment [Q(0, 2, 0) ) Q(2, 0, 0) ) -32.2
eÅ2, Q(1, 1, 0) ) -16.4 eÅ2]. The procedure described in

Section 2 was used to complement the original unit cell with
point charges and, thus, to generate rutile TiO2 lattice
building blocks, which have no nonzero multipole moments
up to M ) 4.

The results shown in Figure 5a demonstrate that for M )
0, the ∆V rms

site converges to a constant value with an increasing
value of k. The corresponding standard deviation σsite (eq
26) also converges to a constant and nonzero value. For
example, for k ) 5, σsite ) 13.3 V, if k1 ) k2 ) k3 ) 1, σsite

) 19.7 V, if k1 ) k2 ) 1 and k3 ) 2, and σsite ) 18.5 V, if
k1 ) 1 and k2 ) k3 ) 2. In other words, the difference
between Vsite and VEwald varies from site to site and cannot
be improved by further increasing k. In addition, the
convergence limit depends on the choice of ki, i.e., the
potential distribution inside the finite cluster is determined
by its shape even in the case of an infinitely large k. This is
characteristic to a series in which the result of the summation
depends on the order of this summation, which, in our case,
is defined by the parameters ki.

If the original unit cell is complemented with extra charges
so as its dipole, but not quadrupole, moment becomes zero
(M ) 1), the EP still depends on the order of the summation,
as demonstrated in Figure 5b. Indeed, series ∼1/r3 diverges
as ln(R) when summed up over a sphere of radius R. In
practice, convergence is achieved by fixing the order of the
summation. In the case of TiO2 (see Figure 5b), we found
that dispersion σsite tends to zero as the value of k is increased,
i.e., the EP in the finite system differs from the corresponding
VEwald by a constant value. We emphasize that the numerical
value of that shift is defined entirely by the parameters ki (i
) 1, 2, 3) and, in general, by the shape of the finite system.

Once the unit cell is modified so as its quadrupole moment
is eliminated (M ) 2), the EP converges to VEwald with
increasing k absolutely, as illustrated in Figure 5c. The speed
of the convergence still depends on the parameters ki, i.e.,
on the shape of the finite system. Similar results, but faster
convergence rates, were obtained for M ) 3 and 4 (Figure
5d-e).

4.2. Dependence on the Shift Parameter W. The method
described in Section 2 leaves one free to choose the value
of the parameter V, which defines the shift of the tetrahedra
TM
R from their respective corners of the unit cell. Hence, this

parameter can be varied in order to minimize the number of
the charges and ∆V rms for a given value of M and to improve
the convergence of the EP.

The maximum number of charges e(n) associated with
each tetrahedron is defined by the value of M as nq ) (M
+ 1)(M + 2)(M + 3)/6. Hence, the maximum total number

Table 1. Crystal Lattices Considered in This Worka

cell parameters

material structure a b c R � γ

MgO rock-salt 4.0 4.0 4.0 90.0 90.0 90.0
TiO2 rutile 4.59373 4.59373 2.95812 90.0 90.0 90.0
SiO2 R-quartz 4.91304 4.91304 5.40463 90.0 90.0 120.0
Ba4Fe8Si8O28 andremeyerite 7.464 13.794 7.093 90.0 118.25 90.0
Na7[Al4 Si12]Si8O48Cl3 marialite 12.047 12.047 7.5602 90.0 90.0 90.0
Na16Ce8[CO3]20 petersenite (Ce) 20.872 6.367 10.601 90.0 120.5 90.0

a Structural parameters a, b, c (in Å) and R, � γ (in degrees) are given according to the crystallographic convention.

Figure 5. Convergence of the on-site EP calculated for the
central unit cell of (2k1k + 1) × (2k2k + 1) × (2k3k + 1) rutile
TiO2 clusters. M is the largest eliminated electric moment.
Letters C, D, Q, O, and H refer to the charge, dipole,
quadrupole, octopole, and hexadecapole moments of the
modified unit cell, respectively.

k1 ) 1, k2 ) 1, k3 ) 1
k1 ) 1, k2 ) 1, k3 ) 2
k1 ) 1, k2 ) 2, k3 ) 2
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of the charges is given by the number of tetrahedra used
multiplied by nq.

However, for all integer and half-integer values of V some
of the charges, belonging to different tetrahedra, coincide
and may cancel each other out due to the lattice symmetry.
For illustration, we plot the total number of charges, Nq, for
rock-salt, rutile, and R-quartz lattices and several values of
M in Figure 6. Eight tetrahedra were used in each case,
which gives the maximum total number of charges 8nq )
80 for M ) 2, 160 for M ) 3, and 280 for M ) 4.

As is it clear from Figure 6, the number of charges Nq is
considerably smaller than 8nq for the highly symmetrical
rock-salt lattice (Figure 6a) but not so for lower symmetry
rutile and R-quartz (Figure 6b and c, respectively). This is
because many components of the electric multipole moments
are equal to zero in the rock-salt structure, which translates
into zero values of many of the charges e(n).

For V g -0.5, positions of some of the charges eR(n)
belonging to different TM

R coincide, and their values can
cancel each other out exactly. Consequently, the number of
these charges can decrease by as much as a factor of 3 in
R-quartz and by a factor of 5 in rock-salt lattices.49

The dependence of ∆V rms
grid on the shift parameter V and

the size parameter k calculated for rutile TiO2 is shown in
Figure 7. Here the value of V was varied from -3 to +3
with increments of 0.1, and the value of k was varied from
0 to 8.

It is clear that for all V and any M (M g 2), the function
∆V rms

site (V, k) converges to zero in the limit of large k. For M
) 2 and 3, this function has a narrow deep valley, indicating
that the convergence of the EP can be significantly improved
by choosing an appropriate V. Interestingly, for M ) 4-7,
we obtain a relatively wide valley, where ∆V rms

site (V, k) is
small and almost independent of V. This suggests that for
large values of M, the EP, due to the modified unit cell, is
short range. Hence, the EP inside a finite system converges
with its size, as defined by k, quickly. At the same time,
geometrical size of each TM

R becomes large compared to the
size of the original unit cell, which makes the results less
dependent on the details of their relative geometrical ar-
rangement, as given by V. Interestingly, the range of V
providing fast convergence of the EP coincides with that for
which Nq is the smallest.

To summarize, parameter V determines the shift of the
extra charges from the unit cell corners and serves two
purposes. First, the total number of extra charges can be
reduced significantly if V > 0, as illustrated in Figure 6.
Second, positive V can improve convergence of the electro-
static with respect to the highest eliminated multipole
moment and the size of the nanocluster (Figure 7). In
addition, parameter V offers flexibility in positioning the extra
charges, with respect to the atomic coordinates, which may
be of an advantage in modeling surface sites.

4.3. Dependence on Spatial Distribution of the
Charges e(n). The charges eR(n) associated with any single
tetrahedron TM

R are sufficient to eliminate all electric mo-
ments of the unit cell up to any predefined M.36

In this section, we investigate the effects of symmetrical
spatial distribution of the charges e(n) generated for several
tetrahedra. For example, it can be expected that the charges
associated with eight tetrahedra positioned symmetrically at
the corners of the unit cell, as indicated in Figure 8c, could
provide faster convergence of the EP than those due to a
single tetrahedron (see Figure 8a).

Figure 6. The total number of complementary charges e(n)
associated with T M

R (R ) 1, ..., 8) calculated for the unit cells
of rock-salt, rutile, and R-quartz lattices and plotted as a
function of the shift parameter v.

Figure 7. Convergence of ∆V rms
grid in rutile TiO2 calculated for several values of M and the shift parameter v: - 3 e v e 3. Darker

regions indicate smaller values of ∆V rms
grid; the corresponding range of values is shown on the right of each plot using a log10

scale.
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We consider the R-quartz SiO2 lattice and construct the
charges e(n) using one, four, and eight tetrahedra as indicated
in Figure 8, in order to eliminate the electric moments up to
M ) 2, 4, and 6 in each case. A series of finite clusters was
constructed using the (2k + 1)3 rule, given by eq 23 with k1

) k2 ) k3 ) 1, for k ) 0,1, ..., 8, and the values of ∆V rms
site

were calculated for the central cell of each cluster. The results
of these calculations for the shift vector V ) 0.0 are plotted
in Figure 8d.

It is clear that even in the case of the low-symmetry lattice,
such as that of R-quartz, the convergence of the EP can be
improved if several TM

R tetrahedra of charges are used. We
note that, in this particular case, the e(n) constructed for the
four and eight tetrahedra demonstrate almost identical
behavior of ∆V rms

site with the value of k.
The advantages of using eight symmetrically located

tetrahedra becomes apparent if we consider the dependence
of ∆V rms

site on the shift vector V, as shown in Figure 9. Here
we plot ∆V rms

site as a function of V for three sizes of the
R-quartz clusters (k ) 4, 6, 8) and M ) 4 and 6.

In the case of a single tetrahedron, ∆V rms
site strongly depends

on V, i.e., achieving good EP convergence requires pre-
optimization of the shift parameter. The dependence on the
value of V is less pronounced in the case of four tetrahedra.
Finally, if eight tetrahedra are used, the ∆V rms

site shows small
variations near its minimum, which is broadly in the region
of 0 e V e 1.

This observation is consistent with the results obtained
for ∆V rms

grid in rutile TiO2 (Section 4.2) and suggests that the
particular choice of V is insignificant for M g 4 and k g 4
as long as 0 e V e 1.

Figure 8. Convergence of the on-site EP in R-quartz. The values of ∆V rms
site are calculated for clusters generated using eq 23

with k1 ) k2 ) k3 ) 1. The charges are generated using one (1 T), four (4 T) and eight (8 T) tetrahedra as indicated in a, b, and
c, respectively. The orientation of each tetrahedron is given by vectors n1, n2, and n3, which are collinear with the lattice vectors
a1, a2, and a3 (not shown) of the unit cell, indicated with a dashed box in a-c. M shows the value of the largest eliminated
multipole.

Figure 9. Dependence of ∆V rms
site in the central cell of R-quartz

clusters on the shift parameter v. Complementary charges
e(n) are generated using one (closed circles), four (open
circles), and eight (open squares) tetrahedra TM for M ) 4
(top panels) and 6 (bottom panels). The clusters are generated
using eq 23 with k1 ) k2 ) k3 ) 1.
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4.4. Electrostatic Potential in Complex Lattices. To
illustrate the applicability of the method to a wide range of
systems, we considered three minerals having complex lattice
structures formed by several types of atoms with different
formal ionic charges (see Table 1 and Figure 10).

In particular, andremeyerite has a monoclinic lattice and
48 ions per cell with formal charges of -2, +2, and +4.
Marialite has tetragonal lattice, and its unit cell contains 82
ions with the charges of -2, -1, +1, +3, and +4. Finally,
petersenite has a monoclinic lattice and contains 20 molecular
anions CO3 per cell. These anions were modeled using the
corresponding formal charges as C4+O3

2- anions, which
provide strong variations of the EP on the scale of the
interatomic distances.

The EP distribution in these systems is further complicated
by the long-range modulations on the scale of the lattice
period and by large differences in the values of the
crystallographic parameters. For example, in petersenite, the
value of the lattice parameter a is ∼20.872 Å and the ratios
a/b and a/c are ∼3.2 and ∼2.0, respectively.

In each case, we have modified the initial unit cell in order
to eliminate M lowest multipole moments and used these
modified cells to generate finite (2k + 1)3 systems, as
described above. Convergence of the EP was investigated
as a function of the system size. In all cases, we used eight
TM

R tetrahedra, and the value of the shift parameter V was
fixed to zero. The results of these calculations are collected
in Figure 11.

The calculated function ∆V rms
site (k, M ) does not generally

approach zero if the cell is neutral and has no dipole moment,
simultaneously, i.e., M ) 1. Instead, ∆V rms

site converges to a
constant value, as it is shown in Figure 11a-c, which
depends on the order of summation, as discussed above in
Section 4.1 on the example of rutile TiO2. The convergence
becomes absolute if the quadrupole moment is eliminated
as well, i.e., M g 2.

The convergence with respect to the system size is faster
for larger values of M, as illustrated in Figure 11d-f. We
notice that, in some cases, functions ∆V rms

site (k, M ) calculated
for an even M ) M1 and odd M ) M1 + 1 behave similarly
with k. This can be seen for both marialite and petersenite
for M ) 2 and 3 and for M ) 4 and 5. This is because in
the case of even M some components of the higher electric
moments can become eliminated by symmetry, and hence,
further increase of M by 1 may improve the convergence
insignificantly.

The overall convergence of the EP in the considered
minerals is similar to that found for simpler structures, such

Figure 10. Structure of complex oxides used in this work: (a) andremeyerite Ba4Fe8Si8O28; (b) marialite Na7[Al4Si12]Si8O48Cl3,
and (c) petersenite Na16Ce8[CO3]20. Each panel shows a (2k + 1)3 extension of the corresponding unit cell with k ) 1. Structural
parameters of these systems are given in Table 1.

Figure 11. Convergence of the on-site EP in andremeyerite
(a, d), marialite (b, e), and petersenite (c, f) clusters generated
using eq 23 with k1 ) k2 ) k3 ) 1. The original unit cells have
been modified to eliminate all electric moments up to and
including M. In the case of unit cells with nonzero quadrupole
(M < 2), the potential converges to an arbitrary limit defined
by the shape of the cluster (a-c). The absolute convergence
is achieved if M g 2 (d-e).
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as rutile and R-quartz. Similarly good convergence was found
for the EP calculated on the grid and characterized using
∆V rms

grid (k, M ).

5. Discussion and Conclusions

The relation between the electrostatic potential (EP) inside
a finite macroscopic sample and its surface charge as well
as the dependence of the potential on the shape of the sample
have been considered previously in, for example, refs 50-52.
It is well-known that surfaces of macroscopic samples
acquire surface charge in order to compensate the EP outside
the sample. There can be several sources of the surface
charge, including surface reconstruction, contamination with
impurities, and defect formation, all of which can be difficult
to describe on the atomic scale.

In our method, the lattice unit cell is complemented with
charges e(n) so as the EP produced by each modified cell is
short range, which is the physical basis for the proposed
regularization of eq 1. Indeed, the EP outside a finite system
constructed from these unit cells is also short range inde-
pendently on its size and shape, as expected for realistic
macroscopic samples. It can also be said that charges e(n)
produce effective compensating potential, which does not
need to be described on the atomic scale.

The potential inside a finite system converges with its size
absolutely, and the rate of convergence is controlled by few
numerical parameters: the largest eliminated multipole mo-
ment of the original unit cell M, the number of the tetrahedra
TM of the complementary charges, and the displacement V
of the main tetrahedra vertices with respect to the unit cell
corners. We note that the absolute convergence of the EP
with the size of the system is achieved only if M g 2 and
can be improved by increasing M further, by using a
symmetry adjusted number of tetrahedra and by varying the
value of V. As demonstrated above, elimination of the unit
cell dipole moment only (M ) 1) does not eliminate the
dependence of the EP on the shape of the finite system.
Importantly, as the size of the finite system increases, the
EP inside of it converges to the result of the Ewald
summation for the corresponding infinite lattice.36 Thus,
regularization of the Coulomb series proposed in our method
is equivalent to that used in the Ewald method.

We note that nonzero complementary charges e(n) are
situated only near the periphery of the nanocluster, while in
its inner region, the lattice remains unchanged. This property
of e(n), together with the rapid convergence of the EP with
the size of the nanocluster, makes this method convenient
to use in embedded cluster calculations of crystalline
materials. This method can be also used for disordered
materials and liquids as well as low-dimensional systems
(surfaces, quasi-one-dimensional wires, and clusters), provid-
ing they can be represented using a supercell approach.
Indeed, a supercell can be considered on the same footing
as a conventional crystalline cell, and the same formalism
can be applied. We can add that the supercell, complemented
with the extra-charges e(n), can be considered as a lattice
building block and can be used to construct arbitrary finite
structures consistent with the problem at hand.

The computational cost of generation charges e(n) for a
unit cell depends on the largest multipole moment to be
eliminated and on the number of particles in the unit cell
and scales as M 3N0. The unit cell complemented with the
extra charges is used to construct a nanocluster of (2k + 1)3

unit cells, which makes the total number of atoms in the
system N ) (2k + 1)3N0; the number of nonzero extra
charges at the surface of the nanoclusters scales as M 3k2.
Thus, the dominant contribution to the cost of the calculating
the EP at a single point scales linearly with the number of
atoms in the nanocluster.

To summarize, we suggest a systematic way of construct-
ing accurate electrostatic embedding potential for bulk,
surfaces, and nanostructures of crystalline materials. To
regularize the summation of the EP series, the original lattice
cell is modified so as to eliminate its electric multipole
moments up to any given M and, thus, to make the potential
produced by such a cell short range. We applied this method
to several crystals, including complex minerals containing
50-100 atoms per cell, and demonstrated rapid convergence
of the EP inside finite nanoscale clusters. The method is fully
analytical, and the convergence can be controlled by a few
well-defined numerical parameters.

Acknowledgment. The authors are grateful to A. L.
Shluger for stimulating discussions and comments on the
manuscript. P.V.S. is supported by the Royal Society.
I.V.A.’s stay at University College London was supported
by the Thomas Young Centresthe London Centre for Theory
and Simulation of Materialssand by the EPSRC Grant no.
GR/S80080/01. The calculations have been performed on
the computer cluster funded via the Elements Science and
Technology Project, MEXT, and Grant-in-Aid for Young
Scientists 20810004 at the WPI-Advanced Institute for
Materials Research, Tohoku University, Japan.

References

(1) Stefanovich, E. V.; Shidlovskaya, E. K.; Shluger, A. L.;
Zakharov, M. A. Phys. Stat. Sol. B 1990, 160, 529.

(2) Abarenkov, I. V.; Bulatov, V. L.; Godby, R.; Heine, V.; Payne,
M. C.; Souchko, P. V.; Titov, A. V.; Tupitsyn, I. I. Phys.
ReV. B: Condens. Matter Mater. Phys. 1997, 56, 1743.

(3) Govind, N.; Wang, Y. A.; Carter, E. A. J. Chem. Phys. 1999,
110, 7677.

(4) Donnerberg, H.; Birkholz, A. J. Phys.: Condens. Matter
2000, 12, 8239.

(5) Sushko, P. V.; Shluger, A. L.; Catlow, C. R. A. Surf. Sci.
2000, 450, 153.

(6) Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach,
G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley,
S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel,
S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King,
F.; Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schfer, A.; Lennartz,
C. J. Mol. Struct. 2003, 632, 1.

(7) Nasluzov, V. A.; Ivanova, E. A.; Shor, A. M.; Vayssilov,
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(31) Sterrer, M.; Diwald, O.; Knözinger, E.; Sushko, P. V.; Shluger,
A. L. J. Phys. Chem. B 2002, 106, 12478.

(32) Sterrer, M.; Berger, T.; Diwald, O.; Knözinger, E.; Sushko,
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Abstract: We developed a new, versatile force field for the molecular simulation of octameth-
ylcyclotetrasiloxane (OMCTS) both in the solid and liquid phases. From a series of molecular
dynamics simulations, we obtain good agreement with the experimental lattice constants,
sublimation enthalphy, and molecular packing of the crystal. The experimental density, diffusion
coefficient, and shear viscosity of this van der Waals liquid in the range 300-440 K are well
reproduced as well. The new force field can be thus employed in the large-scale molecular
simulation of liquid OMCTS where structural details are important in determining the collective
properties of the system.

I. Introduction

Octamethylcyclotetrasiloxane (OMCTS, Chart 1) is a small
macrocycle made of four covalently linked Si(Me)2O units
which has been used as a model liquid in surface force
measurements (SFM).1–7 These experiments have revealed
the existence of oscillatory solvation forces which are
characteristic of the behavior of liquids confined in nanosized
spaces, and OMCTS, due to its quasi-spherical shape and
zero dipole moment, has contributed to the development of
theoretical treatments of these phenomena. In many cases,
the molecular level origin of such phenomena is not clear
from these experiments, and molecular simulation, particu-
larly molecular dynamics (MD) and Monte Carlo methods,
is used to connect these phenomena with the behavior of
molecular ensembles that are subject to confinement.8–10

Molecular simulation of real materials requires realistic
potentials which are necessary to accurately describe the
interactions among a large number of molecules.11,12 Espe-
cially challenging is the design of intermolecular potentials
concerned with weak dispersion interactions that operate
among large molecules.13 Flexible molecules further increase

the complexity of the potential thereby making large-scale
computations very demanding.

Possible alternative approaches that overcome system size
are multiscale and coarse grain models.14,15 The former are
concerned with the integrated combination of different
methodologies, from quantum mechanics up to the finite
element method, each of which is appropriate to describe
the system under study at different scales. Coarse grain (CG)
methods on the other hand are used to simulate ensembles
of large molecules each of which is modeled as a collection
of beads rather than atoms. In this regard, Klein and co-
workers have recently performed CG-MD simulations to
investigate antimicrobial polymers and polypeptides.16 An-
other difficulty encountered in the large-scale computations
is concerned with the transferability of the interatomic or
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† Graduate School of Engineering.
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intermolecular potentials to different physical states of the
system, namely condensed (solid and liquid) and vapor
phases. Therefore, with a few exceptions,17,18 the large
majority of force fields are generally employed to study
complex molecular systems that are in a specific phase while
the study of different phases of the system usually requires
using different sets of parameters.

So far, only simple spherical (or ellipsoidal) models are
found in molecular simulation studies of OMCTS.8–10 For
instance, Ayappa and Mishra10 have recently performed a
series of grand canonical Monte Carlo simulations on
spherical OMCTS molecules of diameter 7.7 Å and interact-
ing with each other through a 12-6 Lennard-Jones (LJ)
potential. While such models are useful for discussing phase
transitions that occur under confinement, more desirable is
the model that makes use of information contained in the
molecular structure so that atomic-scale details on both
molecular packing and specific intermolecular interactions
can be gained from the simulations. To develop such a model
is the main objective of this study.

The paper is structured as follows. In section II, we
develop our original force field based on the assumption that
the methyl-methyl (Me-Me) interaction is the dominant
intermolecular interaction among OMCTS molecules. Ab-
initio quantum mechanical (QM) calculations are employed
to construct the potential energy surface corresponding to
the interaction between methane molecules (CH4). This
intermolecular potential is expected to mimic the weak van
der Waals (vdW) interactions that operate among the methyl
groups of OMCTS molecules. We subsequently perform a
series of classical MD simulations11,12 to test the new
potential and hence confirm our initial assumption. The
potential is validated in section III by checking how
accurately the crystal lattice constants, sublimation enthalpy
(∆Hsubl), and liquid density (at 300 and 400 K) are
reproduced. In section IV, the force field is further refined
by employing a penalty function which depends on the lattice
constants, ∆Hsubl, and the density of the liquid at two different
temperatures. In section V, the refined force field is then
employed in a long MD simulation of OMCTS liquid, and
the calculated bulk properties are compared against experi-
mental data. Conclusions and remarks are given in section
VI.

II. Potential Model

The OMCTS molecule has a disk-like shape and possesses
eight methyl groups which are located at the outermost point
while the atoms of the siloxane ring (Si and O) are well
embedded inside the van der Waals (vdW) surface of the
molecule, as shown in Figure 1. Besides shielding the
siloxane ring from the outer environment, the methyl groups
also confer overall conformational rigidity to the macrocyle
owing to the increase in intramolecular steric repulsion.
Because OMCTS is a neutral molecule with a negligible
dipole moment (µ ) 0.22 D), dispersive interactions are
likely the main components of the intermolecular interactions
among OMCTS molecules. An inspection into the OMCTS
crystal19 indicates that the shortest intermolecular distance
among non-hydrogen atoms is that between the carbon atoms

of the methyl groups (C · · ·C < 4.0 Å) while CH · · ·HC
contacts are in the range 2.3-3.0 Å, thereby supporting the
above hypothesis. We therefore considered a model of the
OMCTS molecule in which only Me-Me interactions are
included. The molecule is assumed to be a rigid body whose
geometry is taken from the molecular crystal.19 One methyl
group site is located on each carbon atom position, and
hydrogen atoms were implicitly included. The interaction
energy Eij of a pair of methyl sites i and j in different
molecules is described by the Lennard-Jones potential:

where, rij is the distance between methyl sites. The param-
eters σ and ε were derived from a series of QM calculations
performed on the methane dimer.

The quantum mechanical approach employed here is based
on the second-order Møller-Plesset perturbation theory (MP2)20

in combination with the 6-31G(d,p),21 6-311++G(2d,2p),22 and
AUG-cc-pVDZ23 basis sets as implemented in the parallel
version of the Gaussian 03 software package.24 Early
theoretical studies on the methane dimer have established
that the lowest energy configuration arises from the face-
to-face interaction between methane molecules in the D3d-
symmetric dimer.25 By using this configuration, we first
optimized the geometry of the dimer at the three levels of
MP2 theory described above. The carbon-carbon distance
in the optimized geometries of the dimer correspond to 3.804
Å at the MP2/6-31G(d,p) level, 3.803 Å at the MP2/6-
311++G(2d,2p) level, and 3.575 Å at the MP2/AUG-cc-
pVDZ level. Starting from these optimized geometries, we
have computed the corresponding potential energy curves
(PECs) by stepwise elongation and compression of the
carbon-carbon distance while optimizing all the remaining
degrees of freedom. From these calculations, we notice that
only the PEC computed with the smaller 6-31G(d,p) basis
set appears as a continuous curve, whereas those computed
with the larger basis sets show a discontinuity in the repulsive
part. This problem arises from the well-known basis set
superposition error (BSSE)26 which increases dramatically
at r(CC) < r(CC)eq. We have therefore computed the PECs
by performing relaxed potential energy surface scans which
were corrected at each step by using the counterpoise
correction (CP) method of Boys and Bernardi.27

Figure 1. Space-filling representation of the OMCTS molecule.

Eij ) 4ε[( σ
rij

)12
- ( σ

rij
)6] (1)
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The CP-corrected PEC of the methane dimer computed
at the MP2/AUG-cc-pVDZ level of theory is shown in Figure
2. The minimum is located at r(CC)eq ) 3.778 Å, and the
BSSE-corrected binding energy of the dimer corresponds to
0.402 kcal/mol. By fitting this PEC with the LJ function (eq
1), the parameters σ ) 3.35 Å and ε ) 0.390 kcal/mol were
derived. This set of parameters is hereafter labeled as Model-
A. In comparison, the CP-corrected geometry of the minimum
computed at the MP2/6-311++G(2d,2p) level is located at
r(CC)eq ) 3.804 Å. Also, we checked how the introduction of
silicon affects r(CC)eq by considering the H3C-SiH3 molecule.
The CP-corrected geometry of the H3Si-CH3 · · ·H3C-SiH3

dimer obtained at the MP2/AUG-cc-pVDZ level of theory is
characterized by r(CC)eq ) 3.867 Å, which is only 0.089 Å
longer than the corresponding intermolecular carbon-carbon
distance of the methane dimer. This small elongation of
r(CC)eq can be attributed to the presence of repulsive
dipole-dipole interactions (µ ) 0.69 D) that are operative
in the H3C-SiH3 dimer with respect to the methane dimer
where µ ) 0 D. Despite its simplicity, the methane dimer
represents a good starting model for modeling the methyl-
methyl interaction between two OMCTS molecules whose
dipole moment is only 0.22 D (for the Cs-symmetric
geometry optimized at the PBE1PBE/6-31G(d) level of
theory).

III. Model Validation

The LJ parameters of Model-A were validated by performing
MD simulations on both liquid and crystal phases. We
utilized the DLPOLY2 (version 2.20) package28 for all the
MD simulations in this study. For the crystal phase, we
executed simulations with a constant number of molecules,
constant pressure, and constant temperature where the size
and shape of the simulation box were allowed to change
(NσT ensemble) by using the method of Berendsen et al.29

The time constants used were 0.2 ps for the thermostat and
0.3 ps for the barostat. The simulation box contained 216
OMCTS molecules, and three-dimensional periodic boundary
conditions (PBCs) were imposed. The cutoff radius for the
vdw interactions was 20.0 Å. The time step was set to 2.0
fs. The velocity Verlet and NOSQUISH30 algorithms were
used for the numerical integration of the translational and
rotational parts of the equation of motion. The temperature

and total pressure were controlled to 223 K and 1 atm. The
initial configuration was constructed by replicating the unit
cell of the molecular crystal19 so as to obtain a box of
dimensions A ) 3a, B ) 3b, C ) 6c. After a 40 ps run for
equilibration, a statistical average was taken over 100 ps.

For the liquid phase, we executed simulations with a
constant number of molecules, constant pressure, and
constant temperature where only the cell size was allowed
to vary (NPT ensemble) by using the method of Berendsen
et al.29 The time constants were the same as those of the
crystal simulation. We considered the two different temper-
atures of 300 and 400 K which are close to the experimental
melting and boiling temperatures of 290 and 444 K,31

respectively. For all these cases, the pressure was set to 1
atm. The initial configuration was obtained from a random
molecular configuration kept at a temperature of 1000 K for
several tens of picoseconds while the simulation box was a
cube of 48.3 Å. Subsequently, the system was quenched to
the setting temperature of 300 or 400 K by rescaling the
molecular velocities, and from this point on the box size was
allowed to vary. The statistical average was taken over 200
ps after several tens of picoseconds for equilibration. Other
conditions were the same as those employed in the simulation
of the crystal. From these simulations, we calculated the
lattice constants, a, b, and c; sublimation enthalpy, ∆Hsubl

(calculated here as the potential energy per molecule at 223
K); and liquid densities at 300 and 400 K, F300 and F400.
Those are compared with the experimental values reported
in Table 1.

As can be noted, the performance of Model-A is fairly
good with computed lattice constants that are slightly smaller
than the corresponding experimental values and the computed
∆Hsubl of -16 kcal/mol, which is close to the experimental
value of -15.3 kcal/mol taken from ref 30. The space group
of the experimental crystal (P42/n) was maintained during
the whole simulation. The computed liquid densities at 300
and 400 K are also in satisfactory agreement with the
experimental densities31 at these temperatures.

Also, for comparison purposes, we executed similar
simulations using different force fields. The DREIDING
force field,34 a general purpose force field, has an intermo-
lecular LJ parameter for carbon with three implicit hydrogen
atoms. If the methyl parameter of Model-A is replaced by
this parameter, the lattice constants become closer to the
experimental values, but the interaction energy is weakened,
thus resulting in a liquid that possesses too low a density at
300 K (655 kg/m3). On the other hand, at 400 K, these
parameters give rise to a vapor phase. Interestingly, the
properties computed by using the DREIDING all-atom (Si,
O, Me) parameters worsen with respect to the methyl-only
simulation, as seen in Table 1, where even at 400 K an
amorphous solid structure resulted from the simulation.
Further, we also examined the model of Smith et al.,35 which
has been designed for the simulation of poly dimethylsilox-
ane and uses the rigid body approximation (the molecular
geometry of OMCTS used for this model was obtained from
a geometry optimization using the Gaussian 03 program).
This model, which includes both vdW and electrostatic
interaction sites on all atoms, gave good results for the lattice

Figure 2. CP-corrected potential energy curve for the D3d-
symmetric methane dimer as computed at the MP2/AUG-cc-
pVDZ level of theory. The inset shows the CP-corrected
optimized geometry of the methane dimer.
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constants, but like for the DREIDING (all atom) case, an
amorphous solid was obtained for the liquid state. Hence, it
appears that the attractive force between molecules becomes
too large when the Si and O terms are added to the
intermolecular potential.

In summary, our simulations indicate that Model-A
describes quite well the properties of both crystal and liquid
phases, thus confirming our assumption that the dominant
intermolecular interaction in bulk OMCTS is that among the
methyl groups. We also checked how the introduction of
atomic charges affects our simulation results. We derived
two sets of atomic charges from quantum mechanical
calculations performed on the OMCTS molecule, one by
fitting the electrostatic potential (ESP) and another by
performing a standard Mulliken population analysis of the
molecular wave function computed at the MP2/AUG-cc-
pVDZ//PBE1PBE/6-31G(d) level of theory. Simulations
indicate that including these atomic charges gives slightly
shorter lattice constants than those obtained with Model-A,
but no specific advantage was seen in spite of the larger
computational cost due to the calculation of electrostatic
interaction.

IV. Empirical Refinement

Our simulations indicate that Model-A possesses the essential
features for describing the intermolecular interactions in
OMCTS. However, because OMCTS is more complex a
molecule than methane, there should be room for further
refinement of this model. Therefore, we empirically read-
justed the two LJ parameters of Model-A so as to reproduce
the experimental data. We performed the same simulation
as those in the previous section for a number of different
parameter sets, among which the best set was chosen so as
to minimize the penalty function F expressed as the sum of
relative errors on the properties that are listed in Table 1:

where f(x) is defined as the relative percentage error of x:

where xexpt and xcalc are the experimental and calculated values
of x, respectively. Additionally, we excluded the parameter
sets that did not produce a vapor phase at 500 K. Following
this procedure, the best parameter set was determined as
being σ ) 3.54 Å and ε ) 0.39 kcal/mol, which we define
as Model-B. This pair of parameters is located at the bottom

of the contour plot of the penalty function F shown in Figure
3. The coordinates of all the points used to make the contour
plot are given in the Supporting Information (Table S1). For
the purpose of comparison, the results obtained using
Model-B are listed in Table 1.

Figure 4a,b shows the experimental and computed crystal
unit cells of OMCTS. It is worth noticing that the simulated
molecular crystal is characterized by the same type of
packing as that of the experimental crystal where the
molecules are stacked along the c axis and interact with each
other using four methyl groups above and four below the
molecular plane. A snapshot of the OMCTS liquid is shown
in Figure 4c. Figure 5 shows the calculated radial distribution
functions (RDFs) for intermolecular Me-Me pairs in both
crystal (at 223 K) and liquid (at 300 and 400 K) simulations.

Table 1. Computed and Experimental Properties for Solid and Liquid OMCTS

property Model-A
DREIDING

(methyl only)
DREIDING
(all atom) Smith et al. Model-B expt.

a (Å) 15.33 16.2 15.6 16.24 15.73 16.10a

b (Å) 15.33 16.2 15.6 16.24 15.73 16.10a

c (Å) 6.01 6.86 6.07 6.63 6.23 6.47a

∆Hsubl (kcal/mol) -16.0 -10.6 -33.6 -22.1 -16.9 -15.3b

F300 (kg/m3) 1023 655 solid solid 948 948c

F400 (kg/m3) 801 vapor solid solid 790 830c

a Steinfink et al. (ref 19). b Osthoff et.al. (ref 32). c Palczewska-Tulińska and Oracz (ref 33).

F ) f(a) + f(b) + f(c) + f(∆Hsubl) + f(F300) + f(F400)
(2)

f(x) ) |xexpt - xcalc

xexpt
| × 100 (3)

Figure 3. Contour plot of the penalty function F. The location
of existing LJ parameters of methane (CH4) and the methyl
group (CH3) are also plotted in this figure: σ ) 3.81 Å and
ε ) 0.294 kcal/mol from Steele;36 σ ) 3.73 Å and ε ) 0.294
kcal/mol from OPLS (CH4);37 σ ) 3.775 Å and ε ) 0.207 kcal/
mol from OPLS (CH3);37 σ ) 3.7 Å and ε ) 0.25 kcal/mol
from DREIDING (CH3).34

Figure 4. Comparison between (a) experimental and (b)
computed OMCTS molecular crystal. (c) Snapshot of the
OMCTS liquid. A cubic box was employed for the liquid
simulation.
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In the RDF of the computed crystal lattice, the first peak
appears at 3.9 Å, which compares well with the nearest
intermolecular Me-Me distances in the experimental crys-
tal,19 which are distributed from 3.79 Å to 4.55 Å. Further-
more, there exist four additional peaks at 5.2 Å, 6.2 Å, 7.6
Å, and 9.1 Å, respectively, which reflect the highly ordered
packing in the molecular crystal. In comparison, the first
peaks of the RDFs of the liquid computed at 300 and 400 K
are located near 3.9 Å, but the corresponding heights are
considerably smaller than that of the computed crystal. Also,
the RDFs of the liquid at these two temperatures show a
loss of ordered structure above 5.0 Å.

It is worth mentioning that LJ parameters for methane and
methyl groups have been developed by other authors as well.
For instance, Jorgensen and co-workers37 have developed
LJ parameters for methane and CH3 parameters for different
hydrocarbons which are now part of the OPLS force field,
while Steele36 has proposed LJ parameters for methane which
are extensively used in the literature. In principle, such
parameter sets could be utilized in the simulation of OMCTS
with eq 1 following our strategy (i.e., methyl site only).
However, they are located in a zone of the penalty landscape
corresponding to larger values of F (see Figure 3).

Finally, we also checked the anisotropy of the intermo-
lecular potential (model-B) as applied to the OMCTS dimer.
The potential curves corresponding to the interaction of
OMCTS molecules with three different relative orientations,
A-C, are plotted in Figure 6. Dimer C with the OMCTS
molecules oriented face-to-face possesses the lowest energy
(R ) 6.0 Å, Emin ) -3.69 kcal/mol), the methyl-methyl
interactions being maximized. The second minimum is that
of dimer A where the OMCTS molecular planes are coplanar
to each other (R ) 9.0 Å, Emin ) -2.70 kcal/mol). The
weakest binding is obtained for dimer B where the molecular
planes of OMCTS are perpendicular to each other (R ) 8.6
Å, Emin ) -1.50 kcal/mol). This result is in line with the
nonspherical (disk-like) shape of the OMCTS molecule.
Hence, the development of such intermolecular potential
seems meaningful for the atomistic study of this complex
liquid.

V. Liquid Phase Simulation

In this section, we investigate the performance of Model-B.
We performed a series of MD simulations to calculate the

temperature dependence of the density, diffusion coefficient,
and shear viscosity of the liquid phase. The same type of
simulation as the liquid case described in section III (with
216 molecules) was executed except that a longer total time
step of 15 ns was used. In addition, for T ) 300 and 400 K,
we also tested a simulation box composed of 640 molecules
so as to confirm that the calculated properties do not change
when a larger system is employed. The diffusion coefficient
D was derived using the Einstein relation (p 60 in ref 12):

where ri(t) is the center of mass position vector of molecule
i at time t and N is the number of molecules in the simulation
cell. The quantity in brackets 〈...〉 indicates an ensemble
average, and here it means taking the average value over
different time origins for each time interval t. The shear
viscosity η was calculated by the following equation:38

where kB is the Boltzmann constant and V is the volume of
the system. LR� is defined as

and P is the traceless symmetric part of the stress tensor σ:

where δR� )1 for R ) � and 0 for R * �. The stress tensor
was calculated as

Figure 5. Radial distribution function g(r) of intermolecular
methyl-methyl distance derived from the crystal and liquid
simulations at different temperatures.

Figure 6. Potential curves of Model-B for three different
configurations of the OMCTS dimer. The mean molecular
planes of the two molecules are oriented as follows: A,
coplanar; B, perpendicular; and C, parallel. The atoms of the
siloxane ring define the mean molecular plane of OMCTS. R
is the distance between the centers of mass. The relative
orientation of OMCTS molecules is kept fixed during the scan.

D ) lim
tf∞

1
6Nt

〈 ∑
i)1

N

[ri(t) - ri(0)]2〉 (4)

η ) lim
tf∞

V
20kBTt ∑

R)x,y,z
∑

�)x,yz

〈[LR�(t) - LR�(0)]2〉 (5)

LR�(t) ) ∫0

t
PR�(τ) dτ (6)

PR� ) σR� + σR�

2
- δR�

3 ∑
γ)x,y,z

σγγ (7)

σR� ) 1
V[ ∑

i)1

N

∑
a∈i

maVa
RVa

� +

∑
i

∑
j>i

∑
a∈i

∑
b∈j

(ra
R - rb

R)
∂U
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�)] (8)
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where U is the potential energy of the system and mi, ra
R,

and Va
R are the mass, coordinate, and velocity of atom a,

respectively. The subscript a ∈ i, means the summation on
a is taken over molecule i.

Equation 5 is the Einstein form of the Green-Kubo relation
and is based on the relation derived by Daivis and Evans39

for an isotropic system:

This relation makes it possible to use all the components
of the stress tensor, including the diagonal ones, in the
calculation of η to enhance the statistical reliability.

The liquid properties computed in the range 300-440 K
are compared against the experimental results in Figures 7-9.
Figure 7 compares the calculated liquid density (F) against

the experimental values obtained from ref 33. The agreement
between calculated and experimental liquid densities is quite
good in the low-temperature region around 300 K but
degrades by increasing the temperature at above 400 K.
Actually, most of the parameter sets tested in the empirical
refinement stage underestimated experimental liquid density
at 400 K, thus suggesting that additional parameters would
be needed to improve this situation. However, the maximum
relative error is about 10% (at 440 K), which is good enough
if one thinks of the simplicity of the present model, while
adding more parameters would make the model computa-
tionally less efficient. One possible explanation for the
observed deviation of F could be related to the rigid body
approximation employed here for OMCTS whereas a flexible
molecule would better optimize packing.

Figure 8 compares the calculated diffusion coefficient (D)
against the experimental data from ref 40. The overall
agreement with the experiment is good in the whole
temperature range of 300-440 K, though the calculated
diffusion coefficient increases slightly in the high temperature
region. This corresponds to a lower density at these tem-
peratures. Figure 9 compares the calculated shear viscosity
(η) against the experimental data taken from ref 33. The
agreement with experiments is good, though the calculated
η is slightly higher in the low temperature region and lower
at the high temperature region. It is noted that the diffusion
coefficient and shear viscosity were not included in the
parameter optimization process, which again supports that
the model correctly captures the essential physics of the
intermolecular interaction within liquid OMCTS.

VI. Conclusions
We developed a new atomistic potential model for the
molecular simulation of OMCTS. We could simplify the
potential on the assumption that the dominant part of
intermolecular interaction in OMCTS is the interaction
among methyl groups, as observed in the molecular crystal.
Following this approach, the present model possesses only
two parameters thereby making it possible to perform an
efficient empirical refinement of the potential using the
experimental data of both the crystal and liquid phases. Our
new model successfully reproduces both the crystal lattice
constants and liquid transport properties of OMCTS in a wide
range of temperatures, thereby making the large scale
atomistic simulation of this molecular liquid possible.
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ε-σ pairs explored in this study; a table containing the
translational and the first and second order rotational cor-
relation times, τv, τR1, and τ R2 for the liquid phase simulation
with Model-B; and the Cartesian coordinates of our rigid-

Figure 7. Temperature dependence of liquid density, F.
Experimental curve, F ) 1303.79-1.18562T, taken from
Palczewska-Tulińska and Oracz.33 N is the number of mol-
ecules in the simulation box.

Figure 8. Temperature dependence of diffusion coefficient,
D. Experimental curve, D ) 109 exp(-14.599-2110/T), taken
from Fischer and Weiss.40 N is the number of molecules in
the simulation box.

Figure 9. Temperature dependence of shear viscosity, η.
Experimental curve, η ) -4.8920 + 1698.7/T, taken from
Palczewska-Tulińska and Oracz.33 N is the number of mol-
ecules in the simulation box.

V
kBT ∑
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∑
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body OMCTS model. This material is available free of charge
via the Internet at http://pubs.acs.org.

References

(1) Horn, R. G.; Israelachvili, J. N. J. Chem. Phys. 1981, 75,
1400–1411.

(2) Israelachvili, J. N. Intermolecular and Surface Forces, 2nd
ed.; Academic Press: London, 1992.

(3) Klein, J.; Kumacheva, E. J. Chem. Phys. 1998, 108, 6996–
7009.

(4) Demirel, A. L.; Granick, S. J. Chem. Phys. 2001, 115, 1498–
1512.

(5) Kurihara, K. Prog. Colloid Polym. Sci. 2002, 121, 49–56.

(6) Mizukami, M.; Kusakabe, K.; Kurihara, K. Prog. Colloid
Polym. Sci. 2004, 128, 105–108.

(7) Sakuma, H.; Otsuki, K.; Kurihara, K. Phys. ReV. Lett. 2006,
96, 046104.

(8) Somers, S. A.; Ayappa, K. G.; McCormick, A. V.; Davis,
H. T. Adsorption 1996, 2, 33–40.

(9) Su, Z.; Cushman, J. H.; Curry, J. E. J. Chem. Phys. 2003,
118, 1417–1422.

(10) Ayappa, K. G.; Mishra, R. K. J. Phys. Chem. B 2007, 111,
14299–14310.

(11) Allen, M. P.; Tildesley, D. J. Computer Simulation of
Liquids; Oxford University Press: New York, 1987.

(12) Haile, J. M. Molecular Dynamics Simulation: Elementary
Methods; Wiley: New York, 1992.

(13) Stone, A. J. Science 2008, 321, 787–789.

(14) McCarty, J.; Lyubimov, I. Y.; Gruenza, M. G. J. Phys. Chem.
B 2009, 113, 11876–11886.

(15) Murtola, T.; Bunker, A.; Vattulainen, I.; Deserno, M.; Kart-
tunen, M. Phys. Chem. Chem. Phys. 2009, 11, 1869–1892.

(16) (a) Lopez, C. F.; Nielsen, S. O.; Srinivas, G.; DeGrado, W. F.;
Klein, M. L. J. Chem. Theory Comput. 2006, 2, 649–655.
(b) DeVane, R.; Shinoda, W.; Moore, P. B.; Klein, M. L.
J. Chem. Theory Comput. 2009, 5, 2115–2124.

(17) Spieser, S. A. H.; Leeflang, B. R.; Kroon-Batenburg, L. M. J.;
Kroon, J. J. Phys. Chem. A 2000, 104, 7333–7338.

(18) Peguin, R. P. S.; Kamath, G.; Potoff, J. J.; da Rocha, S. P. J.
Phys. Chem. B 2009, 113, 178–187.

(19) Steinfink, H.; Post, B.; Fankuchen, I. Acta Crystallogr. 1955,
8, 420–424.

(20) Møller, C.; Plesset, M. S. Phys. ReV. 1955, 46, 618–622.

(21) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,
54, 724–728.

(22) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72,
5639–5348.

(23) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007–1023.

(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strat-
mann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;
Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople,
J. A. Gaussian 03, ReVision D.02; Gaussian, Inc.: Walling-
ford, CT, 2004.

(25) Li, A. H.-T.; Chao, S. D. J. Mol. Struct. (Theochem) 2009,
897, 90–94.

(26) Cramer, C. J. Essentials of Computational Chemistry:
Theories and Models, 2nd ed.; Wiley: Chichester, 2005.

(27) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553–566.

(28) Smith, W. Mol. Simul. 2006, 32, 933–933.

(29) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684–3690.

(30) Miller III, T. F.; Eleftheriou, M.; Pattnaik, P.; Ndirango, A.;
Newns, D. J. Chem. Phys. 2002, 116, 8649–8659.

(31) Hunter, M. J.; Hyde, J. F.; Warrick, E. L.; Fletcher, H. J.
J. Am. Chem. Soc. 1946, 68, 667–672.

(32) Osthoff, R. C.; Grubb, W. T.; Burkhard, C. A. J. Am. Chem.
Soc. 1953, 75, 2227–2229.
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Abstract: Several tools that allow molecules, polymers, slabs, and crystals to be optimized in
valence coordinates as well as a suitable saddle point optimization technique to search for transition
state structures for this kind of system have been implemented in the ab initio periodic CRYSTAL
code. The adoption of these localized coordinate systems largely facilitates the study of chemical
processes in periodic systems with atomic connectivity, as occurs in catalytic reactions on zeolites,
clathrates, or oxidic surfaces. As a paradigmatic case, the new features have been illustrated to
study the proton jump between oxygen atoms of the Brønsted site in the H-chabazite zeolite. The
electronic and Gibbs free energy profiles of the most representative proton jump channels have
been computed at the B3LYP level, both for a dry H-chabazite as well as in the presence of one
H2O molecule acting as a proton transfer helper. Because of the accuracy allowed by the optimization
technique, all stationary points located have been characterized as minima or saddle points by
computing the harmonic frequencies and checking, for the latter, that the corresponding transition
eigenvectors were in agreement with the selected reaction path. The remarkable agreement between
the results with both theoretical and experimental literature data gives credit to the accuracy and
robustness of the present implementations in the CRYSTAL code.

1. Introduction

The study and characterization of transition state (TS)
structures by computational methods is the key step to
understanding chemical reactivity. When simulating homo-
geneous/heterogeneous catalytic processes, it is of paramount
relevance to assess the bounty of hypothetical catalysts and
to improve their performance through the characterization
and design of the activated complexes at the atomic level.
Albeit TS optimizations can in principle be performed by
means of similar computational strategies of those adopted
for minimizations,1-3 in practice, the former has never
become an entirely routine process as it is for the latter. The

remarkable difference between both kinds of optimization
relies on the quasi-quadratic behavior of the respective
optimum domains on the potential energy surface (PES), i.e.,
while for minima the quadratic basin is large enough to
successfully locate a minimum from a wide variety of starting
structures, in the TS structures, the basin around a saddle
point is much reduced, so that a very good initial guess is
required to ensure the convergence through the desired TS
by the adopted algorithm. In some way, properly guessing a
good starting point still requires a good deal of chemical
ingenuity, although several techniques have been proposed
to largely help this task.2,4-9

The choice of a suitable coordinate system to describe the
structures may significantly improve the search of saddle
points by enlarging the TS quadratic domains. In molecular
cases, a recurrent strategy is based on the use of internal
valence coordinates, usually built through Z-matrixes or
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redundant schemes.1,3 The localized character of these
coordinate systems enables a proper description of most of
the chemical reactions, involving bond breaking/making
processes. This coordinate system, additionally, facilitates a
reasonably fast convergence of the optimization technique
and permits one to devise straightforward strategies to guess
starting structures for the TS optimization.

In periodic calculations, other strategies are customarily
preferred to locate TS structures. The most widely used is
the so-called climbing image-nudged elastic band (CI-
NEB).10 In this method, the saddle point optimization is
substituted by the energy minimization of a supersystem
consisting of a set of “images” that sample a path connecting
reactants and products which are linked to each other by a
kind of “spring forces”. The resulting images define the
minimum energy path (MEP) of the reaction, the image
corresponding to the highest energy being considered the
TS. This technique, thus, somehow neglects the localized
character of the chemical reactions. The most appealing
feature of the CI-NEB method relies on the fact that a suitable
starting point for the TS optimization is, in practice, not
mandatory, as only the optimized reactant/product structures
and the total number of images along the path are needed.
Also, the minimization process is, in general, quite stable.
However, as a drawback of the method, the nonquadratic
character of the overall function considered in the global
optimization often slows down the convergence. This is
reflected in the known fact that the steepest descent method
adopted for the CI-NEB optimization11 provides directions
toward the minima which are far from being conjugate, hence
causing slow convergence.12 In addition, for most periodic
codes, the CI-NEB implementation does not allow cell
deformations along the MEP because of the complication in
the definition of spring forces for lattice vectors. Although
extensions of the method have been recently formulated to
include cell deformations in the path,11,13,14 to our knowl-
edge, they have still not been implemented in standard ab
initio periodic codes.

Other limitations of the bare CI-NEB arise from the
coordinate system adopted to define the structure of the
images. While for molecular cases the method works
unambiguously with Cartesian coordinate systems defined,
for each image, on their corresponding center of mass, for
periodic systems this is meaningless, as the coordinate system
needs to be centered on arbitrary points for each image.
Accordingly, depending on this choice, different sets of
images can be generated for the same system. For solid state
reactions involving bond breaking/making of structures with
complex connectivity (as the case of zeolites), the PES
defined on the Cartesian coordinates base exhibits compli-
cated shapes which hamper a fast convergence of the CI-
NEB method. This may be the reason why the CI-NEB
method is rarely used to search for TS in 3D periodic
systems, whereas it has been the method of election for
studying reactions occurring on 2D surfaces where the above
complications are usually absent.

Because of the enormous relevance of heterogeneous
catalysis for the modern society, it is even more important
to implement the efficient location of TS in the solid state

context, the surfaces of many crystals being the places where
the catalytically active sites reach their maximum activity.15

It is worth mentioning that the focuses are not only on the
“classical” flat surfaces of compact solids but are also on
the internal curved walls of microporous materials like
zeolites and metal organic frameworks.16

In the present work, we show that the adoption of a system
of valence coordinates is not only useful for locating TS in
molecules but also in periodic systems with complex
connectivity to simplify the study of reaction paths. As shown
in what follows, the coordinate system considered here is
constituted by a set of redundant internal valence (RIV)
coordinates generated according to previous prescriptions on
molecular1,3 and crystalline17 systems. The adoption of these
coordinate systems allows one to consider very straightfor-
ward methods for the location of the TS, such as the so-
called distinguished reaction coordinate (DRC) one,18 which
is still one of the most used for molecular systems, at least
when dealing with few coordinates that dominate the reaction
path. In the simplest version of DRC, one degree of freedom,
called the distinguished coordinate, is chosen and kept fixed
at a sequence of values that are representative of the reaction
path, while all the other coordinates are relaxed for each of
these values. The maximum-energy geometry along the path
is taken as the initial guess for the saddle-point search. Here,
the localization of the saddle point requires the calculation
of the Hessian matrix of the starting structure. A developing
version of the CRYSTAL code19 is here employed in which
the automatic mono- and bidimensional scan along valence
coordinates has been implemented.

As anticipated, the behavior of acidic zeolites is of
paramount importance because of their central role as
catalysts in a large number of key industrial organic
transformations.20-23 The so-called bridging hydroxyl groups
belonging to the “Si-O(H)-Al” Brønsted acidic sites exhibit
a rather strong acidic proton, as it is well-known that
molecules adsorbed in the zeolite cages can easily become
protonated in proximity of these acidic sites.24 Indeed,
because proton transfer reactions are key steps in heteroge-
neously acid-catalyzed reactions, the bridging hydroxyl
groups are considered as true catalytic sites. In addition, the
mobility of these protons is also important for ion transport
in electrolytes, whose potential applications have recently
been revealed with the fine-tuning of zeolite-based microfuel
cells.25 In the present work, to focus on a paradigmatic case
but relevant from the catalytic point of view, the proton
jumps occurring in the acidic chabazite, both in dry condi-
tions and in the presence of one water molecule, have been
dealt with. By applying the DRC technique facilitated by
describing the problem in RIV coordinates, all the relevant
saddle points have been located and characterized by
computing both the electronic and free energy barriers of
the proton motions. It is worth mentioning that the present
implementation allows full relaxation of the cell parameters
together with the atomic positions both in the search of the
TS domain and in the saddle point optimization. Along this
line, it is worth noting that disregarding cell relaxation may
(i) introduce some artifacts in the estimation of the reaction
energy barriers for localized chemical processes and (ii)
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hinder the accurate characterization of bulk phase transitions.
Both of these facts do highlight the usefulness of the present
approach in the study of reactivity in 3D periodic systems.

2. Methods

2.1. Computational Details. All periodic calculations
were carried out with a development version of the ab initio
code CRYSTAL06.19 This code describes the many-electron
wave function as a linear combination of crystalline orbitals,
which, in turn, are expanded in terms of Gaussian-type
functions (GTF), thus allowing one to treat molecules, 1D
polymers, 2D surfaces (slabs), and 3D crystals (bulks) with
the same level of accuracy.

Both Hartree-Fock (HF), pure PBE26 and PW9127

exchange-correlation density functionals (DF), as well as the
hybrid PBE028 and B3LYP29,30 DF methods have been used
for calculations of the present work with Gaussian basis sets
of polarized double-� quality. Details of the adopted GTF
basis set are available on the CRYSTAL Web site.31 Here,
for the sake of brevity, only the exponents of the outer shells
(in Bohr-2) are explicitly given: H, 31G* (Rs ) 0.161, Rp )
1.1); O, 6-31G* (Rsp ) 0.27, Rd ) 0.8); Si, 66-21G* (Rsp

) 0.13, Rd ) 0.5); Al, 88-31G* (Rsp ) 0.28, Rd ) 0.47).
To improve the accuracy, some calculations with a polarized
triple-� basis set for the atoms of H (311G*, Rs ) 0.10 and
Rp ) 0.75), O (6-311G*, Rsp ) 0.26 and Rd ) 0.13), and Si
(88-31G*, Rsp ) 0.193, Rd ) 0.61) have been also carried
out.

The Hamiltonian matrix has been diagonalized in 14
reciprocal lattice points (k-points), corresponding to a shrink-
ing factor of 3.32 Tolerances of 10-6 and 10-14 were used
for the Coulomb and exchange series, respectively.32 The
DFT exchange-correlation contribution is integrated numeri-
cally on a grid of points. Radial and angular points of the
atomic grid are generated through Gauss-Legendre and
Lebedev quadrature schemes. A pruned grid consisting of
75 radial points and a variable number of angular points,
with a maximum of 974 angular points in the most accurate
integration region (usually named (75, 974)p), has been
used.33,34 The condition for the SCF convergence was set
to 10-8 and 10-11 Hartree for minima and saddle points,
respectively, on the energy difference between two subse-
quent cycles.

A full relaxation of both lattice parameters and atomic
coordinates of the H-chabazite was performed within the P1
symmetry. The geometry optimization for minima was
performed by means of a quasi-Newton algorithm in which
the quadratic step (BFGS Hessian updating scheme) is
combined with a linear one (parabolic fit), as proposed by
Schlegel.35 As concerns the TS optimizations, they are
performed adopting the method usually referred to as
“Eigenvector following” proposed by Simons and Nichols,36

and the Hessian update has been performed by combining
the BFGS and the Murtagh-Sargent approaches37 in the
manner proposed by Bofill.38 Convergence was tested on
the root-mean square (RMS) and the absolute value of the
largest component of the gradients and the estimated
displacements. The threshold for the maximum force, the

RMS force, the maximum atomic displacement, and the RMS
atomic displacement on all atoms were set to 0.00045,
0.00030, 0.00180, and 0.00120 au, respectively. By using
the same strategy first adopted in Gaussian 80,39 optimiza-
tions were considered complete when the four above condi-
tions were simultaneously satisfied (see ref 40 for specific
details on the CRYSTAL06 implementation).

Phonon frequencies of the considered systems have been
calculated as the eigenvalues obtained by diagonalizing the
mass-weighted Hessian matrix at Γ point (point k ) 0 in
the first Brillouin zone, called the central zone). The mass-
weighted Hessian matrix was obtained by numerical dif-
ferentiation (central-difference formula) of the analytical first
energy derivatives, calculated at geometries obtained by
displacing, in turn, each of the 3N equilibrium nuclear
coordinates by a small amount, u ) 0.003 Å. We refer to a
recent work33 for a complete discussion of the computational
conditions and other numerical aspects concerning the
calculation of the vibrational frequencies at the Γ point. Using
the optimized geometries and the associated vibrational
frequencies, CRYSTAL06 computes the total free energy
by correcting the electronic energy by the standard statistical
thermodynamics formulas based on partition functions
derived from the harmonic oscillator approximations.41

2.2. RIV Coordinates in the CRYSTAL Code and
the DRC Strategy. In the DRC method, a proper initial
guess for the direct TS search is needed, so that calculations
to pass from the reactant domain to the TS domain of the
PES are required. This is achieved by enforcing a number
of geometrical constraints as detailed below. In this sense,
the most critical issues in the computational implementation
of the DRC scheme described above involve the definition
of (i) suitable constraints into the optimizations at each fixed
point along the reaction coordinate and (ii) a suitable
coordinate system for the subspace of the remaining degrees
of freedom to ensure the best efficiency of the optimization
process.

For the first point, the target is to find a single geometrical
parameter (at the moment no more than two parameters are
allowed in the present CRYSTAL implementation) suitable
to represent the reaction coordinate controlling the TS search.
This condition is generally satisfied by choosing internal
valence coordinates. Indeed, valence parameter sets, i.e.,
interatomic distances, angles, and dihedrals, are particularly
suitable to describe chemical reactions or phase transitions
that essentially involve bonding scheme changes.

For molecules, the valence internal parameters are usually
defined by means of the Z-matrix approach. Unfortunately,
the resulting Z-matrix coordinate system may not be a good
choice for structures that exhibit closed connectivity loops,
as the Z-matrix scheme suffers from arbitrariness in the
definition of the set, causing slow convergence in the
optimization procedure.1 This is indeed in contrast with the
request of point ii described above. For infinite structures
like crystals, slabs, or polymers, exploiting symmetry
equivalences is essential to reduce the complexity of the
system (in principle, infinite) to a degree in which it becomes
computationally tractable. Unfortunately, the symmetry
constraints (even in the P1 case, restricted to translational
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equivalence) increase dramatically the number of depend-
encies between internal coordinates, which are formally
similar to the closed loops featured by polycyclic molecules,
with similar convergence problems. For this reason, the
Z-matrix scheme cannot be adopted for geometry optimiza-
tions of periodic structures.

A possible solution is to adopt the RIV set of parameters,
which allows one to define both the constraints and the
coordinate system for the geometry optimization. This
coordinate system keeps all the advantages of the valence
parameters and additionally reduces the arbitrariness in their
definition, allowing a well-balanced description of the
structure itself.1,3,17 The definition of the RIV sets and their
implementation in geometry optimizations of molecules1,3

and crystals17 have already been reported. Accordingly, the
details of the methods will not be repeated here, and only
the key differences between the present and previous
implementations will be highlighted in the present work.

The first step is to define the atomic connectivity (required
to define the RIV coordinates) following the recipe of ref 3.
Additionally, in the present implementation, all symmetry
equivalences within the RIV set are automatically set up so
that an irreducible RIV set that consists of one representative
of each symmetry class is kept in memory together with its
multiplicity per unit cell, µt. A small displacement given in
the reference coordinate system, δx, can be transformed to
δq in the RIV basis set, as

where B is the Wilson B matrix whose elements read Bij )
µi ∂qi/∂xj.

1

For periodic systems, it is customary to adopt as the
reference coordinate set both the atomic Cartesian coordinates
and the Cartesian lattice vectors, in terms of which the
gradient is computed by analytic derivation of the energy.17

Within this approach, both the external and the nontotally
symmetric degrees of freedom constitute the redundant set
adopted for geometry optimizations. In the present imple-
mentation, however, the atomic part of the reference
coordinate set envisages a free set of internal and symmetry
adapted linear combinations of the atomic fractional coor-
dinates. The lattice part is a complete free set of symmetry-
adapted unit cell elastic distortions. This reference set
contains an irreducible number of coordinates free from both
external and asymmetric displacements. In order to save both
memory and computational time in matrix products, the
algorithm coded in CRYSTAL always keeps the gradient
defined in terms of this nonredundant reference set in the
random access memory. Accordingly, in the following, the
reference set {xi} always refers to this nonredundant coor-
dinate system.

The B matrix is computed by numerical differentiation
adopting the central point approximation. The force fq

expressed in RIV coordinates is determined from the force
fx in the reference system as

where fqi
) - ∂E/∂qi and B- ) G-BT, the superscript “- ”

indicating generalized inverse and G ) BTB.

To carry out optimizations with constraints as required to
explore the PES around the TS, the projector onto the
subspace common to the nonredundant and free geometrical
subspaces is calculated through3

where P ) G-G and C are the projectors onto the
nonredundant and the constraint subspaces, respectively. The
latter is given in RIV coordinates as

Both the gradient and the Hessian have to be projected
out. For the Hessian, the projected matrix H̃ ) P′HP′ is
diagonalized, and its generalized inverse is computed as

where Tik is the element of the eigenvectors matrix. By
identifying the number of redundant degrees of freedom
(difference between the dimensions of the RIV and the free
subspaces) as n, the sum over k in eq 5 includes all
eigenvalues of H̃ with the exception of the n ones exhibiting
the lowest absolute value. This selection is performed so as
to prevent displacements occurring outside the free subspace
defined by P′ and to correct for small numerical errors that
derive from the numerical evaluation of the B matrix.

Once the displacements in the RIV coordinate set are
computed, a back-transformation to the Cartesian set is
carried out in the iterative manner proposed in ref 3. The
numerical calculation of the Hessian matrix for the TS
optimization is performed in the reference coordinate system,
Hx, in a similar fashion to that considered for the calculation
of vibrational modes in CRYSTAL,33 with the difference
that here only the internal totally symmetric displacements
are considered. After the construction, the matrix Hx is trans-
formed to the RIV system according to H ≡ Hq )B-Hx(B-)T.

2.3. Modeling of the H-Chabazite Structure. Most of
the computational works42-48 addressed hitherto to predict
proton jump barriers in acidic zeolites were carried out by
either cluster or embedded calculations, whereas, to our
knowledge, no works at a full ab initio level of periodic
calculations are available. The disparity of the computed
energy barriers (spanning the 12-35 kcal mol-1 range, in
absence of water) is mainly due to the different methodolo-
gies and approaches adopted to model the acidic zeolites.
The simplest is based on the cluster approach, which consists
of extracting from the infinite solid a finite cluster surround-
ing the active site. For small clusters, full ab initio calcula-
tions have been carried out, whereas for larger clusters, the
ONIOM strategy49 has been adopted. In the latter, the whole
systems are divided into different layers, each one being
treated at different computational levels: the active site at
the highest level of theory, with the rest at the lowest one.
Irrespective of these differences, in both procedures, zeolites
were treated by means of standard molecular quantum
methods so that the lack of long-range effects may cause
various pitfalls.50 The inclusion of long-range effects needs
the treatment of the whole solid systems (namely, zeolites

δq ) Bδx (1)

fq ) B-fx (2)

P′ ) P - PC(CPC)-CP (3)

C ≡ Cij ) {1
0

if i ) j and i is constrained
otherwise

(4)

[H̃-]ij ) ∑
k

Tik[hk]
-1Tjk (5)
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as infinite solids) via a periodic approach. In the past,
periodicity has been exploited either (i) via embedding
techniques, such as the QM-Pot method,51 which partitions
the periodic system into two parts, the inner zone, containing
the reaction site and treated by quantum mechanics, and the
outer zone, described by a properly parametrized classical
interatomic potential, and (ii) via full ab initio periodic
calculations, ensuring that both the local properties and the
long-range effects are treated with the same accuracy. Critical
points for the embedding approaches are the absence of
charge flux between the inner and outer zones and the
difficulty to derive proper interatomic potentials, especially
when modeling chemical reactions, whereas the advantage
is the freedom to adopt for the inner zone highly accurate
quantum mechanical levels (i.e., MP2, CCSD(T), ...), which
are not generally available in a fully periodic approach. The
latter offers, however, a very clean approach completely free
from the previous pitfalls at the expense of being somehow
limited to density functional theory as the best level of theory.
Some relevant progress has, however, recently been achieved
in that respect, as the CRYSCOR program, starting from the
Hartree-Fock solution provided by CRYSTAL, can refine
the total energy of the crystal at the MP2 level, although at
present, it is limited to single point energy evaluation.52,53

Considering the above points, in the present work, a
periodic model for the H-chabazite has been adopted (shown
in Figure 1). It arises from the structure of the pure silica
chabazite (CHA),54 which consists of a network of double

six-membered silica rings (hexagonal prisms) connected by
four-membered rings. By adopting a Si/Al ratio of 11:1 (one
aluminum atom per unit cell), the symmetry of all-silica CHA
is reduced from the R3jm to the P1 space group. Charge
compensation is achieved by the addition of a proton to one
of the four oxygen atoms of the AlO4 tetrahedron (H-CHA).
The resulting unit cell (37 atoms) has HAlSi11O24 as its
chemical formula. The four H-CHA structures exhibit
different stabilities, the most favored one corresponding to
the proton attached to site I (see Figure 1a).55 It is well-
known that proton jumps from one oxygen to the others may
occur, so that the implementation of the DRC method has
been tested by computing the energy profile for the proton
jumps in H-CHA following the I f II f III f I path (see
Figure 1a).47 For each step, full characterization of minima
and the TS has been achieved. Furthermore, the same proton
jump route has also been characterized in the presence of
one water molecule that acts as a proton transfer helper.
Indeed, traces of water in the H-CHA have been demon-
strated to significantly reduce the energy barriers.48,56 For
this latter case, the most stable H-CHA/H2O complex
consists of the acidic proton attached to site I engaged in
rather strong H-bonds with the H2O molecule (see Figure
1b).50

3. Results and Discussion

3.1. Proton Jump Path I f II with the B3LYP
Hamiltonian. The need to maximize the energy in one (and
only one) direction to locate the saddle point on a PES is a
very delicate process because too rough TS structures will
not converge to the proper final TS. The DRC technique
approaches the TS search in two successive steps: (i) defining
a structure as close as possible to the TS and (ii) refining
this structure to exactly locate the actual TS. As described
in the Computational Details section, the present DRC
scheme optimizes both the atomic and cell parameters during
the search for a TS, at variance with the usual CI-NEB
technique in which, despite some recent modifications,11 the
cell part is always kept fixed. In the following, this procedure
is described in detail.

Defining a Geometry Close to the TS. A geometry close
to the TS is defined by a scan calculation along any internal
coordinate that may govern the reaction. This scan calculation
consists in evolving, step by step and in a controlled way,
the selected internal coordinate so as to move from reactants
to products by crossing a point of maximum energy. For
instance, the proton jump from site I to II implies the
breaking and the formation of the O1-H and H-O2 bonds
(see Figure 1a), respectively, so that the H · · ·O2 distance
may be considered as the internal coordinate that drives the
reaction (the so-called reaction coordinate). The scan calcula-
tion, based on the H · · ·O2 distance, evolves from the reactant
geometry toward the product in many steps along the reaction
coordinate; namely, the H · · ·O2 distance shortens from
reactants toward products. At each step, the value of the
reaction coordinate is frozen while all other internal coor-
dinates are relaxed, so that a “pseudo-optimized” structure
is computed. At the end of the scan calculation, a set of

Figure 1. H-CHA periodic model used to study the proton
jump between sites I, II, and III. Sections: (a) dry H-CHA;
(b) H-CHA plus one H2O molecule.
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intermediate energy points connecting reactants and products
(defined by the various partially optimized structures) is
arrived at. Focusing on the present case, the H · · ·O2 distance
is scanned from an initial value of 2.0 Å to a final value of
1.1 Å, with 9 partially optimized structures, each differing
by a step of -0.1 Å. The energy variation as a function of
the DRC is shown in Figure 2. This “distinguished energy
profile” exhibits three different zones: (i) a zone where the
energy rises moderately as the H · · ·O2 distance shortens
(reactant-like zone, the H-O1 bond has not yet been broken),
(ii) a zone where the energy is rather high and goes through
a maximum (TS-like zone, the proton is almost midway
between O1 and O2 positions), and (iii) a zone where the
energy decreases (product-like zone, the proton is already
bound to O2). The structure at the energy maximum is
therefore used to define the initial guess for the next step,
i.e., the accurate TS geometry localization. Although not
mandatory, a second scan calculation with smaller steps (see
inset of Figure 2) around the maximum energy zone (i.e.,
between 1.3 and 1.2 Å) can be carried out in order to refine
the geometry used to secure the initial guess for the TS
search.

Geometry Optimization to a TS. Starting from the above
structure within the TS domain, the Hessian matrix is then
computed, either via numerical estimate (very accurate but
expensive) or through empirical models (cheaper but less
accurate), to ensure that the algorithm will follow the right
direction toward the final TS. Irrespective of the way to
compute the Hessian matrix, the SCF energy tolerance must
however be tightened to 10-10 to 10-11 Hartree in order to
reach the needed numerical accuracy.

Adopting the above scheme, the TS for the proton transfer
from site I to site II has been easily located. In the optimized
TS, the H-O2 distance is 1.245 Å, which lies almost
between the value for the maximum energy structure (1.26
Å) and the next structure (1.24 Å) in the scan calculation. It
is worth mentioning that the same TS structure was arrived

at irrespective of the initial guesses which may result from
a search based on either a coarse (0.1 Å) or a finer step size
(0.02 Å), although for the latter, less optimization cycles are
needed to locate the TS. Further details related to the
keywords needed to setup both the scan calculation and the
TS search are provided in the Supporting Information (SI)
as complete CRYSTAL input files.

3.2. Proton Jump Path I f II with Different
Hamiltonians. To study the dependence of the TS features
on the adopted Hamiltonian, the proton jump from site I to
II has been computed at HF, PW91, PBE, PBE0, and B3LYP
using the same Gaussian basis set reported in the Compu-
tational Details section. The structural parameters of the
optimized stationary points are reported in Table 1, whereas
the reaction energies (∆Er) and energy barriers (∆E‡) are
shown in Table 2. Within the same basis set, the computed
∆Er values are all rather close to each other as a function of
the adopted method, the highest value being for HF (3.3 kcal
mol-1) compared to density functional values (∆Er )
1.3-2.2 kcal mol-1). Similarly, the DF energy barriers, ∆E‡,
computed with different DF methods are also very close to
each other, lying within a window of 13.6-15.0 kcal mol-1,
but for that computed at the HF level, which is as high as
30.2 kcal mol-1. These values are consistent with the
performance of the considered methods in describing proton
transfer reactions:57 the lack of electron correlation in HF
yields a dramatic overestimation of the energy barrier,
whereas the balanced electron exchange-correlation included
in the definition of the DF methods leads to similar ∆E‡

values. The O2-H distances and transition frequency (ν‡)
of the TS structures are also dependent on the adopted
method, HF systematically providing a too short O2-H
distance (1.217 Å) and a too high ν‡ (1801 cm-1) compared
to the DF methods (O2-H distances lying between 1.233
and 1.245 Å, ν‡ lying between 1085 and 1218 cm-1). As
quoted in the Introduction, an important issue of the present
implementation is its ability to locate the TS by including
also the relaxation of the cell parameters. To understand the
role that cell parameter relaxation has on the energy barriers,
the proton jump has been computed with both PBE and
B3LYP functionals by keeping the cell parameters fixed to
the values optimized for the reactants. The values reported
in Table 2 (“fixed cell” label) show that fixing the cell
parameters, while not affecting the thermodynamics (∆Er

values), increases the energy barriers ∆E‡ by about 3-4 kcal
mol-1, reducing the reaction speed by almost 3 orders of
magnitude. Accordingly, the ν‡ values for the “fixed cell”
cases are all definitely higher than those computed with
relaxed cell parameters. Considering that the present TSs
involve relatively small molecular aggregates, these results
emphasized the relevance of cell relaxation, which will
become clearly mandatory for reactions involving bulky
reactants.

A comparison of the present results with previous studies
allows one to assess whether the actual DRC strategy
provides similar potential energy surface features. The closest
theoretical work to the present study is the one by Sierka
and Sauer,47 in which the proton jump If II in the H-CHA
was computed by the QM-Pot method, treating the quantum

Figure 2. Electronic energy variation during the scan process.
The H · · ·O2 distance (restricted reaction coordinate) is frozen
at different values, while the remaining internal coordinates are
optimized. The red inset zone shows a finer scan with smaller
steps close to the energy maximum. The asterisk marks the
structure used as the initial guess for the final TS search.
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mechanical region at the B3LYP level combining an Ahl-
rich’s Gaussian double-� polarized basis set, for H, Si, and
Al, and a triple-� polarized for O (T(O)DZP). Their energy
barrier for the proton jump resulted in 17.6 kcal mol-1, 2.6
kcal mol-1 higher than the one computed here. To decrease
the inconsistency between our standard basis set and that
adopted by Sierka and Sauer, the whole DRC was recom-
puted with the larger basis set described in the Computational
Details section (a triple-� polarized quality Gaussian basis
set) resulting in a ∆E‡ ) 17.1 kcal mol-1, in almost perfect
agreement with the value computed by Sierka and Sauer. It
is worth noting, however, that whereas the DRC calculations
include cell parameter relaxation along the considered points
of the potential energy surface, the QM-pot calculations were

carried out at fixed cell parameters, causing some inconsis-
tency in the comparison.

3.3. Proton Jumps in Dry and Wet Conditions. In this
section, the DRC has been adopted to study the proton jump
in H-CHA, either in dry conditions or in the presence of
one water molecule acting as a proton jump helper. For both
cases, the acidic H attached to O1 is the most stable site,
and the proton jump has been studied along the following
path: If IIf IIIf I. The computed B3LYP-energy profiles
as well as the stationary points are shown in Figures 3 and
4, for the dry and wet cases, respectively.

The intrinsic order of stability (namely, without solvent)
of the different AlO4 Brønsted sites resulted in the following
order (considering free energies at T ) 298 K): O1 > O3 >
O2. This sequence is identical to those obtained both at the
QM-Pot level47 as well as through full periodic pseudopo-
tential plane-wave calculations.58 Additionally, experimental
measurements revealed that protonation occurs only at sites
I and III59 (note the different numbering of oxygen sites in
ref 59), so that our results are consistent with previous data.

In the absence of water, the If II process has the lowest
energy barrier (∆E‡) 15.0 kcal mol-1), whereas the II f
III and III f I ones exhibit higher barriers (around 19 kcal
mol-1). This trend is unchanged also when free energies are
considered, albeit the energy barriers are lowered by 4 kcal
mol-1. The present value of 18.7 kcal mol-1 for the ∆E‡

associated to the III f I path is in good agreement with the
value of 20.5 kcal mol-1 computed by Sierka and Sauer,
considering that different basis sets have been used (see the

Table 1. Selected Distances (Å) of the Structures Involved in the Proton Jump from Site I to II, Computed with Different
Methods

Table 2. Electronic Energy Barriers and Reaction
Energies, ∆E‡ and ∆Er (kcal mol-1) for the Proton Jump
from Site I to II, Computed with Different Methodsa

∆E‡ ∆Er ν‡

HF 30.2 3.3 1801i
PW91-PW91 14.5 1.5 1089i
PBE-PBE 14.4 1.3 1085i
PBE-PBE (fixed cell) 18.4 1.6 1273i
PBE0 13.6 2.1 1129i
B3LYP 15.0 2.2 1218i
B3LYP (fixed cell) 18.3 2.6 1334i
B3LYP/triple-� 17.1 3.5 1308i
QM-Pot(B3LYP/T(O)DZP:EVP)b 17.6 2.1 1151i

a Values of proton jump transition frequencies, ν‡ (cm-1), are
also included. b EVP refers to empirical valence bond adopted for
the outer zone, see ref 21.
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previous discussion for the I f II path). Free cluster
calculations reported by Sauer et al.60 gave ∆E‡ ) 12 kcal
mol-1, which is considerably lower than the full periodic
B3LYP value. The underestimation of the energy barriers
provided by free cluster models compared to more con-
strained systems was already noticed in a comprehensive
study by Fermann et al.,45 in which results of the proton
jumps occurring in H-Y zeolites simulated by free and
embedded clusters were compared.

The presence of one water molecule does cause a
significant lowering of the energy barriers, indeed acting as
a proton helper. Considering only free energies, energy
barriers for If II and IIf III paths decrease by 8-10 kcal
mol-1, whereas for the IIIf I path, the lowering is only by
4 kcal mol-1. These results confirm that, in H-CHA zeolites,
the presence of water, even at trace levels, will dramatically
alter the proton mobility. The mechanism of proton jump
assistance was already observed in zeolites not only for water
but also in the presence of other protic solvents, such as
methanol and ethanol.46

Large differences for the two cases in the ν‡ values have
also been predicted: for the water-free H-CHA, the ν‡ value
was about 1000 cm-1, which reduces to around 200 cm-1

(see Figures 3b and 4b, respectively) when water is assisting
the proton jump. These values are consistent with the higher
geometrical strain (four-membered ring) present in the water-
free TS structures compared to the six-membered ring in the
presence of one water molecule.

Tuma and Sauer48 computed the proton jump in H-CHA
from site II to III (please note the different numbering scheme
of oxygen sites adopted in ref 48) within a QM/QM approach
(PBE functional as a lower method, MP2 method as a high-
level one). This MP2/DFT scheme gave the proton jump
energy barrier of 6.2 kcal mol-1 with an Ahlrich’s triple-�
basis set for O atoms and double-� basis set for the remaining
elements. Our own value with the DRC method gives 5.1
kcal mol-1 (considering site II as the reference energy
asymptote for consistency with ref 48), in good agreement
with Tuma and Sauer’s value (for basis set effects, see the
above discussion). Finally, from the experimental side, 1H
NMR measurements devoted to the proton exchange rate of
different hydrated cation-exchanged (Li, Na, K) CHA allow
one to arrive at activation energies (Ea) in the range of 10-14
kcal mol-1.61 A direct comparison between our computed
barriers and those from the experiment is not straightforward
considering the ideality of the adopted model (H-CHA with
one H2O molecule) in contrast to a cation-exchanged CHA
with relatively high water loading used in the experiment,
and thus the relevance of the comparison should be judged
with some extra caution. Our closest result to the experi-
mental results corresponds to the direct proton jump from
site I to III (∆E‡ ) 12.7 kcal mol-1). Nevertheless, a lower
barrier (8.4 kcal mol-1) is possible via the If IIf III path:
notwithstanding, the population of site II will be about 10-3

times smaller than that of I, so that experimental barriers
may presumably derive from both paths.

Figure 3. (a) B3LYP-energy profile of the proton jump along
the I f II f III f I path in dry conditions. Bare values as
relative electronic energies, values in brackets as relative free
energies at T ) 298 K with respect to the proton at site I. (b)
B3LYP-optimized structures corresponding to stationary points
in the energy profile of section a. Bond distances in Å,
energies in kcal mol-1.

Figure 4. (a) B3LYP-energy profile of the proton jump along
the If IIf IIIf I path in the presence of one H2O molecule
acting as a proton transfer helper. Bare values as relative
electronic energies, values in brackets to relative free energies
at T ) 298 K with respect to the proton at site I. (b) B3LYP-
optimized structures corresponding to stationary points in the
energy profile of section a. Bond distances in Å, energies in
kcal mol-1.
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4. Conclusions

The automatic scan of valence coordinates has been imple-
mented in the CRYSTAL ab initio periodic code as a strategy
to search and refine saddle point structures, through the DRC
strategy. In order to have a consistent coordinate set of
valence parameters for periodic systems, the redundant
scheme has been adopted.

The performance of the algorithm has been illustrated for
the acidic chabazite (H-CHA) zeolite by considering the
jump of the acidic proton between different oxygen atoms
of the AlO4 tetrahedron. It has been shown that, despite the
complexity in the connectivity of the atoms that makes the
study of the reactions very difficult when considering
Cartesian coordinates, the exploration of the PES around the
TS becomes straightforward in terms of valence coordinates,
hence allowing the use of quite simple strategies such as
the DRC one.

Calculations have been carried out for the proton jump
between site I and site II with different Hamiltonians, namely,
Hartree-Fock, PBE, PW91, PBE0, and B3LYP hybrid
functionals with a double-� polarized basis set. As expected,
Hartree-Fock overestimates the energy barrier and the
transition frequency (∆E‡ ) 30.2 kcal mol-1 and ν‡ ) 1801
cm-1, respectively) compared to density functional methods
(∆E‡ ) 13.6-15.0 kcal mol-1 and ν‡ ) 1085-1218 cm-1,
respectively). It is also shown that cell relaxation during the
TS localization significantly influences the accuracy of the
results, since barriers to proton jumps computed with fixed
cell parameters are by 3-4 kcal mol-1 higher than those
computed with fully relaxed geometry.

A complete proton jump path, If IIf IIIf I, has been
studied, both in the absence and in the presence of one water
molecule which assists the proton jump. Proton jumps in
water-free H-CHA exhibit higher energy barriers (among
4-10 kcal mol-1) than those computed in the presence of
one water molecule, confirming the role of water as a “proton
transfer helper”. The free energies of all stationary points
have been computed at T ) 298 K by using the accurate
harmonic frequency values provided by the CRYSTAL code,
showing values of the free energy barriers somehow lower
by 4 kcal mol-1 than the purely electronic ones. The accuracy
of the present periodic approach to optimize TS structures
has been assessed by comparing the electronic energy barriers
with those reported in previous theoretical works as well as
with the available experimental data, mostly showing very
good agreement.

Accordingly, with the present tool, very detailed informa-
tion of TS structures and free energies can be computed at
a reasonable computational cost. The present strategy,
moreover, allows one to search for TS structures involving
changes in both atomic as well as cell parameters in a very
natural way. Relaxing cell parameters may be relevant even
for studying localized chemical reactions occurring on
adsorbed bulky molecules in zeolite channels, in which
expansion or contraction of the silica framework can affect
the energy barrier, particularly when dispersive contributions
are taken into account.62 Obviously, this feature is also
mandatory for studying phase transition processes, a point
which is under investigation in our laboratory. Other issues

that deserve further studies concern the implementation of a
CI-NEB scheme formulated in terms of RIV coordinates.
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Abstract: The reactivities of various carbon sites on (5,5) single-walled carbon nanotubes
(SWCNT) of C70H20 with and without a Stone-Wales defect have been predicted computationally.
The properties determined include the average local ionization energy Ijs(r) and pyramidalization
angle θP on the surfaces of the bare tubes, the chemisorption energies, bond lengths, stretching
frequencies for chemisorbed H and F atoms, and the effects of H and F chemisorption upon
the HOMO-LUMO energy gaps. There is a good correlation between the minima of the local
ionization energy and the chemisorption energies at different carbon sites, indicating that Ijs(r)
provides an effective means for rapidly and inexpensively assessing the relative reactivities of
the carbon sites of SWCNTs. The pyramidalization angle (θP), which is a measure of local
curvature, also shows a relationship to site reactivity. The most reactive carbon site, identified
by having the lowest Ijs(r) and largest θP, is in the Stone-Wales defect region, which also has
the least reactive carbon site, having the highest Ijs(r) and smallest θP. The presence of a Stone-
Wales defect and also by H and F chemisorption decreased the HOMO-LUMO gap of (5,5)
SWCNT.

Introduction
Linear single-walled carbon nanotubes (SWCNTs), which
can be viewed as wrapped-around graphene sheets, are of
interest due to their remarkable electrical, mechanical, optical,
and chemical properties.1-4 Insertion of impurities such as
ions, metal atoms, and molecules into SWCNTs modifies
their band gaps.5-7 Introducing defects such as Stone-Wales,
vacancies, ad-dimers, etc. opens new opportunities for
tailoring the electronic properties of SWCNTs.8-11 Thus, the
defect-containing systems and their functionalized forms
could be useful for novel applications. Shigekawa and co-
workers have demonstrated the creation and destruction of
point defects in SWCNTs using scanning tunneling micros-
copy (STM). This provides a way to precisely control the
electronic properties of SWCNTs.12

An important nanotube defect is the Stone-Wales defect,
which involves four carbon hexagons being replaced by two
pentagons and two heptagons coupled in pairs (5-7-7-5;
compare 1 and 2 in Figure 1). The Stone-Wales defect is
generated by a 90° rotation of a C-C bond in the hexagonal
network.8 The Stone-Wales transformation has an energy
barrier of 6-7 eV in a flat graphene sheet and in C60.

13-16

Suenaga et al. have shown the first direct imaging of
pentagon-heptagon pair defects in a SWCNT by means of
high-resolution transmission electron microscopy (HR-TEM)
with atomic sensitivity.17 In-depth theoretical studies of
Stone-Wales defects in carbon nanotubes are limited. How-
ever, some recent ones have shown the Stone-Wales defect
in two different orientations, and its influence on covalent
and noncovalent functionalization in selected carbon nano-
tubes.18-27 The formation of Stone-Wales defects in the
catalytically assisted growth mechanism of SWCNTs has
been reported by Charlier et al. using ab initio molecular
dynamics and tight-binding Monte Carlo simulations.28

* Corresponding author e-mail: jerzy@icnanotox.org (J.L.);
ppolitzer@uno.edu (P.P.).

† Jackson State University.
‡ University of New Orleans.

J. Chem. Theory Comput. 2010, 6, 1351–1357 1351

10.1021/ct900669t  2010 American Chemical Society
Published on Web 03/10/2010



Pentagon-heptagon pair defects have been observed ex-
perimentally and have been reported to play a crucial role
in the growth of the nanotube structure.28 Robinson et al.
demonstrated that the chemical sensitivities of SWCNTs can
be enhanced significantly by introducing a low density of
defects on their sidewalls.27 Other theoretical studies showed
how the defects participate in the chemical sensing behavior
of SWCNTs.25,26,29

Defect-free SWCNTs, in general, possess few dissimilar
carbon atom sites for attachment of functional groups. In
contrast, defect-containing tubes have many different sites
with varying reactivities, particularly in the region of the
defect. Furthermore, the presence of defects changes the local
curvatures of SWCNTs, making the carbon atoms in the
vicinity of a defect more or less reactive than in the defect-
free region or in the pristine tube. Considering the large sizes
of nanotubes, it is important to identify and rank the most
reactive sites in defect-containing tubes without performing
expensive ab initio or DFT calculations.

Hydrogen atom chemisorption on the surfaces of SWCNTs
has been the subject of both experimental and theoretical
studies, since SWCNTs are viewed as a potential means for
hydrogen storage.30-36 Experimental studies by Nikitin et
al. on the hydrogenation of SWCNTs with atomic hydrogen
showed that it creates C-H bonds, and these C-H bonds
can be completely broken by heating to 600 °C.30 It was
reported that hydrogenation of SWCNTs by H-plasma
treatment is useful to cut smaller diameter tubes more easily
than larger ones.31 Lu et al. found that chemisorption of H
atoms on the exterior surface of the smaller armchair
SWCNTs can break the C-C bonds but does not induce
unzipping in larger armchair and zigzag SWCNTs.37 Re-
cently, Stojkovic et al. demonstrated bisection of SWCNT
by controlled chemisorption of hydrogen atoms.32

Fluorine chemisorption on the surfaces of SWCNTs has
evoked experimental interest because fluorine atoms on
nanotubes behave as leaving groups and can be readily
replaced by nucleophilic agents.38 Fluorinated nanotubes
were characterized by X-ray diffraction and by X-ray
photoelectron and Raman spectroscopy.39 Fluorination fol-
lowed by pyrolysis of SWCNTs was reported to have “cut”
SWCNTs of a range of different lengths.40 Chemisorption
of fluorine atoms on the external surfaces of defect-free
SWCNTs has been investigated by various groups,41-45 but
there are no studies involving defect-containing SWCNTs.

One of the objectives of this work has been to examine
the reactivities of different carbon atoms in (5,5) armchair
SWCNTs with and without the Stone-Wales defect, using
the computed average local ionization energy Ij(r), which will
be discussed in the next section. The differing reactivities
of the carbon atoms will also be analyzed via chemisorptions
of H and F atoms on the external surfaces of the tubes.

The Average Local Ionization Energy

For predicting and interpreting chemical reactivity, which
is a local phenomenon that varies from one site to another
within a given system, it is essential to have a measure of
how readily available, i.e., how strongly held, the electrons
are at different sites. It is for this purpose that the average
local ionizaton energy, Ij(r), was introduced.46

In eq 1, Fi(r) is the electronic density of orbital i, having
energy εi; F(r) is the total electronic density; the summation
is over all occupied orbitals.

Within the Hartree-Fock framework, the formalism of
the theory plus Koopmans’ theorem47,48 provide support for
the approximation Ii ≈ -εi, where Ii is the ionization energy
of the ith electron; in density functional theory, Janak’s
theorem does the same.49 Thus, Ij(r) can be regarded as the
average energy required to remove an electron from the point
r, the focus being upon the point in space rather than a
particular orbital.

While our present interest in Ij(r) is primarily as a guide
to reactivity, its significance is more far-reaching. Ij(r) is
linked to electronegativity, local kinetic energy density, and
local polarizability and hardness. These aspects of it are
discussed elsewhere.50,51

For interpreting and predicting the reactive behavior of a
system, Ij(r) is usually computed on its surface and labeled
Ijs(r). The surface is typically taken to be the 0.001 au
(electrons/bohr3) contour of the electronic density F(r), as
proposed by Bader et al.52 The local minima of IjS(r),
designated by IjS,min, indicate the locations of the least tightly
held, most reactive electrons. These are accordingly the
preferred sites for electrophilic or radical attack. Ij(r) has
indeed proven to be quite effective in analyzing reactive

Figure 1. Stone-Wales defect (1) and defect-free (2) armchair (5,5) SWCNTs, C70H20. Atom numberings are indicated. The
carbon atoms of the Stone-Wales defect region of 1 are shown in blue for clarity.

Ij(r) )
∑

i

Fi(r)|εi|

F(r)
(1)
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behavior;46,53-58 for example, it correctly predicts the ortho/
para Vs. meta directing tendencies of benzene substituents,
as well as their activation or deactivation of the ring.46,54

Ij(r) has been utilized for characterizing graphene55 and
nanotube surfaces.4,59

Computational Details

B3LYP/6-31G(d) geometry optimizations were carried out
for (5,5) armchair SWCNTs comprised of 70 carbon atoms,
both with and without Stone-Wales defects (1 and 2 in Figure
1). Both ends of the tubes were capped by hydrogen atoms
to avoid dangling bonds. The B3LYP/6-31G(d) optimized
structures were used to compute the average local ionization
energy Ijs(r) via eq 1 over grids covering both the inner and
outer 0.001 au surfaces of the tubes. Due to their large sizes,
Ij(r) was calculated at the HF/STO-5G level, which has been
found to be quite satisfactory for carbon framework
systems.53,56 For the (5,5) SWCNTs with hydrogen and
fluorine atoms bonded at various sites, geometries were
optimized and reaction (chemisorption) energies determined
with the UB3LYP/6-31G(d) procedure. Vibrational frequency
calculations confirmed that all structures correspond to
energy minima. All geometry optimizations and frequency
calculations were carried out with the Gaussian 03 suite of
programs.60 Ijs(r) was computed using the HardSurf code.61

The numbering of the carbons of tubes 1 and 2 is shown
in Figure 1. It should be noted that many sites in each tube
are identical by symmetry. For example, C3 in 1 has three
identical counterparts. Whatever is said about a particular
carbon in the following discussion should be recognized as
applying as well to all of its counterparts by symmetry.

Results and Discussion

Figures 2 and 3 depict the average local ionization energies
Ijs(r) on the outer surfaces of the bare (5,5) SWCNTs 1 and
2. Table 1 lists the local minima, IjS,min, at various carbon
atoms. Both the highest and the lowest IjS,min are in the defect
region of 1. The lowest IjS,min, predicted to indicate the most
reactive carbon, is for C3, which is simultaneously part of
five-, six-, and seven-membered rings. The carbon atoms C1
and C2, which form the bond sharing two heptagons, have
higher IjS,min than any other carbons in either the defect-
containing (1) or the defect-free (2) SWCNTs. In 1, the
opposite side of the defect exhibits an Ijs(r) pattern very similar
to that of the defect-free tube 2; compare Figures 2b and 3.

Table 1 also contains the C-H and C-F bond lengths
and the reaction energies (∆E) for the chemisorption of
hydrogen and fluorine atoms at the different carbon sites on
the outer sides of 1 and 2. Each chemisorption is computed
to be viable; the F atom chemisorption is more favorable
(by 10-12 kcal/mol) than the H atom chemisorption at the
corresponding carbon atom site. The C-H distances are all
about 1.11 Å, close to the 1.09-1.10 Å that is typical of sp3

carbon,62 even though the chemisorption energies range from
-32.1 to -49.7 kcal/mol. The C-F bond distances are more
variable, 1.415 to 1.449 Å, slightly larger than the typical
1.39-1.43 Å.62 The shortest C-H and C-F bonds and the
largest chemisorption energies are at C3 and C14 of 1. C3

is part of the defect, and C14 adjoins it (Figure 1). In general,
Table 1 shows that some of the carbon atoms in the defect

Figure 2. Calculated average local ionization energy on the
0.001 au surface of the (5,5) SWCNT of C70H20 having a
Stone-Wales defect (1). Two sides of the tube are shown: (a)
the side with the Stone-Wales defect; (b) the side opposite
the Stone-Wales defect. Color ranges, in eV: purple, less than
13.3; blue, between 13.3 and 13.5; green, between 13.5 and
14.0; yellow, between 14.0 and 14.7; red, greater than 14.7.
Both the highest and the lowest Ijs(r) are in the defect region.

Figure 3. Calculated average local ionization energy on the
0.001 au surface of the defect-free (5,5) SWCNT of C70H20

(2). Color ranges, in eV: green, between 13.5 and 14.0; yellow,
between 14.0 and 14.7; red, greater than 14.7.
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region are more reactive toward H and F atoms than those
in the defect-free tube, while others are less reactive.

Bettinger has investigated computationally, UB3LYP/6-
31G(d)//UPBE/3-21G, the reaction energies of fluorine atom
additions with (5,5) SWCNTs of various lengths.45 He found
∆E to oscillate, being most negative for the fully benzenoid
systems. For our tube 2 in Figure 1, he obtained ∆E ≈ -45
kcal/mol, very close to our values for C2 and C3 (Table 1).

Figure 4 compares the H and F atom chemisorption
energies (∆E) at various carbon sites on the defect-containing
SWCNT (1). The trends are very similar, but ∆E for the
fluorine addition is consistently 10-12 kcal/mol larger in
magnitude than hydrogen addition. Figure 4 also includes
the local minima (IjS,min) of the average local ionization energy
Ijs(r) that are associated with the respective carbon atoms.
There is clearly a good correlation between the IjS,min and
the ∆E for both the H and F chemisorptions. The lower the
IjS,min, the larger in magnitude is the chemisorption energy,
i.e., the more reactive is the carbon. The only discrepancy
is C14, which is more reactive in terms of ∆E than its
IjS,minwould predict. IjS,min and the ∆E are in agreement

concerning the high reactivity of C3, which is shared by five-,
six-, and seven-membered rings, and the low reactivity of
C2, shared by two seven-membered and one five-membered
ring. Both IjS,min and ∆E indicate that C3 is the most reactive
site and forms the strongest C-H and C-F bonds in the
defect portion of the tube. Figure 5 shows the addition of H
and F atoms to the most favorable site (C3) of the Stone-
Wales defective tube 2. Atom C2 received considerable
theoretical attention since it is involved in the bond rotation
to generate the Stone-Wales defect,21-26 but it is the least
reactive among the atoms in the defect region. Figure 4
strikingly demonstrates the general effectiveness of the
average local ionization energy in predicting the relative
reactivities of different sites of the Stone-Wales defective
(5,5) armchair SWCNT. A single calculation deals with the
entire surface of a large system, in contrast to the slower
and more expensive calculations of ∆E at different sites.

Table 1 shows that the chemisorptions of H and F atoms
at C7, C8, C11, and C12 of the Stone-Wales defect tube 1
have almost the same ∆E as C2 and C3 of the defect-free
system 2. The reactivity of C13 of 1 is similar to C4 of 2,
both of the carbon atom sites are near the ends of the tubes.
The carbon site C14 is a special case, being near an end and
also adjoining the defect; its very high reactivity is competi-
tive with that of C3, as already pointed out.

A useful means of characterizing nanotube sites is in terms
of their pyramidalization angles, θP.

15,19,25,63 This is the angle
between the bonds of a given carbon to its three neighbors
and the plane defined by those neighbors. The larger is θP

at a given site, the greater is the degree of curvature there.
Table 1 also lists the θP corresponding to various sites of 1
and 2, calculated with Haddon’s code POAVIT.64 The carbon
atom sites of the Stone-Wales defect region of 1 have a range
of θP; C2 and C3 possess the lowest and the highest θP,
respectively. The values of θP for the defect-free tube are
intermediate. There are approximate correlations among θP,
∆E, and IjS,min. In general, the greater is θP, which means the
higher the degree of curvature, the greater is the reactivity,
for both the Stone-Wales defective and defect-free SWCNTs.

Table 2 provides the energies of the highest-occupied and
lowest-unoccupied molecular orbitals (HOMO and LUMO)
of 1 and 2, both bare and with chemisorbed H and F atoms.
The HOMO-LUMO energy gaps (ELUMO - EHOMO) and the

Table 1. Computed Properties at Various Carbon Sites of (5,5) Stone-Wales Defect Nanotube 1 and Defect-Free Tube 2a

H atom chemisorption F atom chemisorption

nanotube
C atom site for H

or F chemisorption θP (deg) IjS,min (eV) C-H distance (Å) ∆E (kcal/mol) C-F distance (Å) ∆E (kcal/mol)

1 C2 0.3 14.62 1.110 -32.1 1.449 -41.1
C3 7.9 13.14 1.103 -49.7 1.415 -59.4
C4 6.4 13.32 1.107 -45.6 1.428 -56.4
C7 4.7 13.96 1.107 -35.7 1.431 -47.4
C8 2.5 14.03 1.107 -33.6 1.443 -45.0
C11 4.6 13.93 1.106 -35.7 1.436 -46.2
C12 5.5 13.74 1.108 -35.5 1.436 -47.4
C13 6.3 13.56 1.105 -42.4 1.428 -54.5
C14 6.5 13.45 1.103 -48.5 1.419 -59.5

2 C2 5.3 13.78 1.108 -34.3 1.436 -45.3
C3 5.7 13.70 1.108 -35.0 1.435 -46.5
C4 6.0 13.55 1.105 -42.8 1.427 -54.6

a Numbering of carbon atoms is shown in Figure 1.

Figure 4. Variation of chemisorption energies (in kcal/mol),
calculated at the UB3LYP/6-31G(d) level, for H and F atom
chemisorptions at different carbon sites of Stone-Wales
defective (5,5) SWCNT (1). Plot also shows the minimum
values of the average local ionization energy (IjS,min, in eV) at
the respective carbon sites.
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C-H and C-F stretching frequencies νC-H and νC-F are also
included. For a defect-free (5,5) tube with no chemisorbed
species, Zhou et al. obtained HOMO and LUMO energies
of -4.50 and -2.30 eV,65 which have been reproduced in
our present study for bare tube 2 (Table 2). It has been
demonstrated that the HOMO-LUMO gap decreases with
increasing tube length, but in an oscillatory manner.65-67

Modifications of SWCNTs can produce dramatic effects
on electronic properties and can be exploited in the design
of novel electronic devices. Therefore, it is important to
understand how HOMO-LUMO energy gaps are affected
by the Stone-Wales defect and the chemisorptions of H and
F atoms at various carbon atom sites. Creating a Stone-Wales
defect in a (5,5) SWCNT slightly decreases the HOMO-
LUMO energy gap, from 2.21 to 2.05 eV, mainly because
of the effect upon the LUMO energy (Table 2). For both
defect and defect-free tubes, chemisorptions of H or F atoms
generally change both the HOMO and the LUMO energies
more negatively, especially the latter. The consequences for
the HOMO-LUMO gaps are that they become smaller,
particularly when fluorine atoms are chemisorbed. For the

Stone-Wales defective SWCNTs, the smallest gap is ob-
served when the H or F is chemisorbed at C2, which was
found to be the least reactive site.

The C-H stretching frequencies in Table 2 are all in the
2900-3000 cm-1 range, which is consistent with the 2920
cm-1 that has been obtained experimentally.31,68 For com-
parison, the C-H frequencies in noncyclic alkanes are
2840-3000 cm-1, while those in cyclic alkanes and alkenes
are 3000-3300 cm-1.69 The highest and the lowest C-H
and C-F stretching frequencies are associated with the
strongest and the weakest C-H and C-F bonds (as indicated
by their ∆E); these are at C3 and C2 sites of the Stone-
Wales defect system 1, respectively.

Conclusions

We have shown that the average local ionization energy, Ijs(r),
is a good indicator of the relative reactivities of the various
carbon atoms of (5,5) armchair SWCNT, both with and
without a Stone-Wales defect. In the Stone-Wales defective
tube, the most reactive carbon atoms are predicted by Ijs(r)

Figure 5. H- and F-chemisorbed Stone-Wales defective SWCNTs obtained by chemisorption of H and F atoms to the most
favorable site (C3) in the defect region.

Table 2. Computed Properties of Bare (5,5) Carbon Nanotubes 1 (with Stone-Wales defect) and 2 (defect-free) as well as
the Same Tubes with H and F Atom Chemisorbed at Sites Indicateda

H atom chemisorption F atom chemisorption

nanotube
C atom site for H or

F chemisorption
HOMO

(eV)
LUMO
(eV)

H-L gap
(eV) νC-H (cm-1)

HOMO
(eV)

LUMO
(eV)

H-L gap
(eV) νC-F (cm-1)

bare 1 -4.54 -2.49 2.05 -4.54 -2.49 2.05
1 C2 -4.47 -2.86 1.61 2887 -4.57 -3.19 1.37 881

C3 -4.54 -2.64 1.90 2981 -4.65 -2.84 1.81 1039
C4 -4.60 -2.71 1.88 2935 -4.74 -2.95 1.79 993
C7 -4.64 -2.90 1.74 2921 -4.84 -3.25 1.59 973
C8 -4.47 -2.65 1.81 2910 -4.54 -3.08 1.46 946
C11 -4.53 -2.74 1.79 2924 -4.61 -3.19 1.42 965
C12 -4.63 -2.63 1.99 2903 -4.76 -3.01 1.75 966
C13 -4.67 -2.75 1.92 2944 -4.80 -3.08 1.73 986
C14 -4.69 -2.79 1.90 2981 -4.82 -3.01 1.80 1029

bare 2 -4.51 -2.30 2.21 -4.51 -2.30 2.21
2 C2 -4.47 -2.77 1.70 2908 -4.56 -3.25 1.32 972

C3 -4.65 -2.66 1.99 2907 -4.83 -3.09 1.74 968
C4 -4.67 -2.79 1.88 2949 -4.81 -3.11 1.70 992

a Numbering of atoms is shown in Figure 1.
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to be those shared by five-, six-, and seven-membered rings,
and the least reactive sites are to be those shared by two
seven- and one five-membered ring. The minimum values
of Ijs(r) correlate well with the chemisorption energies of
hydrogen and fluorine atom addition at the respective carbon
sites. The ∆E for fluorine addition is about 10-12 kcal/mol
more negative than for the hydrogen addition at the corre-
sponding carbon site. Our results indicate that Ijs(r) is a rapid
and inexpensive means for determining the relative reac-
tivities of carbon atom sites of SWCNTs, a single calculation
sufficing for the entire surface. The pyramidalization angle
θP also exhibits a general relationship to site reactivity. The
larger is θP, the greater is the local curvature and the more
reactive is the carbon atom. The HOMO-LUMO energy gap
is decreased by the presence of a Stone-Wales defect and
by hydrogen and fluorine chemisorptions.

Various properties were investigated for the chemisorption
of H and F atoms, and the results obtained for the defect-
free nanotube are generally intermediate in the range obtained
for the Stone-Wales defect tube. For example, some carbon
atoms in the defect region are more reactive than those in
the defect-free system; others are less. The properties of
carbon atoms outside of the defect region tend to be similar
to those in the defect-free tube. Being near the end of the
tube, however, has a modifying influence.
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Abstract: Darunavir (DRV) is a high affinity (4.5 × 10-12 M, ∆G ) -15.2 kcal/mol) HIV-1
protease inhibitor. Two drug-resistant protease variants FLAP+ (L10I, G48V, I54V, V82A) and
ACT (V82T, I84V) decrease the binding affinity with DRV by 1.0 and 1.6 kcal/mol, respectively.
In this study, the absolute and relative binding free energies of DRV with wild-type protease,
FLAP+, and ACT were calculated with MM-PB/GBSA and thermodynamic integration methods,
respectively. Free energy decomposition elucidated that the mutations conferred resistance by
distorting the active site of HIV-1 protease so that the residues that lost binding free energy
were not limited to the sites of mutation. Specifically the bis-tetrahydrofuranylurethane moiety
of DRV maintained interactions with the FLAP+ and ACT variants, whereas the 4-amino phenyl
group lost more binding free energy with the protease in the FLAP+ and ACT complexes than
in the wild-type protease, which could account for the majority of the loss in binding free energy.
This suggested that replacement of the 4-amino phenyl group might generate new inhibitors
less susceptible to the drug resistant mutations.

1. Introduction

The human immunodeficiency virus type 1 (HIV-1, see
Abbreviations section at the end for a summary of the
abbreviations used in this work) protease is a homodimeric
aspartyl enzyme with 99 residues in each chain. The two
HIV-1 monomers are bound by nonbonded interactions, with
the active site at the interface between the two monomers.1

The protease processes the viral Gag-Pol polyprotein, yield-
ing the structural proteins and enzymes critical for the
maturation of infectious viral particles.2 Thus, HIV-1 protease
has been a major target for structure-based drug design. Nine
protease inhibitors have been approved by the Food and Drug
Administration (FDA) for HIV therapy, effectively decreas-
ing the mortality rate of HIV/AIDS patients.3 These FDA-
approved HIV-1 protease inhibitors, developed at least in
part using structure based drug design, are competitive
inhibitors.2 Unfortunately, exposure to protease inhibitors
selects for viruses that have acquired drug resistance muta-
tions in protease due to the high replication rate of HIV-1
and to lack of a proofreading mechanism in its reverse

transcriptase. These drug-resistant protease variants lose their
high binding affinity to the inhibitors, while maintaining
enough enzyme activity for the virus to propagate.4

To understand the basis for these changes in drug-resistant
proteases, over 200 crystal structures of HIV-1 protease
variants have been solved in the past 25 years. Changes in
affinity due to drug resistant mutations and thus the
thermodynamics of binding can be measured by isothermal
titration calorimetry.5,6 Comparison between the structures
of wild-type and drug-resistant variant proteases in complex
with inhibitors partially elucidates how specific protease
mutations decrease protease-inhibitor binding affinity.7,8

However, elucidating the critical components of the binding
affinity quantitatively from the structural data still remains
a challenge. Free-energy simulations,9–15 in principle, can
aid in elucidating these components of the binding affinities
to particular atomic interactions.

Among these computational methods, free-energy pertur-
bation (FEP) and thermodynamic integration (TI) methods,
which are derived from statistical mechanics,12,16–21 are
mostly used with the thermodynamic cycle to calculate
relative binding free energy changes in similar systems. The* Corresponding author e-mail: celia.schiffer@umassmed.edu.
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molecular-mechanics Poisson-Boltzmann surface area (MM-
PBSA) method combines molecular mechanics and the
continuum solvation model.13,22–26 Solvation properties can
be described by the Poisson-Boltzmann (PB) or generalized
Born (GB) equation. This method is reliable and applicable
to calculating absolute binding free energy change associates
with biomolecular recognitions. To achieve a better match
with experimental data, the MM-PB/GBSA method is usually
supplemented by rough entropy estimation. Free-energy
calculation methods provide a way to estimate the binding
free energy of inhibitors with different protease variants,
allowing computational screening of lead compounds in
rational drug design. Furthermore, the calculation results can
be further analyzed, e.g., for free energy decomposition, to
provide information about affinity changes due to specific
kinds of interaction on an atomic level, which could not be
determined by experimental methods.13,22,27,28

The HIV-1 protease inhibitor, Darunavir (DRV, formerly
known as TMC114; Figure 1A) has recently been approved
by the FDA.29 This second-generation protease inhibitor,
which was developed after extensive effort in rational drug
design,30 binds the most tightly to the protease of all known
inhibitors (Kd ) 4.5 × 10-12 M).5 Nonetheless, DRV still
loses affinity to drug resistant variants of HIV-1 protease.5

In this study, the binding of DRV was investigated with wild-

type HIV-1 protease and two drug-resistant variants: FLAP+
(Figure 1B) with L10I, G48V, I54V, and V82A, which are
a combination of flap and active site mutations, and ACT
(Figure 1C) with V82T and I84V, which are active site
mutations. Each of these three systems was analyzed in three
parallel 20 ns molecular dynamics (MD) simulations using
initial coordinates from their crystal structures. In these MD
simulation trajectories, the MM-PBSA and MM-GBSA
methods were applied to calculate changes in binding free
energy, which were compared with ITC results. The classical
TI method was also used to calculate and compare differ-
ences in binding free energy of the DRV-ACT and DRV-
WT complexes. The accuracy, convergence, and reproduc-
ibility of the calculated results have been compared and
discussed. The MM-PB/GBSA correctly predicted the order
of binding affinity of DRV-WT, DRV-Flap+, and DRV-
ACT. The TI calculation result is in good agreement with
the experimental data. Free energy component analysis is
performed to elucidate the mechanism for resistance of
FLAP+ and ACT to DRV. The free energy decomposition
study results show that the bis-THF group of DRV has
maintained its favorable van der Waals (vdW) contact with
the protease even in the drug resistant variants. Understanding
how the protease mutates to decrease its binding affinity with
a very high affinity inhibitor will contribute to developing
better strategies to design protease inhibitors.

2. Methods

2.1. MD Simulation with the Program Sander in the
AMBER 8 Package. The initial coordinates of the DRV-WT,
DRV-FLAP+, and DRV-ACT protease complexes were
taken from each of their respective cocrystal structures
1T3R,5 3EKT, and 1T7I.5

Molecular dynamics simulations were performed using the
program Sander in the MD simulation package AMBER 8.31

For the standard protease residues, the atomic partial charges,
van der Waals parameters, equilibrium bond lengths, bond
angles, dihedral angles, and their relative force constants were
taken from the AMBER database (ff03).32 For DRV param-
eters, the van der Waals parameters, equilibrium bond
lengths, bond angles, dihedral angles, and force constants
were taken from the General AMBER Force Field database.33

The partial charges of inhibitor atoms were obtained as
follows. First, the coordinates of the DRV atoms were taken
from the 1T3R crystal structure and the missing hydrogen
atoms added by the program Quanta. Second, the geometry
of the resulting structure was optimized with the (HF)/6-
31G* basis set by the Gaussian 03 package.34 Finally, the
resulting electrostatic potential was used in the RESP35

module of the AMBER 8 package to derive the atomic partial
charges of the inhibitor.

The explicit solvent model was applied to all systems.
Each structure was solvated with the TIP3P water cubic box
to allow for at least 8 Å of solvent on each face of the
protease. The vdW dimensions for the protease were 44 by
35 by 59 Å. The dimensions of the final periodic box were
63 by 55 by 78 Å. The simulation system had approximately

Figure 1. (A) Chemical structure of DRV. (B) Crystal structure
of protease variant FLAP+-DRV complex 3EKT.66 DRV is
colored yellow. The side chains of the mutated residues Ile10,
Val48, Val54, and Ala82 are displayed and colored red or
green. (C) Structure of protease variant ACT-DRV complex
1T7I.5 DRV is colored yellow. The side chains of the mutated
residues Thr82 and Val84 are displayed and colored red or
green.
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7000 water molecules, and six Cl- counterions were added
to balance the charge of the system.

A three-step energy minimization process with the steepest
descent method was used to allow the system to reach an
energetically favorable conformation. In the first energy
minimization step, all the heavy atoms of the protease were
restrained with a harmonic force constant of 10 kcal mol-1

Å-2. In the second step, only the backbone nitrogen, oxygen,
and carbon atoms were restrained. The strength of the
restraint was maintained as 10 kcal mol-1 Å-2. In the third
step, the restraint was turned off, and all atoms were allowed
to move. Each of the three steps had 2000 cycles. The
temperature of the energy-minimized system was then
gradually raised from 50 K to 300 K in the NVT ensemble.
Initial velocities were assigned according to the Maxwellian
distribution, and random seeds were assigned with three
different values to generate nine simulations, three parallel
simulations for each of the WT-DRV, FLAP+-DRV, and
ACT-DRV systems. In the thermalization process, heavy
atoms were restrained with a harmonic force constant of 10
kcal mol-1 Å-2. The whole process was 50 ps (50 000 steps,
each of which was 1 fs). A 50 ps equilibration was then
performed in the NPT ensemble without restraining heavy
atoms. In the subsequent sampling MD simulations, each
step was 2 fs, and the total simulation was 20 ns. For the
thermalization, equilibration, and sampling simulations, the
SHAKE algorithm36 was applied to constrain all hydrogen
atoms.

2.2. MM-PB/GBSA Method. For the protease-ligand
system, the binding free energy change is represented by

and

where

The molecular mechanical energy ∆GMM is the estimated
free energy change associated with the binding process in
the gas phase. ∆GMM was calculated by standard force field
functions and parameters. Depending on the type of interac-
tion, ∆GMM has two kinds of energetic terms: bonded and
nonbonded. The bonded term includes terms representing
bond stretching energy (∆Gbond), angle vibrational energy
(∆Gangle), and dihedral angle torsion energy (∆Gdihedral). The
nonbonded term includes terms representing the van der
Waals interaction energy (∆GvdW) and electrostatic interaction
energy (∆Gele).

The polar component of the solvation free energy,
represented by ∆GPB/GB, can be calculated either by solving
the Poisson-Boltzmann equation (PB method) or the
generalized Born equation (GB method). The nonpolar
component of the solvation free energy is represented by
∆GNP. The sum of ∆GPB/GB and ∆GNP estimates the free

energy change associated with molecules entering solvation
from the gas phase. The GB calculation was done using the
model developed by Onufriev et al.37,38 The PB calculation
was done with the AMBER 8 numerical PB solver.39 The
solute dielectric constant is 1.0, and the solvent dielectric
constant is 80.0. ∆GNP was calculated by the LCPO (linear
combinations of pairwise overlaps) method, which is linearly
dependent on the solvent access surface area: ∆GNP ) 0.0072
× SASA.40 The entropy was calculated by normal-mode
analysis using the AMBER 8 NMODE module.26,41 For
every 20 ps of the 20 ns MD simulation trajectory, a snapshot
of the protease and inhibitor was taken removing the solvent
and counterions. The total number of the atoms for each of
the threesystemsDRV-WT,DRV-FLAP+, andDRV-ACT
were 3203, 3209, and 3203, respectively. Altogether, 1000
frames were used for the MM-PB/GBSA calculations. The
time-consuming entropy calculations were performed on 100
frames.

2.3. Thermodynamic Integration Method. When study-
ing drug-resistant protease mutants, the binding free energy
relative to wild-type protease is even more important than
the absolute binding free energy. The thermodynamic
integration method42,43 was applied to the protease-inhibitor
system to compute the free-energy difference between
different states of the system. From statistical mechanics,
the Gibbs free energy (G) can be calculated from the partition
function Q as follows:

The partition function can be expressed as the integral of
the system’s Hamiltonian function H(r,p). After a coupling
parameter, λ, is introduced into the Hamiltonian, Q can be
expressed as

From eqs 1 and 2, the derivative of G with respect to λ is

and

Equation 4 is the master equation of the thermodynamic
integration method. When applying this equation to the
protein-ligand system, the kinetic component of the Hamil-
tonian can be neglected. Thus, the λ-coupling force field
function V(λ,r) was used to replace the Hamiltonian. The λ
was chosen such that, when it equals zero, the force field
function V(0) and its relative parameters were correlated with
the wild-type protease. When λ ) 1, V(1) and its parameters
were correlated with the mutant protease. The numerical
estimation of eq 4 was

Protease + Inhibitor98
∆Gbinding

Complex

∆Gbinding ) ∆GMM - T∆S + ∆GPB/GB + ∆GNP

∆GMM ) ∆Gbond + ∆Gangle + ∆Gdihe + ∆GvdW + ∆Gele

∆S ) ∆Stranslational + ∆Srotational + ∆Svibrational

G ) -RT ln Q (1)

Q ) ∫ ∫ dr dp exp(-H(r, p, λ)/RT) (2)

dG
dλ

)
∫ ∫ dH(r, p, λ)

dλ
e-H(r,p,λ)/RT dr dp

∫ ∫ e-H(r,p,λ)/RT dr dp
) 〈dH(r, p, λ)

dλ 〉λ

(3)

∆G ) ∫0

1 〈∂H(λ)
∂λ 〉λ

dλ (4)
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The λ values and their relative weights (Table 5) were
assigned from the Gaussian quadratic formula.

Directly calculating thermodynamic integration from the
unbound to the bound state is not feasible. The thermody-
namic cycle below was used since G represents a state
function and is independent of the path.

As shown above, instead of calculating the free energy
changes ∆GWT and ∆GACT associated with the chemical
reaction path, the ∆Gapo and ∆Gcomplex through the “alchemi-
cal” path44–46 were calculated.

Thus, the drug-resistant mutant’s loss of binding free
energy compared to the wild-type protease was represented
by

The thermodynamic integrations were carried out in the
Sander module of the AMBER 8 package.47,48 The wild-
type and mutant proteases have different numbers of side
chain atoms on the mutated residues. To keep the same
number of atoms in the initial and final states, we perturbed
the extra atoms to dummy atoms, which had no nonbonding
interactions with the rest of the system. For the ACT mutant,
both mutated residues (V82T and I84V) have fewer atoms
than the wild type. Thus, the perturbation was done from
WT to ACT (Figure 2).

The DRV-WT crystal structure 1T3R was used to
generate the coordinates file for the calculation of the
∆Gcomplex. For the calculation of ∆Gapo, two sets of coordi-
nates were used. One was from the unbound wildtype
protease crystal structure 1HHP. The other one was the
protease atoms coordinates from the WT-DRV complex
crystal structure 1T3R with the inhibitor of DRV deleted
from the set of coordinates. The three-step energy minimiza-
tion was performed as described above. The structure was
then thermalized and pre-equilibrated with a harmonic
restrained force, and the λ value was 0.5. During the
thermalization, different random seed values were assigned
to create parallel calculations as controls. The pre-equilibrated
structure was then sampled at 12 λ values, see Table S1
(Supporting Information). The pre-equilibrated structure was
then used to start the 12 independent simulations with
different corresponding λ values (Table S1). The time steps
were 1 fs, and the time for the calculation at each λ value
was 2 ns. Thus, the total sampling time for each alchemical
free energy change calculation was 24 ns. The expected error
in the free energy calculations was the root-mean-square
deviation in the energies of the sample in production period
divided by the square root of the number of independent
samples in the production period.49

3. Results

3.1. Comparison between Predicted Binding Affinity
and ITC Data. 3.1.1. Calculations of Absolute Binding
Free Energy by MM-PBSA and MM-GBSA Methods. To
evaluate the reproducibility and convergence of our free-
energy calculation results, the same MM-GBSA protocol was
applied to three independent 20 ns MD simulation runs of
each of the WT-DRV, FLAP+-DRV, and ACT-DRV
systems starting from each of their corresponding crystal
structure (see the Methods section). To study the structural
stability of the systems, the root-mean-square displacements
(rmsd) of the CR atoms of the simulated proteins were plotted
over time with respect to their corresponding crystal struc-
tures (Supporting Information, Figure S2). For all the
DRV-protease systems after 2 ns of MD simulations, the
rmsd values were approximately 1.5 Å. As the calculations
all require extensive equilibration, the averages of potential
production periods were evaluated. After 10 ns simulations,
the calculated binding free energy for DRV-WT stabilized
(Figure 3A) for all three parallel simulations. Each of the
triplicates of DRV-FLAP+ and DRV-ACT stabilized
within 6 and 9 ns, respectively (Supporting Information,
Figure S1). Thus, the first 10 ns was used as the equilibration
period, as the free energy did not converge between the runs

∆G ≈ ∑
i)1

n

wi〈∂V
∂λ 〉λi

(5)

∆∆G ) ∆GACT - ∆GWT ) ∆Gcomplex - ∆Gapo (6)

Figure 2. Perturbation of Val82 to Thr and Ile84 to Val.
Hydrogen atoms are colored white, oxygen atoms are colored
red, nitrogen atoms are colored blue, carbon atoms are
colored green, and dummy atoms are colored black. Left:
residue in the wild-type protease as the initial state. Middle:
the hybrid residue in the calculation process. Right: the
mutated residue as end state. (A) The perturbation of Val82
to Thr82. (B) The perturbation of Ile84 to Val84.

expected error ) sample rms

√number of independent samples
(7)
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(Table 1), while the second 10 ns was used as the production
period, since generally the runs were converged.

The average predicted binding free energy of WT-DRV
was -26.7 kcal/mol, that of FLAP+-DRV was -21.0 kcal/
mol, and that of ACT-DRV was -18.4 kcal/mol (Table 2).
Although these values differed from the ITC experimental
values for each system (-15.2 kcal/mol for WT-DRV,
-14.2 kcal/mol for FLAP+-DRV, and -13.6 kcal/mol for
ACT-DRV), they correctly ranked the three protease
variants’ binding free energies: WT > FLAP+ > ACT. The
more rigorous and time-consuming PB method was also used
to calculate the polar solvation free energy. With this method,
the predicted results were in better agreement with the ITC
experimental data: -15.1 kcal/mol for WT-DRV, -11.6
kcal/mol for FLAP+-DRV, and -10.5 kcal/mol for
ACT-DRV (Table 2). Comparison of the predicted polar
solvation free energy difference calculated using the GB and
PB models showed that the GB model had underestimated
the polar solvation free energy of all three systems. This
difference in estimates of polar solvation free energy by the
GB and PB models has been reported and discussed in

several studies involving different protein-ligand systems.50–53

Such bias did not affect the ranking of binding energies for
a given receptor with different ligands or for receptor variants
with a specific ligand. Consistent with the results in other
systems,51 the MM-GBSA and MM-PBSA methods provide
the same rank order of binding energies (Table 2) although
the absolute values were different, for complexes of HIV-1
protease with DRV.

3.1.2. Calculation of RelatiVe Binding Free Energy. For
the ACT double mutant V82T-I84V, the relative binding
free energy was also calculated by the more rigorous and
computationally more intensive thermodynamic integration
method. This method has proven to be a powerful tool for
studying binding free energy differences in a receptor-ligand
system as statistical mechanics is its theoretical framework.16,54

As described in the Methods section, thermodynamic inte-
gration calculated the binding free energy change from
WT-DRV to ACT-DRV. The free energy changes associ-
ated with the alchemical pathways ∆Gapo and ∆Gcomplex,
which were the sum of 12 weighted dV/dλ values (see eq 5,
Table S1, Supporting Information), were plotted versus the
time for the study of calculation convergence (Figure 4). For
thermodynamic integration calculations, their reproducibility
and internal consistency were studied by setting up two sets
of independent simulations. Comparison of the two calcula-
tions of ∆Gcomplex, which were started from the DRV-WT
complex crystal structure coordinates, resulted in using the
first 0.5 ns of each of the 12 λ values as the equilibration
period and the second 1.5 ns of each of the 12 λ values as
the production period. The total time for the equilibration
period and production period were 6 and 18 ns, respectively.
The two ∆Gcomplex values were -119.3 kcal/mol for run 1

Figure 3. (A) MM-GBSA calculated results of DRV-protease
binding free energy with respect to the time. The three curves
represent three independent MD trajectories. (B) vdW energy
component of DRV-WT binding free energy with respect to
the time.

Table 1. Results of MM-GBSA Calculation for Absolute
Binding Free Energy (kcal/mol) of DRV-Protease Based
on Equilibration (1-10 ns) and Production (11-20 ns)
Periods

protease sampling time (ns) run 1 run 2 run 3 average

WT 1-10 -33.4 -32.8 -24.9 -30.4
11-20 -27.3 -27.0 -25.7 -26.7

Flap+ 1-10 -23.4 -17.7 -20.1 -20.4
11-20 -21.1 -20.8 -21.1 -21.0

ACT 1-10 -20.3 -13.9 -25.5 -19.9
11-20 -17.8 -17.6 -19.8 -18.4

Table 2. Difference between the MM-GBSA and MM-PBSA Calculations (kcal/mol)

protease ∆GSOLV-GB ∆GSOLV-PB ∆GCAL-GB ∆GCAL-PB ∆GEXP
a

WT 52.8 ( 0.2 64.4 ( 0.4 -26.7 ( 1.8 -15.1 ( 1.8 -15.2 ( 0.3
FLAP+ 53.9 ( 0.2 63.3 ( 0.3 -21.0 ( 1.5 -11.6 ( 1.5 -14.2 ( 0.1
ACT 52.3 ( 0.2 60.2 ( 0.4 -18.4 ( 1.7 -10.5 ( 1.7 -13.6 ( 0.2

a Experimental binding free energy data were obtained by ITC5,66

Figure 4. Thermodynamic integration results over total
sampling time showing that the calculations are stable. (A)
∆Gcomplex from two independent calculations of the coordinates
of the DRV-WT crystal sturcture (1T3R). (B) ∆Gapo from two
independent starting calculations from different starting struc-
tures: the DRV-WT crystal structure (1T3R) with the inhibitor
removed is colored magenta, and the apo protease crystal
structure (1HHP) is colored cyan.
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and -119.9 kcal/mol for run 2 (Table 3). The ∆Gapo values
calculated from the 1HHP and 1T3R crystal structure
coordinates were -121.3 and -121.5 kcal/mol, respectively
(Table 3). The protease in the 1HHP crystal structure has a
flap semiopen conformation. The one in the 1T3R crystal
structure has a flap close conformation. The free energy
change (∆GConfigurational) associated with the transition from
the semiopen conformations to the closed conformations
protease was related to ∆Gapo as shown in the thermodynamic
cycle below: in which

The highly similar results of ∆Gapo calculated from both
1HHP and 1T3R structures indicated that the WT and the
ACT had similar ∆GConfigurational values between their semio-
pen and close conformations. The relative binding free energy
between DRV-WT and DRV-ACT was 1.8 kcal/mol. This
result was a better match with the experimental relative
binding free energy of 1.6 kcal/mol than 4.6 and 8.3 kcal/
mol, which were calculated from the MM-PBSA and MM-
GBSA methods, respectively (Table 4).

3.2. Free-Energy Decomposition Analysis. 3.2.1. Analysis
of Contributions from Different Energy Components. A free
energy component analysis was performed to elucidate the
mechanism for resistance to DRV of FLAP+ and ACT. The
different energy components in the MM-PB/GBSA model
(see the Methods section) were shown in Figure 5 and
tabulated in the Supporting Information in more detail (Table
S2). Both translational entropy (-T∆Stranslational) change and
rotational entropy change (-T∆Srotational) were close in value
in DRV binding for the three protease variants (Supporting
Information, Table S2). They represented at least 90% of
the change in entropy. The remaining vibration entropy
change (-T∆Svibrational) was 1.5 kcal/mol for DRV-WT
binding, 2.2 kcal/mol for DRV-Flap+, and 0.2 kcal/mol

for DRV-ACT. Further free-energy component analysis
revealed that the favorable electrostatic interaction energy
term (∆GELE) from the molecular mechanical energy (∆GMM)
had been canceled by the unfavorable polar solvation energy
(∆GGB) penalty. This result was in agreement with other
MM-PB/GBSA studies.24,55–58 The total electrostatic interac-
tion energy (∆GELE + ∆GGB) for DRV-WT was 15.4 kcal/
mol, for DRV-FLAP+ was 14.1 kcal/mol, and for
DRV-ACT was 17.0 kcal/mol. The vdW interaction energy
was -60.3 kcal/mol for DRV-WT, -54.5 kcal/mol for
DRV-FLAP+, and -52.8 kcal/mol for DRV-ACT. The
vdWinteractionshadthelargestcontributiontoprotease-inhibitor
binding (Figure 5A) and sustained the largest energy loss in
both the FLAP+ and ACT drug-resistant mutants (Figure
5B).

3.2.2. Free Energy Projected to Each Residue of HIV-1
Protease. In order to gain extra insight into the mechanisms
of protease-inhibitor binding and drug resistance, the
binding free energy calculated from the MM-GBSA method
had been broken down to individual protease residues. The

Table 3. Thermodynamic Integration Calculation over 12 λ on the Equilibration and Production Periods (kcal/mol)

∆Gcomplex ∆Gapo

period 1T3R first run 1T3R second run 1HHP 1T3R w/o DRV ∆∆Ga

equilibration periodb -116.1 ( 0.2 -118.1 ( 0.2 -120.7 ( 0.2 -119.9 ( 0.2 3.2 ( 0.4
production periodb -119.3 ( 0.1 -119.9 ( 0.1 -121.3 ( 0.1 -121.5 ( 0.1 1.8 ( 0.2

a ∆∆G ) Mean(∆Gcomplex - ∆Gapo). b Note that the equilibration period is the first 0.5 ns of each of the 12 λ’s, and the production period
is the second 1.5 ns of each of the 12 λ’s, of the entire calculation. Total equilibration time is 6 ns, and production time is 18 ns.

Table 4. Relative Binding Free Energy (kcal/mol) of ACT
and WT HIV-1 Protease Calculated by Thermodynamic
Integration, MM-GBSA, and MM-PBSA Methods vs ITC
Data5

thermodynamic
integration MM-GBSA MM-PBSA ITC

∆∆G 1.8 ( 0.2 8.3 ( 3.5 4.6 ( 3.5 1.6 ( 0.5

∆Gapo
1HHP - ∆Gapo

1T3R)∆GConfigurational
WT - ∆GConfigurational

ACT Figure 5. (A) Binding free energy components of DRV-WT,
DRV-FLAP+, and DRV-ACT. (B) The loss of binding free
energy components with DRV of FLAP+ and ACT compared
to the WT protease.
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energy difference was investigated between the WT-DRV
complex and the two drug-resistant mutant protease-DRV
complexes for each residue (Figure 6). The residues with
energy changes were mainly located in three areas (Sup-
porting Information, Figure S3), the catalytic region (residues
22 to 33), the flap region (residues 45 to 55), and the P1
loop region (residues 79 to 87) on both monomers of the
protease. These energy changes varied asymmetrically in the
two protease monomers. Many residues (27, 28, 50, 87, 8′,
28′, 29′, 47′, and 76′) structurally adjacent to DRV other
than those that mutate (10, 48, 54, and 82 for FLAP+; 82
and 84 for ACT) responded to the mutations (Figure 6) as
had been previously observed.14,28 The sites of mutation not
only impacted their own binding free energy interactions with
inhibitors but also influenced the interaction of other residues
with the inhibitor by inducing alterations in the geometry of
the binding site.

Favorable electrostatic interactions opposed by the polar
solvation energy penalty also apply to individual residues.
A change in electrostatic energy (∆∆GELE) of any residue
was always associated with an equal but opposite compensa-
tion in solvation energy (∆∆GGB) of very similar amplitude
but in a different direction. The correlation coefficient for
the ∆∆GELE and ∆∆GGB of FLAP+ was -0.97 and for the
ACT was -0.95 (Figure 7A for FLAP+, Figure 7B for
ACT). This high correlation of ∆∆GELE and ∆∆GGB made
the change of vdW energy the largest factor in the loss of
binding free energy between DRV and FLAP+/ACT. The
residues in the catalytic, flap, and P1 loop regions also had
the largest change in vdW interaction energy (Figure 8). To
highlight those residues with a significant difference between
the WT and the two drug-resistant mutants, a cutoff of 0.1
kcal/mol of vdW energy change was used. The residues in
FLAP+ and ACT with a loss of vdW energy greater than
the cutoff were plotted in Figure 8C. In chain A, these
residues included 26, 27, 28, 47, 49, and 50; in chain B,
these residues were 8′, 25′, 27′-31′, 47′-49′, 51′, 52′, 54′,
76′, 82′, and 86′ (Supporting Information Figure S3D). The
loss in vdW interaction energy of chain B was significantly
larger than that of chain A.

3.2.3. VdW Energy Contribution from Each DRV Atom.
To explore the mechanism of the loss in binding free energy
between DRV and the drug-resistant mutants, the vdW
energy contributions were calculated for each DRV atom

and compared between complexes with the WT and FLAP+
and ACT mutant proteases. DRV had 75 atoms, of which
37 were hydrogen atoms with very limited contribution to
the vdW interaction energy. Thus, data were presented for
only the 38 heavy atoms in DRV (Figure 9A). Structurally,
DRV could be considered formed by four major moieties:

Figure 6. Decomposition of energy from MM-GBSA per
residue of HIV-1 protease. (A) Energy difference between wild-
type protease and FLAP+ variant. (B) Energy difference
between wild-type protease and ACT variant.

Figure 7. Correlation between ∆∆GELE and ∆∆GGB of each
residue. (A) Energy difference between FLAP+ and WT. (B)
Energy difference between ACT and WT.

Figure 8. (A) vdW energy loss between FLAP+ and WT
protease. (B) vdW energy loss between ACT and WT pro-
tease. (C) Residues with a vdW energy loss larger than 0.1
kcal/mol.
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(A) the 4-amino phenyl group, (B) the isopropyl group, (C)
the benzyl ring, and (D) bis-tetrahydrofuranylurethane (THF;
Figure 9B). To compare the energy change between these 4
moieties, we defined DV (loss of vdW interaction energy
ratio) as

where i is the atom within a specific moiety. The bis-THF
moiety and the benzyl ring have relatively low DVs of 3.1%
and 8.5%, respectively. The 4-amino phenyl and isobutyl
groups have significantly higher DVs of 17.0% and 19.2%,
respectively (Table 5).

The major difference between DRV and a previous
generation protease inhibitor, amprenavir (APV; Figure 9C),
is that DRV has a second tetrahydrofuran ring, which is part
of its bis-THF moiety. Nonetheless, DRV has been shown
by ITC experiments5 to bind more tightly than APV with
the protease, with a 2.6 kcal/mol larger binding affinity. In
the DRV-WT protease structure (1T3R), the bis-THF
moiety is surrounded by the protease chain A residues Ala28,
Asp29, Asp30, Ile47, Gly48, and Gly49, which form a cluster
of vdW contacts (Figure 10A and B). This packing can be
also observed from the crystal structures of the DRV-FLAP+
and DRV-ACT complexes.5 Examination of the MD

simulation structures of DRV in complex with the WT,
FLAP+, and ACT proteases showed that these residues and
the bis-THF moiety maintained a relatively stable structure
compared to other parts of the inhibitor. This stability led to
the small ratio of the bis-THF group’s vdW energy loss
(Table 5).

Similar to the bis-THF group, the benzyl ring maintained
its vdW interactions with protease residues in chain A (Figure
10C) in most conformations sampled by the MD simulations.
This stability in DRV interactions with chain A explained
the asymmetric vdW energy losses of the protease’s two
chains. Chain B was shown by free-energy decomposition
of protease residues to have more residues with significant
energy loss than chain A (Figure 8C). Unlike the bis-THF
group and the benzyl ring, whose vdW interactions were only
slightly influenced by the drug-resistant mutations, the
4-amino phenyl and isobutyl groups of DRV in complex with
FLAP+ and ACT lost approximately 20% of the vdW
interaction energy. A comparison of the MD simulation
structure of DRV-WT with those of the two drug-resistant
mutants showed that the 4-amino phenyl and isobutyl groups
of DRV in the DRV-FLAP+ and DRV-ACT complexes

Figure 9. (A) vdW interaction energy of each non-hydrogen
atom of DRV with protease. The energy of DRV-WT is
colored dark blue, the energy of DRV-FLAP+ is colored
magenta, and the energy of DRV-ACT is colored cyan. (B)
The definition of four moieties of DRV. (C) The chemical
structure of APV.

DV )
∑

i

(Ei
Flap+ - Ei

WT) + ∑
i

(Ei
ACT - Ei

WT)

2 × ∑
i

Ei
WT

× 100%

Table 5. Loss of van der Waals’ Interaction Energy (DV) for Different DRV Moieties

4-amino phenyl group isobutyl group benzyl ring bis- tetrahydrofuranyl

DV (%) 17 19 9 3
number of heavy atoms 7 4 7 8

Figure 10. (A and B) Cluster of vdW contacts formed by the
bis-THF group and the protease residues Ala28, Asp29,
Asp30, Ile47, Gly48, and Gly49 of chain A. The atoms of the
above residues are displayed and colored green. The atoms
of the bis-THF group are colored red, while the rest of DRV
is colored blue. (C) Relative position of DRV’s four moieties
(colored yellow) to chain A (colored cyan) and chain B (colored
purple) of protease.
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undergo significant geometry changes (Figure 11A and B)
that led to these groups losing their vdW contacts with the
drug-resistant proteases.

The free-energy decomposition by residue showed that the
mutations had induced changes in the shape of the binding
pocket as evidenced by the predominant changes occurring
in the vdW interactions energy. Overall, there was a decrease
in the vdW interaction energy between the protease and

DRV, mostly on the 4-amino phenyl side, as the volume of
the binding pocket was effectively enlarged as the mutations
within the active site were to smaller residues (V82A in
Flap+ and I84V in ACT). This expansion of the active site
permits, as we had observed, other residues to interact to
varying degrees with the inhibitor; in this way, the FLAP+
and ACT mutant proteases could develop drug resistance.

4. Conclusion and Discussion

With the appearance of drug-resistant HIV-1 protease vari-
ants becoming one of the major challenges to AIDS therapy,
understanding the mechanism of drug resistance is critical.
This goal is best addressed by cross-analyzing the data on
protease mutants from different experimental methods such
as crystallography and isothermal titration calorimetry.59–62

Comparing the crystal structure of APV bound to wild-type
protease and a drug-resistant protease variant, King et al.5

found that the mutation I84V has decreased the vdW
interaction between APV and the drug-resistant variant,
which might account for the loss of binding affinity between
APV and the drug-resistant variant. By analyzing the ITC
experiments results, Luque et al.59 suggested that the drug-
resistant mutations change the shape of the active site. The
very flexible substrates are less susceptible to the change
than the synthetic inhibitors,59 which might enable the drug-
resistant protease variant to still recognize the substrate while
having less binding affinity with the synthetic inhibitors.
Comparing the trajectories from MD simulations on the wild-
type protease and the V82F/I84V protease variant, Perryman
et al.63 suggested that the mutations changing the equilibrium
between the flap-semiopen and closed conformations could
be one aspect of the protease drug-resistant mechanism. More
details about inhibitor-protease binding can be provided by
free energy calculations, which start from structural coor-
dinates and yield thermodynamic data. In this study, we
performed MM-PB/GBSA calculations and free-energy
component analysis of DRV-WT, DRV-FLAP+ (L10I,
G48V, I54V, V82A), and DRV-ACT (V82T, I84V). By
running three independent 20 ns simulations for each of these
systems, we not only identified the convergence and con-
sistency of our calculations but also predicted the order of
binding energies in agreement with ITC data. As described
in the Methods section, the calculations of solvation energy
and molecular mechanic energy were based on 1000 frames
with a 20 ps interval. The more time-consuming entropy
calculation was based on 100 frames with a 200 ps interval.
In order to examine the statistical significance of the binding
free energy of protease with DRV, we calculated the entropy
for each frame that was used to calculate the solvation energy
and the molecular mechanic energy. The difference of
calculated entropy using 100 frames and 1000 frames was
tabulated in the Supporting Information (Table S3). t tests
were performed to evaluate the significance of the difference
of ∆GMM-PBSA and ∆GMM-GBSA between WT, Flap+, and
ACT. The p values were all less than 0.01, which indicated
significant differences.

Moreover, the relative binding free energy between
DRV-WT and DRV-ACT using MM-PB/GBSA and
thermodynamic integration (TI) methods was calculated. The

Figure 11. (A) Conformational space of DRV sampled in
DRV-WT complex simulations. Left: DRV ensemble is shown
with atoms’ vdW radii. The original conformation as in the
crystal structure is colored yellow. The sampled conformations
ensemble from MD simulation is colored blue. Right: 20
snapshots of DRV conformations taken every 1 ns from MD
simulations. (B) Conformational space of DRV sampled in
DRV-FLAP+ complex simulations. Left: DRV ensemble is
shown with atoms’ vdW radii. The original conformation as in
the crystal structure is colored purple. The sampled conforma-
tions ensemble from MD simulation is colored cyan. Right:
20 snapshots of DRV conformations taken every 1 ns from
MD simulations. (C) Conformational space of DRV sampled
in DRV-ACT complex simulations. Left: DRV ensemble is
shown with atoms’ vdW radii. The original conformation as in
the crystal structure is colored orange. The sampled confor-
mations ensemble from MD simulation is colored green. Right:
20 snapshots of DRV conformations taken every 1 ns from
MD simulations.
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accuracy of these result had the rank order TI > MM-PBSA
> MM-GBSA, which is the same order of the computational
times required for these methods. The TI method is more
suitable for comparing the energy difference between two
similar systems. In the case of the ACT (V82T, I84V) mutant
here, the TI method not only gave the more accurate
predicted energy than the MM-PB/GBSA method but also
had better reproducibility and faster convergence (Figure 3,
Figure 4).

The results of free energy components analysis showed
that the vdW interaction energy was dominant in the total
binding free energy change. The contribution from charged
interactions was minor compared to vdW interactions due
to the cancellation of electrostatic interactions energy and
the polar desolvation energy. Interestingly, a previous free
energy component analysis showed that, compared to the
total predicted binding free energy, the predicted contribution
from electrostatic interaction had a higher correlation with
the experimental binding free energy.64 Recently, a similar
analysis from the same group on interactions between HIV
protease and inhibitors concluded that the total theoretical
binding energy was in agreement with the experimental data,
although the free energy component from only the charged
interactions was also correlated well with experimental
binding free energy.65 This difference might have resulted
from the different environments of the two systems.65 The
former calculation was on the large solvated protein surface,
while the latter calculation on HIV protease was on a
relatively small and buried binding pocket. The free-energy
decomposition analysis on protease residues indicated that
mutations in the protease induced conformational changes
in its active site. The bis-THF group and benzyl ring of DRV
sustained their vdW interactions with the drug-resistant
protease variants and contribute most to the inhibitor-protease
binding, while DRV’s 4-amino phenyl and isobutyl groups
were susceptible to changes in the protease’s binding pocket
and adopted conformations that lose vdW interaction with
drug-resistant variants (Table 5).

These findings suggested that the design of new protease
inhibitors based on the DRV scaffold should consider
reoptimizing 4-aminophenyl and isopropyl groups since these
parts of DRV did not maintain their interactions with drug
resistant protease variants as much as the bis-THF group.
Such new inhibitors would likely bind more tightly to HIV
protease and may be less susceptible to drug resistance.
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Abstract: Recently, Hasserodt et al. proposed new HIV-1 drug candidates based on a weak
N · · ·CO interaction, designed to be a close transition state analog (Gautier et al. Bioorg. Med.
Chem. 2006, 14, 3835-3847; Waibel et al. J. Bioorg. Med. Chem. 2009, 17, 3671-3679). They
suggested that further improvement of these compounds could take advantage of computational
approaches. In the present work, we propose an atomistic model based on a QM/MM description
of the N · · ·CO core embedded in an amino-aldehyde peptidic inhibitor. We focus on the existence
of the N · · ·CO interaction in the aqueous and enzymatic media. We show that the N · · ·CO
bond holds in water, while in the protein, there is a competition between the formation of the
weak N · · ·CO bond and the conservation of the hydrogen bond network around the structural
water molecule W301 that is known to be crucial for the binding of both substrates and inhibitors.
This competition hampers the inhibitor to provide strong stabilizing interactions with all the key
parts of the protein at the same time. Our calculations indicate that this competition we observed
in peptidic compounds might be avoided by the proper design of nonpeptidic ones, following a
similar strategy to that for cyclic urea derivatives and the FDA approved drug Tipranavir. Hence,
our results encourage further development of the nonpeptidic hydrazino-urea derivatives
suggested recently by Hasserodt et al.

1. Introduction

The human immunodeficiency virus type 1 aspartic protease
(HIV-1 PR, Figure 1) is one of the major targets for the

design of anti-AIDS drugs.1,2 This enzyme catalyzes the
hydrolysis at specific sites of the polyprotein encoded by
the virus genome yielding separate functional proteins.3-5

This function was shown early to be crucial to virion
assembly and maturation, and its disruption by either active-
site mutation or inhibition leads to the production of viral
particles that lack infectious ability.6-8

Several HIV-1 PR inhibitors have been approved by the
FDA and significantly prolong the life expectancy of HIV
infected patients.1,9-11 Nevertheless, the rapid emergence of
resistance caused by multiple HIV-1 PR mutations decreases
the effectiveness of these drugs.9,12,13 Almost all FDA-
approved drugs are peptidomimetic active-site inhibitors that
contain a hydroxyl group designed to interact with the central
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École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland.

J. Chem. Theory Comput. 2010, 6, 1369–1379 1369

10.1021/ct9004728  2010 American Chemical Society
Published on Web 03/26/2010



aspartyl dyad of HIV-1 PR (see the Abbreviations section
for a list of abbreviations used in this work).1,2

Freire et al. suggested that the competitive advantage of
HIV-1 PR inhibitors over substrate binding is probably due
to their higher rigidity, providing a more favorable entropic
change upon binding. However, because of their rigidity,
these inhibitors are less amenable to adapt to shape modi-
fications of the enzymatic binding site induced by muta-
tions.14 Hence, the design of new potent inhibitors that
exhibit both a better binding free energy and an increased
flexibility remains a challenging task.13,15-17

In that context, finding functional groups that yield stronger
interactions with the aspartyl dyad than the usual hydroxyl
group would be of great interest.18 Toward this aim,
Hasserodt et al.19-21 proposed a new concept of aspartic
protease inhibitors based on a noncovalent interaction of a
tertiary amine nitrogen with a carbonyl group, the so-called
N · · ·CO bond, that they believed to be a better transition
state analog than the commonly used hydroxyl moiety
(Figure 2). As a first attempt, they synthesized a series of
dipeptide mimics containing the N · · ·CO core,19 the amine
and aldehyde fragments being bridged by an ethylene moiety
(referred to as the aliphatic bridge hereafter, Figure 2a).

The best candidate of these amino-aldehyde peptides
(AAP) exhibited an inhibition constant of 97 µM, far from
the typical picomolar value that is desirable for a potent
inhibitor.15,17,22-25

In order to design more efficient inhibitors, they synthe-
sized new compounds based on hydrazyno-urea heterocycles
containing both the N · · ·CO core and a carbonyl group aimed
at forming hydrogen bonds with two NH groups of the upper
part of the HIV-1 PR active site,20,21 the so-called flaps. This
strategy is similar to that involved in the design of cyclic
urea derivatives26 and the FDA-approved drug Tipranavir.27

The hydrazyno-urea derivatives indeed proved to interact
slightly stronger with HIV-1 PR (Ki ≈ 29 µM for the best
candidate). Hasserodt et al. concluded that a hit to lead
optimization could now be initiated with the help of
computational methods.20,21 Such an approach, however,
needs the definition of a proper model describing the N · · ·CO
core in a biological environment. The purpose of the present

work is to design this model and to apply it to AAPs in order
to help elucidate the origin of their low inhibition power.

Using a mixed quantum mechanics/molecular mechanics
(QM/MM)28 approach, we have designed a model that
explicitly includes the solvated enzyme complexed with an
AAP. An accurate quantum level of theory is crucial to the
correct description of the N · · ·CO core interacting with the
aspartyl dyad, due to the intrinsic complexity of this system.
No accurate transferable force field parameters exist for the
N · · ·CO bond,29,30 in particular because the stability of the
N · · ·CO is highly sensitive to the nature of the surrounding
medium.19,31-33 For instance, the N · · ·CO bond is unstable
in apolar-aprotic media, leaving the tertiary amine and the
aldehyde groups essentially independent. The structure of a
complex between HIV-1 PR and an AAP has not been
reported yet. Our study aims at exploring the feasibility of
N · · ·CO bond formation in this enzyme. In order to compare
the behavior of the AAP, in particular the N · · ·CO bond, in
the protein and in aqueous media, we have also designed a
similar QM/MM model of the AAP in water.

This article is organized as follows: in the first part, we
detail our structural model and the computational procedure
used to model the AAP in the enzymatic and aqueous media.
Results are reported and discussed in the second part, while
the last part summarizes our main findings.

2. Materials and Methods

2.1. Initial Structure. No experimental structure of an
AAP complexed with HIV-1 PR (E•AAP) is available.
Nonetheless, on the basis of known structural features of
HIV-1 PR-substrate complexes and previous kinetics/
inhibition experiments of Hasserodt et al., it is possible to
construct a starting structure for molecular dynamics simula-
tions. Indeed, inhibition profiles show a competitive mech-
anism strongly suggesting that the AAP truly binds to the
active site of the enzyme.19 In addition, HIV-1 PR is known
to bind a variety of peptide substrates in the same extended
conformation,34,35 the substrate backbone exhibiting many
hydrogen bonds with the enzyme and the side chains being
accommodated in a series of binding site subpockets. Due
to the very high peptidic character of AAPs, their backbone
and side chains should bind the active site in a way very
similar to that of the corresponding peptides. Since AAPs
are designed to be transition state analogs,19 the reaction
intermediate (E•INT) that connects the two TSs along the
reaction pathway of HIV-1 PR appears as a natural starting
structure for E•AAP modeling.

From both 18O isotope exchange experiments36 and X-ray
structures that captured key intermediate stages of the
catalytic reaction,37,38 there is evidence that the substrate
peptide bond cleavage involves the nucleophilic attack of a
water molecule onto the scissile peptide bond, leading to a
tetrahedral intermediate (Figure 2c). Note that, despite this
commonly accepted picture, the protonation state of the
intermediate is still a matter of controversy. Indeed, while
ab initio calculations suggested that the intermediate is a
neutral gem-diol,39,40 an empirical valence bond (EVB)
modelscalibrated against DFT calculations involving model

Figure 1. Crystallographic structure of HIV-1 PR in complex
with the peptidomimetic inhibitor MVT-10136,34 (4HVP entry
in the PDB data bank44). The aspartyl dyad (residues 25 and
25′) is located in the lower part of the active site. Ile 50 and
50′ are located at the flap tips and are indicated with orange
spheres. Drawings were made with the VMD program.83
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compounds in the gas phasesprovided evidence for a
charged oxyanion.41 Other authors calibrated their EVB
Hamiltonian without including the gem-diol in their reso-
nance structure set.42 Since we have chosen a computational
setup involving an ab initio approach similar to that of ref
39, we have considered a neutral gem-diol in the present
study. However, we stress that this choice should not affect
our results dramatically, since the tetrahedral intermediate
is just chosen as a starting structure to perform a first
equilibration of the system. More specifically, we chose the
complex between HIV-1 PR (E) and the Thr-Ile-Met-
Met-Gln-Arg peptide substrate43 in its hydrated form (INT;
Figure 2c). E•INT was constructed from the X-ray structure
of HIV-1 PR complexed with the highly peptidic MVT-101
inhibitor34,36 (4HVP entry in the PDB data bank44), a
compound that exhibits the sequence N-acetyl-Thr-Ile-Nle-
Ψ[CH2NH]-Nle-Gln-Arg-amide (Nle ) norleucine). The Asp
dyad was assumed to be monoprotonated according to the
commonly accepted mechanism of HIV-1 PR.36,39,41,42,45 The
protein was immersed in a 90 × 71 × 74 Å3 water box, and
the entire system was neutralized by adding six chloride
counterions. The whole system was composed of about
38 000 atoms.

2.2. Equilibration of E•INT. 2.2.1. Classical MD
Simulations. The complex was first equilibrated at the
classical level using the AMBER9 suite of programs.46 The
parameters for the solute, apart from the amide hydrate
(-C(OH)2-NH-) moiety of the gem-diol intermediate, were
taken from the AMBER 03 force field,47 and the TIP3P

model was used to describe water molecules.48 Bonded and
van der Waals parameters of the amide hydrate were
extracted from the generalized AMBER force field (GAFF).49

The charges of the amide hydrate were obtained using a
standard RESP procedure.50 The electrostatic potential was
computed at the HF/6-31G(d) level with the Gaussian 03
package,51 from a model compound including the hydrated
Met-Met sequence capped with acetyl and N-methyl groups,
i.e. Ace-Met-[C(OH)2-NH]-Met-Nme. Note that these
additional parameters are used for a small part only of the
entire system, which is then described within the QM part
during further equilibration at the QM/MM level (see next
section).

Long-range electrostatic interactions were computed using
the Ewald particle mesh method.52,53 A cutoff of 10 Å was
applied for the van der Waals interactions and the real part
of the electrostatic interactions. A time step of 1.5 fs was
used, and all bonds containing hydrogen were constrained
using the SHAKE algorithm. Constant temperature was
achieved using Langevin dynamics54 with a collision fre-
quency of 5 ps-1, while the pressure was maintained using
a Berendsen’s barostat55 with a relaxation time of 1.0 ps.
The system was first heated to 150 K over 15 ps and then to
300 K over a further 15 ps. Then, an equilibration of 1 ns at
1 atm and 300 K was carried out.

2.2.2. QM/MM MD Simulations. Starting from the equili-
brated E•INT structure obtained at the classical level, we
switched to a hybrid quantum mechanics/molecular mechan-
ics (QM/MM)28 description for the system. We used the

Figure 2. N · · ·CO bond as a transition state mimic. (a) N · · ·CO bond formation within an amino-aldehyde peptide (AAP). Side
chains of the AAP are not represented for the sake of simplicity. Instead, their positions are indicated using the notation of
Schechter and Berger (P2, P1, P1′ , P2′ ).84 The N · · ·CO core is introduced at the P1-P1′ junction, the proximity of the amine and
aldehyde fragments being ensured by an aliphatic bridge. (b) HIV-1 PR aspartyl dyad complexed with an AAP. (c) Catalytic
mechanism of HIV-1 PR involving a tetrahedral intermediate (E•INT), which is represented here as a gem-diol. Note that some
authors have reported that this intermediate could be an oxyanion (see text).41,42
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approach developed by Rothlisberger and co-workers.56-58

The QM region encompassed the Asp25(25′) side chains and
the amide hydrate moiety and was described at the
DFT/BLYP59,60 level of theory. Dangling bonds were
saturated with hydrogen atoms. The Kohn-Sham orbitals
were expanded in plane waves with a cutoff of 70 Ry and a
quantum cell of 17.2 × 14.8 × 14.8 Å3. A fictitious electron
mass of 600 au and a time step of 5 au (≈ 0.12 fs) were used.

The E•INT system was first minimized using a simulated
annealing-like procedure: starting from a temperature of 50
K, atomic velocities were rescaled at each time step by a
factor of 0.99. Then, the system was heated up to 300 K
over 15 ps. Subsequently, 12 ps of NVT simulation were
performed, using a Nosé-Hoover chain thermostat61-63 of
900 cm-1 frequency.

2.3. Transformation of E•INT into E•AAP. A structure
obtained after 10.3 ps of simulation was chosen to perform
the E•INTf E•AAP transformation. The hydrated substrate
was modified at the Met-Met junction to incorporate
the N · · ·CO core and the aliphatic bridge (Figure 2b). The
starting value of the characteristic C-N distance of the
N · · ·CO moiety was chosen to be 1.7 Å, which is a typical
value for a N · · ·CO bond in a polar-protic medium.33 At
this stage, we should stress that the only groups that differ
from the initial crystallographic structure are the N · · ·CO
core and the aliphatic bridge. Once the peptide backbone of
the AAP is accommodated in the active site, there are few
possibilities left for the positioning of the cycle made of the
aliphatic bridge and the N · · ·CO group. The main uncertainty
lies in the configuration of the carbon atom of the N · · ·CO
moiety. Thus we decided to study both possible configura-
tions (Figure 3A,B).

Once the starting position of heavy atoms was chosen,
we had to address the question of the active site protonation

state within the E•AAP complex. Indeed, HIV-1 PR exhibits
a wide range of protonation patterns according to the
presence and the nature of the ligand.39,45,64-71 The predic-
tion of such a pattern can be done, for instance, by fitting
kinetic data recorded at different pH to rate equations,45,64

by computational pKa estimation from an experimental
structure,65,66 by NMR titration,67,68 by constructing com-
putational models that aim at reproducing experimental data
such as crystallographic structures70,71 or NMR chemical
shifts,69 or by combining X-ray and neutron crystallogra-
phy.72

The a priori determination of the E•AAP active-site
protonation pattern is challenging. We decided to apply a
systematic strategy, in which a series of protonation states
for each configuration of the N · · ·CO carbon atom was
considered. When bound to neutral ligands, the aspartyl dyad
of HIV-1 PR is usually monoprotonated39,45,71,73 or dipro-
tonated,67 while positively charged ligands may yield an
unprotonated dyad.45,65

Following this, we generated a series of nine isomers in
different protonation states that are depicted in Figure 3.

First, we considered complexes A,B (monoprotonated dyad
with neutral AAP) and C,D (diprotonated dyad with neutral
AAP). In addition, the N · · ·CO interaction can also be
described by the limiting N+-C-O- form. The negatively
charged oxygen atom can be seen as an alcoholate and can
thus be very basic. We have thus considered the possible
proton transfer from the neighboring carboxyl group to the
N · · ·CO core leading to a positively charged AAP containing
a N+-CO-H moiety. A′,B′ (unprotonated dyad with posi-
tively charged AAP) and C′,D′ (monoprotonated dyad with
positively charged AAP) were obtained from A,B and C,D,
respectively, by shifting the closest proton of the Asp dyad
to the N · · ·CO oxygen atom.

Figure 3. E•AAP isomers and protonation states considered in this study.
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To our knowledge, the catalytic water molecule that is
tightly H-bonded to the aspartyl dyad in the HIV-1 PR-
substrate complex (Figure 2c) is systematically displaced by
any active site inhibitor bound to the enzyme. Indeed, it has
only been observed in crystallographic structures of the free
enzyme,74,75 but never in any X-ray or NMR structure of
the bound enzyme. However, we found it interesting to check
if an AAP can displace this water molecule. Thus, we
considered a last complex, denoted by AW, in which a water
molecule is added close to the aspartyl dyad.

2.4. QM/MM Modeling of E•AAP Isomers in
Different Protonation States. Once the E•INT f E•AAP
transformation was performed, each E•AAP structure un-
derwent a mild annealing-like protocol allowing a slow
relaxation and minimization of the newly introduced aliphatic
bridge-N · · ·CO moiety and the surrounding protein me-
dium. This enabled us to scrutinize (i) the stability of the
N · · ·CO bond within the protein and (ii) the interactions
between the AAP and the protein.

We used the same level of calculation as the one we used
to equilibrate E•INT. The QM region included the Asp25(25′)
side chains, the N · · ·CO moiety, and the aliphatic bridge.
We stress that the ability of density functional theory to
describe the N · · ·CO interaction was demonstrated previ-
ously.33 The quantum cell size was adapted to that of the
QM region, leading to a 16.9 × 14.3 × 16.9 Å3 box.

Each E•AAP complex underwent a first minimization,
using the same simulated annealing-like procedure that we
used previously to optimize the geometry of the E•INT
complex, i.e., using a starting temperature of 50 K and a
scaling factor of 0.99. These calculations were stopped as
soon as the temperature reached a value below 3 K. Then,
the system was let free to relax during 8 ps of NVE QM/
MM molecular dynamics. During this run, each complex
heated up to about 40 K due to remaining bad contacts.
Finally, the minimization of the system was achieved using
a second annealing with a scaling factor of 0.999.

To check the validity of this relaxation/optimization
protocol, we performed further calculations using constraints.
These calculations are described in the Supporting Informa-
tion.

2.5. QM/MM Modeling of AAP in Water. The simula-
tions in water were started from the same starting structure
of the AAP as the one used in complex A. The inhibitor
was immersed in a 49 × 49 × 49 Å3 water box equilibrated
at room temperature at the classical level. All of the atoms
of the AAP were fixed during the first stages of the
simulation. For the QM/MM runs, we used the same
description as the one for the E•AAPs. The quantum cell
size was adapted to that of the QM region, leading to a 11.0
× 11.3 × 10.4 Å3 box.

The water box was further equilibrated using the following
protocol: A first annealing was performed using a starting
temperature of 50 K and a velocity scaling factor of 0.99.
Then, the solvent underwent 4.7 ps of MD simulation at 300
K using the Berendsen weak coupling algorithm.55 Finally,
the target temperature was decreased linearly from 300 to 1
K in 3 ps.

At this stage, the constraints on the inhibitor were
removed, and we minimized the QM and the MM part of
the system consecutively. Then, the system underwent 4 ps
ofNVTsimulationusingaNosé-Hooverchainthermostat.61-63

Finally, a minimized geometry was obtained by performing
an annealing with a velocity scaling factor of 0.999.

3. Results and Discussion

3.1. AAP in Water. We start the analysis of our results
by describing the behavior of the N · · ·CO bond embedded
in an AAP in an aqueous medium. During our 4 ps of NVT
simulation at 300 K, a weak N · · ·CO interaction was
maintained, with an average value of the C-N distance of
2.41 Å and a standard deviation of 0.18 Å. After minimiza-
tion using our annealing-like protocol, this distance decreased
to 2.27 Å. Figure 4 shows the corresponding optimized
geometry. The nitrogen lone pair of the N · · ·CO core is
directed toward the aldehyde, which has lost its coplanarity.
Three water molecules are hydrogen bonded to the aldehyde,
which stabilizes the N · · ·CO bond.

The fact that the N · · ·CO bond is maintained over the
course of the simulation shows that our computational
approach is able to reproduce the closed configuration
reported by Hasserodt et al.19 On the basis of NMR
measurements in methanol, they estimated that 70% of the
AAPs exhibit a N · · ·CO bond. We expect that much longer
simulations would provide opening and closing events.

Nevertheless, the average C-N distance we observe is
longer than the typical value of 1.8 Å of a N · · ·CO bond in
a polar-protic medium.33 This is in agreement with the
computational study of Pilmé et al., who have shown that
water molecules H-bonded to the N · · ·CO core stabilize the
N+-C-O- form by accepting part of its electronic density.33

Even though the charge transfer is small (ca. 0.06 e/mol-
ecule), it was shown to be sufficient to stabilize short CN
distances. In our simulations, the interaction between the
N · · ·CO core and the surrounding water molecules is
described through the QM/MM interface, which does not
account for charge transfer effects, hence leading to a longer
C-N distance. Note, however, that this problem does not
hold for our simulations in HIV-1 PR (next sections), because
the polar protein group close to the N · · ·CO core was
included in the QM part.

Figure 4. Optimized geometries of the AAP in water at the
QM/MM level of theory. Only the inhibitor backbone and water
molecules hydrogen bonded to the oxygen atom of the
N · · ·CO core are represented. The N · · ·CO interaction is
depicted in magenta.
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3.2. Protonation State of the N · · ·CO Oxygen Atom
in the Protein. The first question we addressed concerning
the behavior of AAPs within HIV-1 PR was whether the
protein is able to provide a stabilizing medium for a
protonated, positively charged AAP. Indeed, due to the
enhanced ionic character of the C-O bond within the
N · · ·CO core, the basicity of the oxygen is increased, and
thus, a sufficiently acidic medium could stabilize a covalent
N+-CO-H moiety.

In the early stages of the minimization of isomers A′-D′,
we observed that the proton linked to the N · · ·CO oxygen
was systematically shifted to the closest aspartate, leading
to isomers A-D, respectively. Thus, despite the difficulty
of providing an a priori accurate estimation of the protonation
pattern in the active site of our system, our calculations
consistently converge to an AAP N · · ·CO core that is
unprotonated within HIV-1 PR. Therefore, in the following,
only isomers A-D and AW will be considered.

3.3. N · · ·CO Bond Stability in the Active Site and
Interaction with the Asp Dyad. Optimized geometries of
complexes A-D are depicted in Figure 5. Selected structural
parameters are reported in Table 1. For each complex, the
characteristic C-N distance of the N · · ·CO moiety exhibits
a drastic lengthening from the starting value of 1.7 Å. Note
that, since this opening event was already observed during
geometry optimization, we did not attempt to run molecular
dynamics simulations at room temperature, as we did for
the modeling of AAPs in water. Instead, we applied a mild
relaxation/minimization protocol in order to assess the effect
of the enzymatic media on the geometry of AAPs.

Monoprotonated complexes A and B are stabilized in a
fully opened conformation, with dCN ) 3.75 and 3.43 Å in
A and B, respectively. This distance is larger than the

characteristic value of even a weak N · · ·CO interaction in
which dCN ≈ 2.8 Å.33 In both structures, the N · · ·CO nitrogen
lone pair is no longer directed toward the planar aldehyde
group, indicating that the N · · ·CO interaction is completely
disrupted. Furthermore, the aspartyl dyad coplanarity is lost
according to the values of the dihedral angle between each
Asp oxygen, i.e., Ω ) 94.2 and 69.4° for A and B,
respectively. This structural feature plays a crucial role in
the binding of both substrate and inhibitors.4,76,77 The highly
distorted conformation of the aspartyl dyad is a clear indicator
of an unfavorable interaction between the N · · ·CO core,
Asp25 and Asp25′. Despite the hydrogen bond between the
proton of Asp25(25′) and the carbonyl oxygen of the AAP
in isomer A(B) (see Table 1), the AAP does not provide
sufficient shielding to stabilize the strong electrostatic
Asp-Asp repulsion.70

Figure 5. Optimized geometries of complexes A-D at the QM/MM level of theory. Only polar hydrogens belonging to the
H-bond networks around W301, the N · · ·CO core, and the aspartyl dyad are represented.

Table 1. Main Geometrical Parameters Resulting from the
Minimization of Complexes A-Da

A B C D

dCN
b 3.75 3.43 3.01 2.51

NCO · · ·HδAsp25(25′)
c 1.66 1.76 1.60 1.61

NHIle50 · · ·OW301
d 2.20 2.39 2.34 3.42

NHIle50′ · · ·OW301
d 2.26 2.01 2.08 1.87

COP2 · · ·HW301
d 2.30 3.67 1.77 4.28

COP1′ · · ·HW301
d 1.75 1.67 3.83 1.64

Ωe 94.25 69.44 37.77 -43.12
Φf -125.77 -84.81 -74.34 -51.06

a Distances are given in Å and angles in degrees. b Distance
between the tertiary amine nitrogen and the aldehyde. c Hydrogen
bond between the N · · ·CO oxygen and the Hδ of the aspartyl
dyad. Residue 25 or 25′ is considered, depending on the
protonation pattern of the aspartyl dyad. d Hydrogen bond network
around the structural water molecule W301. e Dihedral angle
between each Asp oxygen of the aspartyl dyad. f Dihedral angle of
the aliphatic bridge.
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The AW complex (results not shown) follows a similar
route, leading to a drastic lengthening of the C-N distance
and the loss of the aspartyl dyad coplanarity. Moreover, the
opening of the N · · ·CO core is accompanied by the departure
of the catalytic water molecule out of the aspartyl dyad,
yielding a structure close to complex A. In fact, we observe
that this water molecule is stabilized by a hydrogen bond
with the Gly27 carbonyl group. Despite the short time scale
that is accessible at the QM/MM level, we expect that this
is a transient state, prior to a move of the catalytic water
molecule to the bulk. We have already observed this behavior
in a classical simulation of a HIV-1 PR-substrate complex
(not presented here), which is consistent with observations
reported by others.40

Diprotonated complex D exhibits the smallest C-N
distance (dCN ) 2.51 Å), which corresponds to a weak
N · · ·CO interaction.33 The nitrogen lone pair is still directed
toward the carbonyl group which is less planar and more
tightly H-bound to Asp25′ than in the monoprotonated
complexes, according to the NCO · · ·HδAsp25′ distance. The
Asp dyad remains almost coplanar, suggesting that the
complex is much more stable than the monoprotonated ones.
This is in agreement with the fact that the shielding
introduced by the additional proton in diprotonated states
makes the aspartyl dyad more amenable to accepting the
accumulated negative charge of the N · · ·CO oxygen.

Complex C represents an intermediate situation between
complexes D and A,B. As in D, it is characterized by a
coplanar aspartyl dyad and a tight hydrogen bond between
the oxygen of the N · · ·CO core and Asp25. However,
similarly to A and B, the C-N distance equals 3.01 Å, which
corresponds at best to a shallow N · · ·CO bond.

Our systematic approach reflects the geometric behavior
of the N · · ·CO core within the enzyme, over a set of different
conditions related to the protonation state and the starting
configuration of the N · · ·CO carbon atom. As we will show
in the next section, our model enables one to establish a
correlation between the disruption of the N · · ·CO bond and
other interactions that play a key role in the affinity between
the AAP and HIV-1 PR.

3.4. Origin of the N · · ·CO Opening. A detailed analysis
of the hydrogen bond network inside the HIV-1 PR active
site sheds some light on the origin of the instability of the
N · · ·CO bond within the enzyme. In HIV-1 PR-substrate
and in most HIV-1 PR-inhibitor complexes,78 a tetrahedrally
coordinated structural water molecule, commonly labeled
W301,1,79,80 bridges Ile50(50′) NH groups belonging to the
upper part of the active site cleft (the so-called flaps, Figure
1) and P2 and P1′ CO groups of the substrate/inhibitor. Hence,
this hydrogen bond network plays a crucial role in the correct
positioning of both substrate and peptidomimetic inhibitors
in the active site. Inhibitors that do not exhibit these
interactions are those that have been designed to displace
W301, such as cyclic urea derivatives26 or the FDA-approved
drug Tipranavir.27

Figure 6a depicts the starting geometry (just after the
E•INTfE•AAP transformation) of W301 and its surrounding
atoms within complex A. Note that the position of heavy
atoms is the same as that of complex C and AW and is very

similar to that of complexes B and D, the only difference
being the configuration of the N · · ·CO carbon atom. The
tetrahedral H-bond network around W301 is present, prior
to any step of our minimization protocol. In the starting
configuration of our complexes, the “macrocycle” composed
of W301, P2, and P1′ CO groups and the aliphatic bridge
(represented with orange transparent tubes in Figure 6) is in
a quite compact conformation, while the C-N distance of
the N · · ·CO moiety is 1.7 Å.

During the NVE molecular dynamics run of complex A,
the H bonds around W301 are first partly disrupted, and as
the C-N distance lengthens, the hydrogen bond network is
progressively restored. Figure 6b represents the final (opti-
mized) structure of complex A. The “macrocycle” is
stabilized in an extended conformation, in which the aliphatic
bridge has been pushed away from W301. This structural
reorganization occurs together with a drastic increase of both
the characteristic dihedral angle Φ of the aliphatic bridge
(from -51 to -126°) and the C-N distance (from 1.7 to
3.75 Å). Hence, the disruption mechanism of the N · · ·CO
bond observed in complex A may be formulated as follows:
The hydrogen bond network that W301 tends to form with
two backbone carbonyl groups of the AAP tightens the
“macrocycle”, which in turn reduces the steric hindrance by
extending the aliphatic bridge, thus lengthening the C-N
distance of the N · · ·CO core.

Complex B exhibits a behavior similar to that of complex
A, sharing the same location of W301 and the evolution of
the structure toward an extended “macrocycle”. The major
difference lies in the value of the dihedral angle of the
aliphatic bridge (Table 1), which is lower in B, i.e., Φ )
-84.8°. Thus, the aliphatic bridge remains closer to the
center of the “macrocycle”, and W301 cannot establish an
optimal hydrogen bond with the P2 carbonyl.

In order to analyze the link between the hydrogen bond
network around W301 and the CN distance, we have

Figure 6. Competition between the N · · ·CO bond formation
and the conservation of the H-bond network around the
structural water molecule W301. Starting (a) and final (b)
geometries of W301 and its surrounding atoms within complex
A. Side chains and hydrogen atoms not belonging to the
H-bond network around W301 are not represented for the
sake of simplicity. The “macrocycle” composed of W301, P2,
and P1′ CO groups and the aliphatic bridge is represented with
orange transparent tubes. The H bonds around W301 are
depicted with gray-dashed tubes, while the N · · ·CO interaction
is represented with a blue-dashed tube in the starting structure
(a).
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conducted a constrained optimization. Starting from the
optimized geometry of complex B, we changed the hydrogen
bond network around the W301 molecule from that in
complex B to that in complex A. The CN bond was not
frozen, and we found that it increased to reach a final length
of 3.70 Å, close to the value observed in complex A.

The situation is rather different for diprotonated complexes.
In the optimized complexes C and D, W301 is no longer
tetrahedrally coordinated, as depicted in Figure 5C,D. The
highest disruption occurs for complex D, which conserves
only two hydrogen bonds. On the other hand, the aliphatic
bridge remains in a conformation closer to that of the starting
structure, as indicated by the Φ values: -74.3 and -51.1°
for C and D, respectively. This is consistent with the C-N
distance values discussed in the previous section. As previ-
ously noted, a diprotonated dyad is a better hydrogen bond
donor than a monoprotonated one and is thus more favorable
to the N · · ·CO interaction, which in turn, is more competitive
against the conservation of the H-bond network around
W301.

The behavior observed for complexes A-D can be
summarized stating that a N · · ·CO bond and a proper H-bond
network around W301 cannot be realized both at the same
time. Clearly, the introduction of the N · · ·CO core at the
scissile peptide bond location induces a systematic competi-
tion between the N · · ·CO bond formation and the interaction
network involving the structural water molecule W301.
Barillari et al.81 estimated the binding free energy of W301
to a series of complexes between HIV-1 PR and peptido-
mimetic inhibitors using the double-decoupling free energy
simulation method. They found that the binding free energy
ranged from -7 to -10 kcal mol-1. If one removes the
entropy contribution, in which the upper bound has been
estimated to be about 2 kcal mol-1,82 one obtains a binding
energy of -(9-12) kcal mol-1. This is comparable to the
energy of the N · · ·CO bond, which has been estimated to
be -11 kcal mol-1 at the CCSD(T) level.33 These energetic
considerations support the competition that we observed
between the conservation of the hydrogen bond network
around W301 and N · · ·CO bond formation.

Since the N · · ·CO moiety has been designed to interact
strongly with the aspartyl dyad,19 our simulations show
that an AAP cannot provide stabilizing interactions with
all the key parts of the HIV-1 PR binding site at the same
time. The low inhibition power of AAPs might originate,
at least partly, from this competition. Interestingly, our
results suggest that further development of N · · ·CO
containing inhibitors should focus on nonpeptidic com-
pounds that could displace W301. This in line with the
hydrazino-urea compounds proposed recently by Hasserodt
et al.20,21 These derivatives contain both a N · · ·CO bond
and a hydrazino-urea group designed to interact directly
with the flaps of HIV-1 PR, similar to cyclic urea
derivatives26 and the FDA-approved drug Tipranavir.27

Note that hydrazino-urea compounds synthesized by
Hasserodt et al. bind only slightly stronger to HIV-1 PR than
AAPs (Ki ≈ 29 µM and 97 µM, respectively). However, the
former contain only three groups aimed at filling the
subpockets of the enzyme binding cleft, while cyclic urea

derivatives usually have four.26 Hence, we encourage the
development of optimized N · · ·CO-containing hydrazino-urea
inhibitors that would contain proper groups aimed at interact-
ing with the same binding subpockets as cyclic urea
derivatives. Such a design could be assisted by a computa-
tional study based on the same approach we developed in
the present work.

4. Conclusions

We have proposed here a computational procedure to tackle
the difficult theoretical description of HIV-1 PR inhibitors
based on the unusual N · · ·CO bond. This procedure consists
of an explicitly solvated model of the ligand-enzyme
complex (E•AAP) described at the atomistic level with a
QM/MM approach. The N · · ·CO core and part of the enzyme
active site are described using an accurate QM level, while
the rest of the protein and the solvent are described using
the classical AMBER force field.

In this work, we have applied this model to investigate
the origin of the low inhibiting power of the recently
proposed amino-aldehyde peptide (AAP) compounds against
HIV-1 PR. Our calculations provide detailed information on
the feasibility of the N · · ·CO bond formation within the
enzymatic environment along with crucial interactions that
govern the stability of the complex.

Considering all the possible protonation patterns of the
active site aspartyl dyad, we have shown that N · · ·CO bond
formation/dissociation takes place in a competitive mecha-
nism, in which the structural water molecule W301 tends to
establish a hydrogen bond network that indirectly penalizes
the shortening of the distance between the nitrogen atom and
the CO group of the N · · ·CO core. We conclude that the
reported poor inhibition power of AAPs19 originates, at least
partly, from this competition.

Despite this, a N · · ·CO · · ·HδAsp25(25′) hydrogen bond was
observed for each protonation state. In the case of complex
D, this H bond is tighter, and a weak N · · ·CO interaction
is formed at the same time. This means that, under
appropriate conditions, a N · · ·CO core could interact
strongly with the aspartyl dyad of HIV-1 PR. Hence, the
design of N · · ·CO-containing candidates that could dis-
place the water molecule W301 would be an interesting
alternative to AAPs. This supports the idea that a
hydrazino-urea core20,21 is an interesting template for the
design of potent anti-AIDS drugs. In particular, it would
be interesting to extend the recent work of Hasserodt et
al. to hydrazino-urea derivatives containing peripheral
groups aimed at filling the HIV-1 PR subpockets P2, P1,
P1′ , P2′ properly, similar to cyclic urea derivatives. Such a
design could be done in silico, using the approach we have
developed in the present study.
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Abstract: Biological consequences of histone lysine methylation depend on the methylation
states of the lysine residues on the tails of histone proteins that are methylated by protein lysine
methyltransferases (PKMTs). Therefore, the ability of PKMTs to direct specific degrees of
methylation (i.e., product specificity) is an important property for regulation of chromatin structure
and gene expression. Here, the free energy simulations based on quantum mechanical/molecular
mechanical (QM/MM) potentials are performed for the first, second, and third methyl transfers
from S-adenosyl-L-methionine to the ε-amino group of the target lysine/methyl lysine in SET8,
one of the important PKMTs. The key questions addressed in this paper include the energetic
origin of the product specificity and the reasons for the change of the product specificity as a
result of the replacement of Tyr334 by Phe. The free energy barriers for the three methyl transfers
in SET8 as well as in the mutant obtained from the simulations are found to be well correlated
with the experimental observations on the product specificity of SET8 and the change of product
specificity as a result of the mutation. The results support the suggestion that the differential
free energy barriers for the methyl transfers may determine, at least in part, how the epigenetic
marks of lysine methylation are written by the enzymes. Furthermore, the stability of a water
molecule to be located at the active site is examined under different conditions using the free
energy simulations, and its role in controlling the product specificity is discussed. The QM/MM
molecular dynamics (MD) simulations are also performed on the reactant complexes of the
first, second, and third methyl transfers. The results show that the information on the ability of
the reactant complexes to form the reactive configurations for the methyl transfers may be used
as useful indicators in the prediction of product specificity for PKMTs.

Introduction

The tails of core histone proteins in the nucleosome are
subject to a variety of post-translational covalent modifica-
tions, and these modifications can be read by other proteins
to lead to distinct downstream events in the regulation of
chromatin structure and gene expression.1 Protein lysine

methyltransferases (PKMTs) catalyze one such modification,
i.e., histone lysine methylation. Histone lysine methylation
can govern a number of important biological processes,
including heterochromatin formation, X-chromosome inac-
tivation, and transcriptional silencing and activation.2 Several
lysine residues on histone proteins have been identified to
be the sites of methylation, including histone H3 Lysine 4
(H3-K4), H3-K9, H3-K27, H3-K36, H3-K79, and
H4-K20. In addition to selecting different lysine sites for
methylation (i.e., substrate specificity), PKMTs may also
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differ in their ability to transfer one, two, or three methyl
groups from S-adenosyl-L-methionine (AdoMet, the methyl
donor) to the ε-amino group of the target lysine.3 This
property of the enzymes is called product specificity. Since
biological consequences of histone lysine methylation depend
on the number of methyl groups added to the lysine residues,
understanding the energetic origins of product specificity and
developing suitable strategies for manipulation of the signal-
ing properties are of considerable interest.

Biochemical studies and structural analyses of the SET-
domain PKMT complexes have identified a tyrosine/phenyl-
alanine switch that can control the product specificity.
Comparison of the active site structure of DIM-5 (a tri-
methylase)4 with that of SET7/95 or SET86 (a monomethy-
lase) showed that a single amino acid residue occupies a
structurally similar position in the enzymes (e.g., F281 in
DIM-5 and Y334 in SET8) and is in proximity of the ε-amino
group of the target lysine.4b,7 It has been demonstrated that
DIM-5 can be converted from a K-9 trimethyltransferase to
a K-9 mono/dimethyltransferase by the F281fY mutation4b

and that the SET7/9 Y305F4b or SET8 Y334F mutant5a,7

was able to generate a dimethylated instead of a monom-
ethylated lysine product. In each case, the substrate specificity
was not changed, and the mutation had little effect on the
overall reaction rate. Understanding the role of the residue
at this tyrosine/phenylalanine switch position and the ener-
getic origin for the change of the product specificity as a
result of the mutation can provide important insights into
the property of the PKMT product specificity. Systematic
determinations of the structures for SET8 and its Y334F
mutant complexed with an unmodified, monomethylated, or
dimethylated H4-K20 peptide along with AdoHcy were
undertaken7 to pinpoint the structural origin for the existence
of the tyrosine/phenylalanine switch. It was proposed on the
basis of the existence and absence of an active-site water
molecule in these structures along with some other informa-
tion that the Phe/Tyr switch may regulate product specificity
through altering the affinity of the observed water molecule
and that the dissociation of this water molecule is likely to
be essential for the multiple methylation process to proceed.7

Nevertheless, the energetic interpretations for the product
specificity of SET8 and its alternation due to the Y334fF
mutation are still lacking, and it is not clear as to how the
enzyme’s ability to stabilize/destabilize the water molecule
at the active site would change as a result of the mutation
and/or methyl addition.

Computer simulations can provide important insights into
the energetic origins of the product specificity as well as the
effects of mutations. One approach that has been used
previously for PKMTs is to perform the free energy (potential
of mean force) simulations with hybrid quantum mechanical/
molecular mechanical (QM/MM) potentials and to establish
the correlations between the free energy profiles of the methyl
transfers and the product specificity8 (see below for the
discussions of the results based on other computational
approaches). In our earlier communication,8b it was dem-
onstrated that, for DIM5, SET7/9, and their certain mutants,
the three free energy barriers for the methyl transfers may
be used in each case to explain the product specificity

observed experimentally. It was hypothesized8b that the
relative efficiencies of the chemical steps involving the three
methyl transfers from AdoMet to the ε-amino group of the
target lysine in PKMTs may determine, at least in part, the
product specificity. The results of the QM/MM molecular
dynamics (MD) simulations on the reactant complexes have
also been compared for the first, second, and third methyl
transfers for SET7/9, DIM-5, and their mutants.8b It was
shown that a correlation may be established between the
formation of the reactive configurations for the three methyl
transfers and the product specificities of the enzymes. One
problem in the earlier work8b is that the experimental
structures for the SET7/9 and DIM-5 complexes with
different methylation states for the target lysine residues do
not exist, and some manual modifications had to be intro-
duced in the generation of suitable reactant complexes
containing methylated lysine. In order to establish the
prediction on the relationship between the efficiency of the
methyl transfers and product specificity, additional simula-
tions need to be performed on the PKMT (and the mutant)
complexes for which the X-ray structures have been deter-
mined at different methylation states for the target lysine
residue. SET8 is an excellent system for such investigations
because of the recent availability of several experimental
structures with unmodified, mono- and dimethylated lysine
residue at the active site. Furthermore, the location of the
important active-site water molecule has also been clearly
identified in the X-ray structures. The simulations based on
these structures may not only lead to a better understanding
of the energetic origin of the product specificity but also
provide important energetic information concerning the
stability of this water molecule at the active site at different
stages of methylation in different systems that is believed
to be a key property of the enzymes in controlling the product
specificity.7

Here, we report the results of QM/MM free energy
simulations on SET8 and its Y334F mutant. The free energy
barriers for the methyl transfers in SET8 and the mutant
obtained from the simulations are found to be well correlated
with the experimental observations on the product specifici-
ties, supporting the suggestion that the differential free energy
barriers for the methyl transfers may determine, at least in
part, how the epigenetic marks of lysine methylation are
written by the enzymes. Furthermore, the stability of the
water molecule at the active site under different conditions
(see above) is also examined on the basis of the free energy
simulations. The free energy profiles show that the stability
of the water molecule at the active site decreases significantly
as a result of the Y334fF mutation as well as the methyl
addition to the lysine residue. Such changes are likely to
make it easier for the water molecule to dissociate from the
active site and create the space for further methyl addition.
The QM/MM MD simulations are also performed on the
reactant complexes of the first, second, and third methyl
transfers. The results show that the dynamic information on
the ability of the reactant complexes to form the reactive
configurations for the methyl transfers may be used as useful
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indicators in the prediction of product specificity for PKMTs,
although other factors can be involved as well.

Methods

QM/MM free energy (potential of mean force) and MD
simulations were applied to determine free energy profiles
for the first, second, and third methyl transfers from AdoMet
to the ε-amino group of the target lysine (methyl lysine) and
to characterize the active-site dynamics of the reactant
complexes of the methyl transfers in SET8 and the Y334F
mutant using the CHARMM program.9 AdoMet/AdoHcy and
lysine/methyl-lysine side chains were treated by QM and the
rest of the system by MM. The link-atom approach10 as
implemented in CHARMM was applied to separate the QM
and MM regions. Although the QM/MM approach in
principle is not required for MD investigations of the reactant
complexes, the previous studies on SET7/9 and DIM-58

showed that the QM/MM MD approach seems to provide a
good description of the active-site dynamic features of the
reactant complexes that are consistent with experimental
observations concerning the product specificity. A modified
TIP3P water model11 was employed for the solvent. The
stochastic boundary molecular dynamics method12 was used
for the QM/MM MD and free energy simulations. The
system was separated into a reaction zone and a reservoir
region, and the reaction zone was further divided into a
reaction region and a buffer region. The reaction region was
a sphere with radius r of 20 Å, and the buffer region extended
over 20 Å e r e 22 Å. The reference center for partitioning
the system was chosen to be the Cδ atom of the target lysine
residue/methyl lysine. The resulting systems contained
around 5500 atoms, including about 800-900 water molecules.

The SCC-DFTB method13 implemented in CHARMM was
used for the QM atoms, and the all-hydrogen CHARMM
potential function (PARAM27)14 was used for the MM
atoms. High-level ab initio methods (e.g., B3LYP and MP2)
are too time-consuming to be used for MD and free energy
simulations. The results of the SCC-DFTB and B3LYP/6-
31G** methods for the description of the methyl transfer in
a small model system have been compared in earlier studies8

using an energy-minimization-based approach. This com-
parison allowed us to understand the performance of the
semiempirical method in the description of the bond breaking
and making for the system under investigation. It was found
that, although the SCC-DFTB optimized geometries along
the reaction pathway seemed to be rather close to those from
B3LYP/6-31G**, there are some systematic deviations of
the SCC-DFTB method in the description of the energetics
of the methyl transfer. To correct the errors due to the
deficiency of the SCC-DFTB method, the empirical correc-
tion introduced in the earlier studies8 was applied to the free
energy curves obtained from the potential of mean force
simulations in the present work (see below). In the earlier
study of DIM-5 (see the Supporting Information in ref 8b),
it was shown that that the energy curves from the corrected
SCC-DFTB and B3LYP/6-31G** were very close, support-
ing the use of the approach with the empirical correction. It
should be pointed out that the reason that the simple
empirical correction can be used in this and previous studies

is because the bond breaking and making events in this and
the previous papers all involve simple and similar SN2 methyl
transfer processes so that most of the errors are expected to
be canceled out. Moreover, the relative free energy barriers,
as opposed to the absolute barriers, are expected to be more
important in the determination of the product specificity. The
relative free energy barriers are expected to be less sensitive
to the choice of the QM method due to the cancellation of
the errors. Indeed, the results of our earlier simulations8a were
confirmed by the use of a quite different QM/MM approach15

with a difference of only about 1 kcal/mol in the relative
free energy barriers of the first and second methyl transfers
in SET7/9.

The initial coordinates for the reactant complexes of the
first, second, and third methyl transfers were based on the
crystallographic complexes (PDB codes: 1ZKK, 3F9W,
3F9X, and 3F9Y) of SET8 and its Y334F mutant containing
AdoHcy and short H4K20, H4K20me1, and H4K20me2
peptides.5a,7 In all the cases, a methyl group was manually
added to AdoHcy to form AdoMet. In addition, for the
reactant complex of the second methyl transfer in the wild
type, a methyl group was manually added to the target lysine
in the X-ray structure (1ZKK) to form the methylated lysine.
The initial structures for the entire stochastic boundary
systems were optimized using the steepest descent (SD) and
adopted-basis Newton-Raphson (ABNR) methods. The
systems were gradually heated from 50.0 to 310.15 K over
50 ps. A 1 fs time step was used for integration of the
equation of motion, and the coordinates were saved every
50 fs for analyses. The 1.5 ns QM/MM MD simulations were
carried out for each of the reactant complexes of the first,
second, and third methyl transfers, and the data from the
final 0.5 ns were used to generate the distribution maps of
r(CM-N�) and θ in each case (see below). As discussed in
the previous studies and mentioned earlier in this paper, the
SN2 methyl transfer from AdoMet to H4-K20, H4-K20me1,
or H4-K20me2 is presumably more efficient if the S-CH3

group of AdoMet is well aligned with the lone pair of
electrons on N� in the reactant complex, i.e., with a small θ
angle and relatively short CM-N� distance.8 Here, θ is
defined as the angle between the direction of the CM-Sδ

bond (r2) and the direction of the electron lone pair (r1) (see
Figure 1). Therefore, we determined the distributions of
r(CM-N�) and θ from the QM/MM MD trajectories to obtain
the information about the relationship between these distribu-
tions and product specificity. Moreover, the histogram
method was used to calculate the probability density distribu-
tions of r(CM-N�) and θ and the relative free energies as
functions of r(CM-N�) and θ. For r(CM-N�), histograms
with a bin width of 0.1 Å were used, and the probability
density in the ith histogram is as follows: Fi ) Ni/N (N is
the total number of the configurations from the MD simula-
tions, and Ni is the occurrence number in the ith histogram).
To calculate the probability density distribution of θ, the
histograms with a width of 10° were used, and Ni was
weighted by 1/Ai, where Ai is the area of the ith histogram
of θ. Thus, the probability density in the ith histogram of θ
is as follows: Ni/(N × Ai). The relative free energy of the ith
histogram of r(CM-N�) and θ were calculated through Wi )
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-kBT × ln Fi, where kB is Boltzmann’s constant and T is
the temperature (see the Supporting Information of ref 8a
for additional information).

The umbrella sampling method16 implemented in the
CHARMM program along with the Weighted Histogram
Analysis Method (WHAM)17 was applied to determine the
change of the free energy (potential of mean force) as a
function of the reaction coordinate for the methyl transfer
from AdoMet to H4-K20, H4-K20me1, or H4-K9me2 in
the wild-type and mutated enzymes. The reaction coordinate
was defined as a linear combination of r(CM-N�) and
r(CM-Sδ) [R ) r(CM-Sδ) - r(CM-N�)] (see Figure 1). For
each methyl transfer process, 20 windows were used, and
for each window, 50 ps production runs were performed after
20 ps equilibration. The force constants of the harmonic
biasing potentials used in the PMF simulations were 50 to
500 kcal mol-1 Å-2. The statistical errors for the free energy
profiles were also estimated and were found to be quite small
(see the Supporting Information). In addition, the umbrella
sampling method was applied to determine the free energy
profiles for the movement of the active-site water molecule
(W1) in the wild type and Y334F at different methylation
states. The reaction coordinate was defined as the distance
between the water oxygen and sulfur atom of AdoMet [i.e.,
r(Ow1 · · ·Sδ)]. Twenty windows were used for the change of
the water position, and for each window, 20 ps production
runs were performed after a 20 ps equilibration. The force
constants of the harmonic biasing potentials used in the PMF
simulations were 20 to 50 kcal mol-1 Å-2. The distance for
which the simulations were performed is in the range of
3-15 Å. The simulations were not performed for longer
distances, because the use of the stochastic boundary method
in the present study may limit the flexibility of the water
molecule as it moves closer to the boundaries of the models

(at ∼22-25 Å from sulfur atom). Additional simulations
with different boundary conditions will be performed in the
future.

Results

The average active-site structure of the reactant complex for
the first methyl transfer in SET8 is given in Figure 2A. Figure
2A shows that the active-site structure has the lone pair of
electrons on N� of the target lysine well aligned with the
methyl group of AdoMet. This is further demonstrated by
the large population of the structures with relatively short
r(CM · · ·N�) distances and small values of the θ angle as well
as the free energy plots generated from the results of the
simulations (Figure 2B). The average distance between N�

and the methyl group (CMH3) is approximately 3.0 Å, and
the angle is mainly in the range of 0-30°. Figure 2A also
shows that Tyr245 forms a hydrogen bond with the ε-amino
group of the target lysine, and this hydrogen bond may help
to orientate the direction of the electron lone pair toward
the methyl group of AdoMet. A water molecule (W1) forms
stable hydrogen bonds with the both ε-amino groups of
H4K20 and Tyr334 (the important tyrosine/phenylalanine
switch residue, see above). Figure 2D and E show that, for
the reactant complex of the second methyl transfer, the
average distance between N� and the methyl group (∼4.5
Å) and the values of θ (mainly in the range of 45-120°)
become significantly larger compared to those for the first
methyl transfer (Figure 2A and B). Thus, the S-CH3 group
of AdoMet cannot be well aligned with the lone pair of
electrons on N� for the second methyl transfer, suggesting
that the efficiency of the corresponding methyl transfer may
be significantly compromised. Indeed, Figure 2E shows that
the free energy cost for producing a structure like the one in
Figure 2A is approximately 4-5 kcal/mol [i.e., ∼3 kcal/
mol for changing r(CM · · ·N�) from 4.5 Å to 3 Å and 1.5
kcal/mol for changing θ to less than 30°].

The average structures for the first, second, and third
methyl transfers in Y334F are given in Figure 3. As is evident
from Figure 3C, the lone pair of electrons on N� of the methyl
lysine is well aligned with the methyl group of AdoMet for
the second methyl transfer in Y334F. This is in contrast to
the case for the second methyl transfer in the wild type for
which the two cannot be well aligned (see above). The results
suggest that the efficiency of the second methyl transfer is
likely to be significantly enhanced due to the improvement
of the reactant structure for the methyl transfer, although
other factors may be involved as well (see below). For the
third methyl transfer in Y334F (Figure 3E), the S-CH3 group
of AdoMet cannot be well aligned with the lone pair of
electrons on N� in the reactant complex as indicated by the
long r(CM · · ·N�) distance (∼4.6 Å) and large values of the
θ angle (45-150°). Thus, the corresponding methyl transfer
is unlikely to be efficient. One of the key structural changes
at the active site is the relocation of the active-site water
molecule (W1). Indeed, W1 occupies a position in Figure
3C that is completely different from the one in Figure 2D
(i.e., the complex for the second methyl transfer in the wild
type) and is not in close contact with the target lysine/methyl
lysine and the Y334/F334 residue anymore. For the third

Figure 1. Definition of the structural parameters for monitor-
ing the relative orientation of AdoMet and H4K20me1 [H4K20
and H4K20(me)2] in the reactant complex. The efficiency of
the methyl transfer may be related to the distributions of
r(CM · · ·N�) and θ in the reactant complexes. θ is defined as
the angle between the two vectors r1 and r2. Here, r1 is the
direction of the lone pair of electrons on N� and r2 is the vector
pointing from CM to Sδ. The reaction coordinate for calculating
the free energy profiles for the methyl transfers is R )
r(CM · · ·Sδ) - r(CM · · ·N�).
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methyl transfer in Y334F, W1 has been pushed away from
the active site during the MD simulations and is not visible
in Figure 3E.

The free-energy profiles for the first and second methyl
transfers in SET8 are plotted in Figure 4A as a function of
the reaction coordinate; the free energy barrier for the first
methyl transfer was calculated to be 15.8 kcal/mol. This free

energy barrier is within the error limit of the average barrier
from earlier single-point MP2/6-31G+G(d,p)/MM calcula-
tions (13.9 ( 2.3 kcal/mol) on SET8.18 It should be pointed
out, however, that cautions must be exercised when the
energetic data obtained on the basis of very different
computational approaches are compared. As is evident from
Figure 4A, the free energy barrier for the second methyl

Figure 2. MD results for the wild-type enzyme (SET8). (A) The average active-site structure of the reactant complex for the first
methyl transfer. SET8 is shown in balls and sticks, and AdoMet and the H4K20 side chain are in sticks. Hydrogen atoms are not
shown for clarity, except for those on N� and the transferable methyl group. Hydrogen bonds are indicated by red dotted lines,
and the distances related to the reaction coordinates are also shown. (B) Left: the two-dimensional plot of r(CM · · ·N�) and θ
distributions based on the 1.5 ns simulations of the reactant complex for the first methyl transfer. Middle: the free-energy change
as a function of r(CM · · ·N�) obtained from the distributions. Right: the free-energy change as a function of θ obtained from the
distributions. (C) The average structure near the transition state for the first methyl transfer obtained from the free energy (potential
of mean force) simulations. (D) The average structure of the reactant complex for the second methyl transfer. (E) Left: the
two-dimensional plot of r(CM · · ·N�) and θ distributions of the reactant complex for the second methyl transfer. Middle: the free-
energy change as a function of r(CM · · ·N�) obtained from the distributions. Right: the free-energy change as a function of θ
obtained from the distributions. (F) The average structure near the transition state for the second methyl transfer.
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transfer is much higher than that of the first methyl transfer
(by as much as 6.5 kcal/mol). Thus, the second methyl
transfer is much less efficient compared to the first methyl

transfer process, and this is consistent with the experimental
findings that SET8 is a monomethylase.5,7 The earlier single-
point MP2/6-31G+G(d,p)/MM calculations led to an average

Figure 3. MD results for Y334F. (A) Left: the average active-site structure of the reactant complex for the first methyl transfer.
Right: the two-dimensional plot of r(CM · · ·N�) and θ distributions of the reactant complex for the first methyl transfer. (B) The
average structure near the transition state for the first methyl transfer. (C) Left: the average structure of the reactant complex for
the second methyl transfer. Right: the two-dimensional plot of r(CM · · ·N�) and θ distributions of the reactant complex for the
second methyl transfer. (D) The average structure near the transition state for the second methyl transfer. (E) Left: the average
structure of the reactant complex for the third methyl transfer. Right: the two-dimensional plot of r(CM · · ·N�) and θ distributions
of the reactant complex for the third methyl transfer. (F) The average structure near the transition state for the third methyl
transfer.
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barrier that is as much as 20 kcal/mol higher for the second
methyl transfer than that for the first methyl transfer.18 The
ab initio QM [HF(6-31G*/3-21G*)]/MM free energy simula-
tions for the first and second methyl transfers in two different
PKMTs, SET7/9 and Rubisco LSMT, have also been
performed previously.15a For SET7/9, the free energy barriers
for the first and second methyl transfers were calculated to
be 22.5 ( 0.5 kcal/mol and 26.2 ( 0.5 kcal/mol,

respectively.15a Comparing with our earlier results on SET7/
98a and taking into account the suggestion that the HF(6-
31G*/3-21G*) method may overestimate the barriers by
about 3 kcal/mol,15a these data indicate that the corrected
SCC-DFTB method might underestimate the barriers, al-
though other factors may affect the results as well. However,
as mentioned earlier, the relative free energy barriers, instead
of the absolute barriers, are expected to be more important
in the determination of the product specificity. For SET7/9,
the difference for the two methods in the description of the
differential free energy barriers is only about 1 kcal/mol.

Figure 4B plots the free energy profiles for the methyl
transfers in the Y334F mutant. Unlike the wild-type enzyme,
the free energy profiles for both the first and second methyl
transfers are rather similar with relatively low barriers. Thus,
if the first methyl transfer from AdoMet to the target lysine
can be catalyzed by Y334F, the second methyl transfer to
monomethyl lysine would also be possible. By contrast, the
free energy barrier for the third methyl transfer in Y334F is
considerably higher. The results are consistent with the
experimental observations that Y334F is a dimethylase5,7 and
support the suggestion8 that the relative free energy barriers
for the methyl transfers are likely to be important energetic
factors controlling the product specificity.

Figure 5A and B plot the free energy profiles as a function
of the distance between the oxygen atom of W1 and the
sulfur atom of AdoMet in the reactant complexes for the
first and second methyl transfers, respectively, in the wild-
type enzyme. As is evident from Figure 5A and B, the most
stable location for W1 is at the active site in these complexes,
with a distance of about 5 Å to the sulfur atom, consistent
with the average structures observed from the MD simula-
tions (Figure 2A and D). The free energy profiles further
show that W1 seems to be held tightly by the active site
interactions, as the energetic cost for W1 to move away from
the active site in each case is quite high. Figure 5D shows
that, for the reactant complex of the second methyl transfer
in Y334F, the most stable position for W1 has moved away
from the active site (to a location with a distance of about
10-11 Å from the sulfur atom). With the removal of W1,
the active site of Y334F becomes less crowded and is able
to accommodate the second methyl group on the target lysine.
The second methyl transfer can therefore proceed, and the
mutant becomes dimethylase (see below).

Discussions

The key question on the product specificity of PKMTs
concerns the factor that controls the methylation state of the
product. This is in contrast with many other investigations
on enzyme-catalyzed reactions which concentrate on the
effects of enzymes in the reduction of the activation barriers
in going from solution to the enzyme active sites. Thus, a
convenient reference reaction for understanding the product
specificity would be the process involving the first methyl
transfer in the wild-type enzyme (see below). The existence
of a relatively high barrier for one of the methyl transfer
processes may lead to the termination of further methyl
addition and therefore determine the product specificity of
the enzyme. If none of the three free-energy barriers for the

Figure 4. (A) Free energy (potential of mean force) changes
for the first and second transfers from AdoMet to H4-K20
and H4-K20me1, respectively, as a function of the reaction
coordinate [R ) r(CM · · ·Sδ) - r(CM · · ·N�)] in the wild-type
SET8. The first methyl transfer: red and dashed line with a
free energy barrier of 15.8 kcal/mol. The second methyl
transfer: blue and solid line with a free energy barrier of 22.3
kcal/mol (or about 6.5 kcal/mol higher than that of the first
methyl transfer). Differences in the free energy barriers may
be represented by two energy triplets, (0, ∆2-1W, ∆3-1W) and
(∆M-W, ∆2-1M, ∆3-1M), for the wild-type and mutated enzymes,
respectively. For the wild-type enzyme, the second (∆2-1W)
and third (∆3-1W) parameters are the differences in the free
energy barriers between the second and first and between
the third and first methyl transfers, respectively. For the
mutated enzyme, the first parameter (∆M-W) is the difference
in the free energy barriers for the first methyl transfer in the
wild-type and mutant. The second (∆2-1M) and third (∆3-1M)
parameters are the differences in the free energy barriers
between the second and first and between the third and first
methyl transfers, respectively, in the mutant. For SET8, (0,
∆2-1W, ∆3-1W) ) (0, 6.5, x) (x indicates the undetermined
relative barrier in the energy triplet). (B) The free energy
changes for the first, second, and third methyl transfers as a
function of the reaction coordinate in the Y334F mutant. The
first methyl transfer: red and dashed line with a free energy
barrier of 14.1 kcal/mol. The second methyl transfer: blue and
solid line with a free energy barrier of 13 kcal/mol. The third
methyl transfer: green and dot-dashed line with a free energy
barrier of 23.1 kcal/mol. (∆M-W, ∆2-1M, ∆3-1M) ) (-1.7, -1.1,
9).
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methyl transfers is significantly high, the enzyme might be
able to catalyze all three methyl transfers and could be a
trimethylase (e.g., as in the case of DIM-5; see ref 8b). This
proposal is consistent with some previous computational
results that suggested that the product specificity is probably
to be mainly controlled by the methyl transfer reaction
step.8,15 An alternative explanation of the product specificity
is based on the formation of a water channel observed during
the MD simulations of PKMTs.18,19 However, the dramatic
increase of the energy barrier from the first to the second
methyl transfer in SET8 obtained by the same authors18 (see
above) raises the question concerning the true event that
prevents the further methylation in PKMTs (e.g., dimethy-
lation by SET8).

It was proposed in our earlier communication that two
different free energy triplets, (0, ∆2-1W, ∆3-1W) and (∆M-W,
∆2-1M, ∆3-1M) for wild-type and mutated enzymes, respec-
tively, may be used in the description of the product
specificity of PKMTs and their mutants.8b Here, the free
energy barrier for the first methyl transfer in the wild-type
enzyme (i.e., the reference reaction) is taken as the zero (for

a detailed explanation of the parameters, see Figure 4). For
SET8 and its Y334F mutant studied in this work, the
corresponding energy triplets can be written as (0, 6.5, x)
and (-1.7, -1.1, 9), respectively, which reflect the fact that
SET8 is a monomethylase and the mutant a dimethylase (see
below). The kinetic study on Y334F7 suggested that the
activation barrier to produce the H4K20me2 product from
the H4K20me1 substrate is about 2 kcal/mol higher than the
barrier to produce the monomethyl product from the un-
modified H4K20 substrate. Figure 4B shows that the second
methyl transfer has a free energy barrier that is slightly lower
than that for the first methyl transfer (by ∼1 kcal/mol). The
simulation data are therefore consistent with the suggestion7

that methyl lysine reorientation and deprotonation between
turnovers may constitute a rate-limiting step in catalysis.
However, it should be pointed out that, as far as the product
specificity is concerned, the key question is what causes the
stop of further methyl addition during histone lysine me-
thylation (which is different from the question concerning
the rate-limiting step of the enzyme-catalyzed process). The
results of the simulations from the present work on SET8

Figure 5. (A) Free energy (potential of mean force) change as a function of the distance between the oxygen atom of the
active-site water molecule (W1) and sulfur atom of AdoMet [i.e., r(Ow1 · · ·Sδ)] in the reactant complex for the first methyl transfer
in the wild-type enzyme. W1 is stable in the active site, as the free energy minimum is around 5 Å (i.e., at a similar position to
that observed in the MD simulations in Figure 2A). High energy at the longer r(Ow1 · · ·Sδ) distance suggests that it would be
difficult for W1 to move away from the active site. (B) Free energy change in the reactant complex of the second methyl transfer
in the wild-type enzyme. The simulation data show that W1 is also stable in the active site. (C) Free energy change in the
reactant complex of the first methyl transfer in Y334F. (D) Free energy change in the reactant complex of the second methyl
transfer in Y334F. The most stable position for W1 has changed (now 10-11 Å from the sulfur atom), suggesting that W1 is not
in the active site.
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and our previous studies on DIM-5 and SET7/98b (and certain
mutants) suggest that one of the key energetic factors for
the specific product specificities of PKMTs is presumably
due to a significant increase of the free energy barrier for
one of the methyl transfers in the enzymes. Thus, the reason
that SET8 is monomethylase is probably due to the fact that
the energy barrier for the second methyl transfer is too high
and stops further methylation. The Y334fF mutation on
SET8 effectively reduces the barrier for the second methyl
transfer so that the second methyl transfer can proceed. Since
the free energy barrier for the third methyl transfer is very
high, the addition of the third methyl group cannot proceed,
leading to a dimethylase. Similar arguments may be made
for SET7/9 and DIM-5.

It is interesting to note that the free energy data on the
ability of SET8 (Y334F) to catalyze the first (first and
second) methyl transfer and the inability of SET8 (Y334F)
to catalyze the second (third) methyl transfer are already
reflected from the MD simulations in Figure 2B and E
(Figure 3A, C, E). Similar observations have also been made
previously.8,15,18 Thus, the dynamic information on the ability
of the reactant complexes to form the reactive configurations
for the methyl transfers may be used as useful indicators in
the prediction of product specificity for PKMTs, although
further tests are still necessary to establish the correlations.
This result is of importance, because performing the MD
simulations is much easier than undertaking the QM/MM
free energy simulations. Examination of the structures at the
transition states (TSs) in Figures 2 and 3 shows that all these
structures are rather similar; e.g., r(CM · · ·N�) and r(Sδ · · ·CM)
are 2.1 and 2.3 Å, respectively, in each of the structures. It
is of interest to note these structures are rather close to the
TS structures generated earlier from the ab initio QM [HF(6-
31G*/3-21G*)]/MM free energy simulations for two different
PKMTs, SET7/9 and LSMT.15a As discussed earlier, the
structures for the corresponding reactant complexes, on the
other hand, can be significantly different. Indeed, the
structures for the reactant complexes of the first methyl
transfer in the wild type (Figure 2A) and the first and second
methyl transfers in Y334F (Figure 3A and C, respectively)
are rather similar to the corresponding TS structures (Figures
2C and 3B and D, respectively) with a r(CM · · ·Sδ) distance
of about 4.8 Å. For these cases, a part of the TS stabilization
is probably already reflected in the reactant state through
the generation of such a TS-like conformation. By contrast,
the structures of the reactant complexes for the second methyl
transfer in the wild type (Figure 2D) and the third methyl
transfer in Y334F (Figure 3E) are significantly distorted from
the corresponding TS structure (Figures 2F and 3F, respec-
tively), and the r(CM · · ·Sδ) distances are around 6.3 Å.
Therefore, additional energetic cost would be required to
generate the TS-like structures from these structures, and this
could lead to relatively high activation barriers for the
corresponding methyl transfers. It should be pointed out that
the free energy costs for generating the TS-like structures
alone seem not to be sufficient to explain the increases of
the barriers for the methyl transfers. Indeed, Figure 2E shows
that the free energy cost for producing a structure similar to
the one in Figure 2A is approximately 4-5 kcal/mol, while

the free energy barrier increases by 6.5 kcal/mol. Therefore,
other factors may be involved as well. It is of interest to
note from Figure 2A and C that the hydrogen bond distances
involving the ε-amino group (with Tyr245 and W1) decrease
significantly as the system reaches the transition state. This
indicates that the corresponding interactions are strengthening
and may play an important role in the transition state
stabilization for the methyl transfer as well.

It was proposed that the Phe/Tyr switch may regulate
product specificity through altering the affinity of W1, and
the dissociation of this water molecule is essential for the
multiple methylation process to proceed.7 Although the
structural information on the presence and absence of W1
under different conditions is of considerable interest, question
remains concerning how the affinity of W1 would change
as a result of the mutation (or methyl addition) and what
would be its stability to be located in the active site. The
energetic information concerning the stability of W1 at the
active site under different conditions is of fundamental
importance for the determination of the role of this water
molecule in preventing further methlation. Figure 5B shows
that W1 is rather stable in the reactant complex of the second
methyl transfer in the wild-type enzyme and the free energy
cost for its removal is quite high. The high stability is
presumably achieved through the interaction involving
Tyr334 (Figure 2D). The high energetic cost can make the
addition of the second methyl group much more difficult,
presumably because the active site becomes too crowded
without the removal of W1. This could contribute to the
significant increase of the free energy barrier from the first
to the second methyl transfer and stop the second methyl
addition, although additional simulations are still necessary.
Figure 5D shows that, for the reactant complex of the second
methyl transfer in Y334F, the most stable location of W1
has changed and W1 moved away from the active site (see
also Figure 3D). Thus, this water molecule could not interfere
with the methyl transfer process anymore. The mutant is now
able to catalyze the second methyl transfer and becomes a
dimethlase.

Conclusions

The QM/MM free energy simulations have been performed
for the first and second methyl transfers from AdoMet to
the target lysine/methyl lysine in SET8 and for the first,
second, and third methyl transfers in its Y334F mutant
(involving the replacement of the tyrosine/phenylalanine
switch residue). The two free energy barriers for the methyl
transfers in SET8 and the three free barriers in the mutant
obtained from the simulations have been found to be well
correlated with the experimental observations on their
product specificities. The results indicated that the significant
increase of the free energy barrier for the second methyl
transfer in SET8 (for the third methyl transfer in Y334F)
might stop further methyl addition, and this could be the
reason that SET8 (Y334F) is a monomethylase (dimethylase).
The results support an earlier suggestion8b that the differential
free energy barriers for the methyl transfers may determine,
at least in part, how the epigenetic marks of lysine methy-
lation are written by the enzymes. The QM/MM molecular
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dynamics (MD) simulations are also performed on the
reactant complexes of the first and second methyl transfers
in SET8 and the first, second, and third methyl transfers in
Y334F. The results showed that the dynamic information
on the ability of the reactant complexes to form the reactive
configurations for the methyl transfers might be used as
useful indicators in the prediction of product specificity for
PKMTs. The stability of the water molecule at the active
site has also been examined on the basis of the free energy
simulations. The free energy profiles suggested that the
stability of the water molecule at the active site decreases
significantly as a result of the Y334fF mutation as well as
the methyl addition to the lysine residue. The decrease of
the stability of W1 to be located at the active site as a result
of the Y334fF mutation is likely to make it easier for the
water molecule to dissociate from the active site and create
space for further methyl addition.
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Abstract: The effect of variation of the water model on the temperature dependence of protein
and hydration water dynamics is examined by performing molecular dynamics simulations of
myoglobin with the TIP3P, TIP4P, and TIP5P water models and the CHARMM protein force
field at temperatures between 20 and 300 K. The atomic mean-square displacements, solvent
reorientational relaxation times, pair angular correlations between surface water molecules, and
time-averaged structures of the protein are all found to be similar, and the protein dynamical
transition is described almost indistinguishably for the three water potentials. The results provide
evidence that for some purposes changing the water model in protein simulations without a
loss of accuracy may be possible.

1. Introduction

Water plays an important role in many chemical and
biological processes.1-9 For example, hydration water strongly
influences the three-dimensional structure, dynamics, and
function of proteins.2 Water-protein interactions modify the
free energy landscape that determines the folding, structure,
and stability of proteins.3-5 Internal protein dynamics, which
are required for biological functions, are dependent on the
level of hydration,6 and dynamical coupling between the
protein and water influences conformational flexibility.7-10

Protein hydration water can be grouped into two classes:
internal water molecules, which can play structural and/or
catalytic roles,11,12 and external surface water molecules.
Hydration water is experimentally estimated to account for
10-15% of the total cell water,13,14 of which a small fraction
of ∼0.1% is internal water molecules. Properties of water
in the external hydration shell are modified compared to the
bulk, with, for example, changes in average density15-17 and
perturbations in translational and rotational dynamics, and
these changes have been extensively investigated using
techniques such as neutron scattering,13,18-25 nuclear mag-
netic resonance,26-31 fluorescence spectroscopy,32 mid-

infrared pump-probe spectroscopy,33 and molecular dy-
namics (MD) simulations.21,33-40

Empirical, molecular mechanics force fields, such as
CHARMM,41-43 AMBER,44 GROMOS,45 and OPLS-AA46

are widely employed in atomistic MD simulations of
biological molecules and, in order to represent the protein-
solvent energy accurately, most molecular simulation ap-
plications employ explicit water models. A large number of
water models is available. However, individual biomolecular
force fields have normally been parametrized for use with a
single water model (see e.g. ref 47) such that, during the
parametrization, care can be taken to correctly balance
water-water, water-protein, and protein-protein interac-
tions. Nevertheless, the question arises as to whether the
water-protein potentials are sufficiently robust so that
alternative water models may be employed with any given
biomolecular force field without a serious loss of accuracy.
Flexibility in the choice of the water model may be of
particular interest when the system is to be simulated at
nonphysiological temperatures or pressures, as required, for
example, in studies on antifreeze proteins,48,49 under which
circumstances different water models may exhibit signifi-
cantly different properties (see e.g., ref 50), and/or when
water properties are specifically under investigation for which
an alternative water potential may be more accurate than the
original. As another example, the dynamical equilibrium
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between water molecules on the protein surface and bulk is
important in the study of the dielectric relaxation of aqueous
protein solutions, and the rate of transition of water molecules
from bulk to interface or vice versa is influenced by the
choice of water model.51 The need for alternate water models
to better characterize the hydrophobic effect,52 spectral
properties,53 solvation free energies,54 and hydration dy-
namics55,56 of proteins has also been discussed.

In recent work, the effects of varying the water model in
molecular mechanics and dynamics calculations on the
hydration of N-methylacetamide (NMA) and other small
solute molecules and a small protein using the CHARMM
force field41-43 were examined with a focus on structural
aspects, e.g., distribution functions around different biomo-
lecular sites.57 The overall description of solvation and
biomolecular properties were found to be similar for the three
models tested: TIP3P, TIP4P, and TIP5P.50,58 The CHARMM
protein force field was originally parametrized for use with
the TIP3P potential. However, the results provide an indica-
tion that molecular simulations with the CHARMM force
field may in some cases be performed with water models
other than TIP3P.

In the present work, we compare the results of using the
above three water models (TIP3P, 4P, 5P) on the temperature
dependence of internal protein motion. Experimental and
theoretical studies have found that proteins undergo a
transition in internal dynamics at Tg ≈ 180-220 K,59-70

characterized by a rapid increase in the average protein
atomic mean-square displacement above Tg. The transition
at Tg is strongly coupled to the solvent dynamics.2,67-69,71-81

An additional low-temperature transition (∼150 K), that has
been attributed to the activation of methyl group rotations,
is present also in dehydrated proteins.71,82-86 The dynamical
transition at Tg can be eliminated when dehydrating the
protein or coating it with a bioprotectant,87 and the value of
Tg can be shifted by changing the solvent composition.88 MD
simulations have demonstrated that the Tg dynamical transi-
tion is driven by translational solvent dynamics.68,89 For some
proteins, the Tg dynamical transition has also been correlated
with protein activity,64,66,73,90,91 although activity has also
been observed for T < Tg.

92-95

The question arises as to whether the dynamical properties
of the protein are affected by the choice of the water model
used. To investigate this, we have performed simulations of
myoglobin at temperatures ranging from 20 to 300 K using
the TIP3P, TIP4P, or TIP5P potentials and the CHARMM
protein force field.41-43 The protein dynamical transition was
found to be unaffected by changes in the solvent model.
Moreover, although the bulk properties of the three water
models are markedly different, when interacting with the
protein surface, the three water models behave similarly.

2. Methods

The set of models considered here is the TIP3P, TIP4P, and
TIP5P family.50,58 TIP3P is the standard model in the widely
used CHARMM force fields. However, TIP4P and TIP5P
are easy to implement for use with CHARMM and exhibit
improved bulk water properties, as described below.

The TIP geometries and associated parameters are shown
in Figure 1 and Table 1. In the TIP3P model, charges are
placed at the hydrogen positions and on the oxygen, resulting
in three interaction sites. A van der Waals term provides
additional nonbonding interactions involving the oxygen
atoms only.58 Geometrical parameters were assigned ac-
cording to experimental gas phase values.

mTIP3P is a slightly modified version of TIP3P, com-
monly used with CHARMM,41-43 and includes additional
van der Waals interaction sites at the hydrogen positions.96

The effect of these additional terms on the properties of
TIP3P has been shown to be small.97 Therefore, in the
following, TIP3P is used to refer to the CHARMM-modified
version, mTIP3P.

The combination of TIP3P with the CHARMM force field
has proven to be useful for examining the structure and
dynamics of biomolecular systems. However, although TIP3P
adequately describes the first hydration shell of bulk water,
it lacks accuracy for the second hydration shell, for which
the corresponding peak in the oxygen-oxygen radial dis-
tribution function is almost completely absent.50 TIP4P, in
which the oxygen charge site is moved along the HOH

Figure 1. TIPnP geometries. Dashed lines represent 1/2 of
the van der Waals radius σ0.

Table 1. TIP3P, TIP4P, TIP5P, and mTIP3P Potential
Energy Parameters

TIP3P mTIP3P TIP4P TIP5P

qH 0.417 0.417 0.520 0.241
qO -0.834 -0.834
qM -1.040
qL -0.241
σOO/A 3.5364 3.5364 3.5399 3.5021
εO/kcal/mol 0.1521 0.1521 0.1550 0.1600
σHH/A 0.4490
εH/kcal/mol 0.0460
rOH/A 0.9572 0.9572 0.9572 0.9572
rOM/A 0.15
rOL/A 0.7
θHOH/deg 104.52 104.52 104.52 104.52
θLOL/deg 109.47
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bisector toward the molecular center of mass, better repro-
duces experimental distribution functions than TIP3P.58 In
TIP5P, there are two lone-pair interaction sites, L, moved
from the oxygen along the HOH bisector away from the
hydrogens and symmetrically placed out of the HOH plane
with ∠LOL ) 109.47°.50 The TIP4P and TIP5P oxygens carry
no charge. TIP5P, explicitly incorporating tetrahedrality in
the water model, is especially successful in reproducing bulk
water density over a wide range of temperatures.50

Here, the CHARMM program package version c33b2 was
used to perform MD simulations of hydrated myoglobin with
the CHARMM22 force field and TIP3P, TIP4P, or TIP5P
water.41-43 The protein-water heteroatomic interaction para-
meters were calculated using the standard Lorentz-Berthelot
mixing rule, which is defined as follows:

where (σP, εP) and (σW, εW) correspond to Lennard-Jones
parameters associated with protein and water atoms, respec-
tively. The 1.15 Å resolution myoglobin structure 1A6G,
taken from the RCSB Protein Data Bank (www.pdb.org),98

was used as the starting protein configuration. The model
was constructed as in ref 68 to mimic a hydrated powder
sample and thus model the experimental neutron scattering
setup of ref 77, the data from which serve as a reference
here. To do this, the protein was solvated by placing it in a
box of water, retaining only those 492 molecules closest to
the protein. The temperature dependent dynamical properties
in the present simulations were found to be very similar to
those derived from NPT simulations in solution on the same
myoglobin structure.86

Electrostatic interactions were truncated using a shift
function with a 12 Å cutoff, and a switch function was used
for the truncation of van der Waals interactions between 10
and 12 Å. The SHAKE algorithm was used to constrain all
bond lengths involving hydrogens.99 The structures were
energy minimized using 600 steepest descent steps and 2500
conjugate gradient steps with the protein atoms fixed, then
with fixed solvent allowing the protein to move, and finally
without any constraints.

After heating to the desired temperature in steps of 5 K
every 1000 dynamics steps, the system was equilibrated for
400 ps. Subsequently, 1 ns production runs were performed
in the NVT ensemble at temperatures from 20 to 300 K in
intervals of 20 K and in smaller intervals of 10 K between
120 and 240 K. The system was kept at constant temperature
using the weak coupling algorithm of ref 100. A time step
of 1 fs was used for the integration of the equations of
motion. Coordinates and velocities were saved every 50
steps. The simulation protocol was the same for all temper-
atures and water models.

In order to examine in more detail the influence of the
water model on the time averaged protein structure at 300
K, 10 additional simulations of 1 ns length were performed
for each water model, starting with different, randomly
chosen, initial velocity assignments.

To avoid potential artifacts, no restraining potential was
applied to the water molecules to prevent evaporation.

Subsequently, for T > 260 K, a small number of molecules
evaporated from the water shell surrounding the protein, and
these were excluded from all analyses. No evaporation
occurred for T < 260 K, including during extended 7 ns
simulations with TIP3P at 180, 220, and 260 K.

In addition to the above calculations, for comparison
purposes, simulations of bulk water using the TIP water
models were performed. For these, GROMACS 4.0101 was
used to generate a 30 Å cubic water box at 300 K and 1 atm
pressure containing 895 molecules for TIP3P, 886 for TIP4P,
and 878 for TIP5P. The electrostatic interactions were treated
in the same way as for the above protein simulations, and
periodic boundary conditions were applied. The configura-
tions were energy minimized using 600 steepest descent
steps, equilibrated for 500 ps at the desired temperatures and,
subsequently, 1 ns production runs were performed in the
NVT ensemble at temperatures from 20 to 300 K in intervals
of 20 K and in smaller intervals of 10 K between 100 and
260 K. The system was kept at a constant temperature using
the weak coupling algorithm of ref 100. A time step of 2 fs
was used. Coordinates were saved every 50 steps. The
simulation protocol was again the same for all temperatures
and water models.

Additional MD simulations of myoglobin fully solvated
in a periodic TIP3P water box (68 × 68 × 52 Å3 dimensions)
were carried out using the NAMD software.102 The Particle
Mesh Ewald (PME) method was used for the electrostatics,
and a switch function was used for truncation of van der
Waals interactions between 10 and 12 Å. The starting
configurations were energy minimized using 6000 conjugate
gradient steps followed by 1 ns equilibration and 1 ns
production runs in the NPT ensemble. The equations of
motion were integrated with a time step of 1 fs, and the
atomic coordinates were saved at every 100 fs. Using the
Langevin thermostat and barostat, simulations were carried
out at a range of temperatures between 20 and 300 K and at
1 atm of pressure. The temperature dependence of the
Kirkwood g-factor determined from this set of simulations
serves for comparison with results obtained from the hydrated
powder model.

3. Results

3.1. Time-Averaged Structures. The influence of the
water models on the average structure of myoglobin is first
investigated. The time-averaged structures were calculated
for all 30 independent simulations at 300 K and were
compared using a root-mean-square deviation (RMSD) per
residue, defined here as

where i is the residue number, Ni is the number of protein
heavy atoms in residue i, A and B are any two given time-
averaged structures, and xj

A/B denotes the heavy atom
coordinates. Convergence was checked by comparing RMSD
values from the first and second half of each simulation,
which were found to be in close agreement.

σPW )
σP + σW

2
; εPW ) √εPεW

RMSDi
A,B ) �∑

j)1

Ni

(xj
A - xj

B)2

Ni
(1)
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Figure 2 shows the backbone heavy-atom RMSD per
residue based on the average over all pairs (A,B) of structures
solvated in the same or in different water models. “SELF”
refers to RMSD values between protein structures solvated
by the same water model, whereas “CROSS” refers to
deviations in configurations between the models, for example,
structures of the protein in TIP3P compared with structures
in TIP4P or TIP5P.

Neglecting the five C- and N-terminal residues, the
RMSDi

A, B averaged over residues is 0.47 ( 0.25 Å, averaged
over “SELF” is 0.46 ( 0.26 Å, and averaged over “CROSS”
is 0.49 ( 0.25 Å, and the average difference between “SELF”
and “CROSS” is 0.035 ( 0.026 Å. Therefore, the RMSD
per residue is similar for both the “SELF” and “CROSS”
data sets, indicating that variation of the water model does
not significantly influence the time-averaged protein RMSD.

3.2. Mean-Square Displacement. The mean-square dis-
placement 〈r2(t)〉 is defined as

where N is the number of atoms, (ri(t + t0) - ri(t0)) is the
displacement of atom i in time t, and 〈 · 〉i, t0 represents the
ensemble average, approximated as a time average over t0

by assuming ergodicity.
The mean-square displacement (MSD) averaged over the

heavy atoms of myoglobin was calculated for all tempera-
tures and water models. Figure 3C shows the time evolution
of heavy atom MSD of myoglobin at various temperatures,
while Figure 3A exhibits time-averaged MSD as a function
of temperaure. The inset in Figure 3 A shows an expanded
view of the low-temperature region, up to T ≈ 210 K. The
MSD rises linearly for low temperatures until a first change
in the gradient at T ≈ 150 K, which has been attributed to
the activation of methyl group rotations.71,84,86 At T ≈ 220
K, 〈r2(t)〉 exhibits a further increase in gradient corresponding
to the solvent-driven dynamical transition. 〈r2(t)〉, both for
<220 K and >220 K, is similar using all three TIP water
models.

Figure 3B shows the 〈r2(t)〉 of the water molecules in the
protein simulations as a function of temperature. The insets

B.1 and B.2 give expanded views since the data cover
multiple orders of magnitude. The profiles qualitatively
resemble Figure 3A; i.e., the MSD for the water molecules
rises linearly for low temperatures until, interestingly, a first
change in slope is seen at T ≈ 150 K (Figure 3B.2) followed
by a second transition at T ≈ 200 K (Figure 3B.1).

The transition at 220 K in the protein has been previously
observed and the strong coupling between the solvent and
protein characterized.62,65,68,73,76,78,80,89,103-109 However, the
low-T transition at 150 K for water was unexpected, and
the question therefore arises as to whether it would occur
independent of the protein. To check this, a set of simulations
of pure TIP water was performed, as described in the
Methods. Figure 4A shows the TIP water mean-square
displacements as a function of temperature. A comparison
between Figures 3B and 4A indicates that, while the
dynamical transition behavior of the protein and protein

Figure 2. Backbone heavy-atom RMSD per residue at 300
K. Average over pairs of structures solvated in the same or
in different water models. “SELF” refers to RMSD values
between protein structures solvated by the same water model,
whereas “CROSS” refers to deviations in configurations
between the models.

〈r2(t)〉 ) 〈 1
N ∑

i)0

N

(ri(t + t0) - ri(t0))
2〉

i,t0

(2)

Figure 3. (A) Heavy atom mean-square displacement of
myoglobin solvated in TIP3P, TIP4P, or TIP5P as a function
of temperature. The inset shows an expanded view of the low
temperature region up to T ≈ 210 K. (B) Mean-square
displacement of the hydration shell water as a function of
temperature. The insets (B.1 and B.2) give expanded views
since the data cover multiple orders of magnitude. (C) Time
dependent mean-square displacement of myoglobin in TIP3P
as a function of time at different temperatures.
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hydration water are similar, they do not resemble that of the
bulk water models.

The data for the three TIP models exhibit similar properties
in that 〈r2(t)〉 is linear for T e Tl. However unlike in the
solution simulations, the temperature at which the slope
changes, Tl, is markedly different for the three models with
Tl ≈ 120 K for TIP3P, 140 K for TIP4P, and 190 K for
TIP5P. Further, again unlike the data for the hydrated protein,
the bulk data do not show two distinct changes in slope.

The self-diffusion constant, D, was calculated from the
linear part of each mean-squared displacement, at, i.e., t >
200 ps (see Figure 4B), using the Einstein relation:

where r(t) is the position of the water oxygen atom and 〈 · 〉
denotes averaging over both time origins t0 and the water
molecules. D, in units of 10-5 cm2/s, at 300 K is found to
be 5.46 ( 0.02 (TIP3P), 3.60 ( 0.06 (TIP4P), and 2.82 (
0.02 (TIP5P). Corresponding values in the literature vary
depending on the simulation setup, but reported values using
a similar protocol to that used here (i.e., shift electrostatics)
in the NPT ensemble are 5.8 ( 0.2 (TIP3P), 3.78 ( 0.02
(TIP4P), and 2.94 ( 0.06 (TIP5P),110 in good agreement
with the present work. For completeness, in Table 2, D is
also given for the other temperatures.

3.3. Heterogeneous Distribution of Anharmonic Mo-
tions among Protein Residues. To quantify the fraction of
protein residues that exhibit large anharmonic dynamics, the
MSD per residue (〈r2(t)〉i, where i denotes the residue index)

was calculated. 〈r2(t)〉i is decomposed into harmonic and
anharmonic components as follows:

where 〈r2(t)〉i,harmonic is obtained by linearly fitting 〈r2(t)〉i for
T e 140 K and extrapolating to higher T.

A residue is denoted as exhibiting anharmonic dynamics
if 〈r2(t)〉i > (〈r2(t)〉i,harmonic + 2σ), where σ is the standard
deviation at the onset of anharmonicity (140 K). As a control,
it was determined whether the onset of anharmonicity
depends on the temperature interval chosen for the estimation
of harmonic dynamics: using 20-100 K as the fitting interval
and σ100K, the procedure was found to give similar results.

Figure 5 shows the temperature dependence of the fraction
of residues exhibiting anharmonic dynamics. For T e 140
K, almost all residues exhibit only harmonic motion, with
〈r2(t)〉i similar to each other, while an abrupt change is evident
at higher T, as an increasing fraction of residues exhibits
anharmonic dynamics. Even well above the dynamical
transition temperature at 260 K, approximately 25% of the
residues still remain harmonic. This result is consistent with
previous simulation work on myoglobin, in which the onset
of anharmonicity was found to be gradual with T.69 Again,
when comparing the protein simulations using different water
models, there are no statistically significant differences.

3.4. Reorientational Relaxation Time. The rotational
dynamics of water can be characterized by the water dipole
orientation autocorrelation function, C(t):

where ebi(t) is a unit vector along the water dipole. For liquids,
C(t) decays to zero as the dipole loses its memory of its
initial orientation.

Since the structural and dynamic properties of the hydra-
tion layer water molecules depend on the heterogeneous
surface roughness and charge distribution,21,24,39,40,111 a
multiexponential decay is expected. From the protein simula-
tions, the reorientational relaxation time of water, τ, was
calculated by fitting the following triple exponential function
to C(t):

Equation 6 was found to capture the decay in the target data,
whereas the fitting procedure failed for simpler fitting
functions. The relaxation time, τ, was derived using the
following relation:

Figure 6A shows C(t) together with the fit of eq 7 for TIP3P
hydration water at different temperatures. C(t)’s for TIP4P
and TIP5P hydration water exhibit similar decay behaviors
(not shown). In general, the profiles consist of a fast decay
on the picosecond time scale followed by slower dynamics.
For most temperatures, C(t) does not fully decay to zero on
the present time scale of ∼500 ps. For temperatures T > 220

Figure 4. (A) Mean-square displacement of TIP3P, TIP4P,
or TIP5P water molecules as a function of temperature from
bulk water simulations. The inset shows an expanded view
of the low temperature region. The solid lines corresponds to
linear fits for T ) 20-100 K. (B) Mean-square displacement
as a function of time for TIP3P and various temperatures. The
insets show data belonging to further temperatures in an
appropriate magnification of the abscissa.

lim
tf∞

〈|r(t0 + t) - r(t0)|
2〉 ) 6Dt (3)

〈r2(t)〉i ) 〈r2(t)〉i,harmonic + 〈r2(t)〉i,anharmonic (4)

C(t) ) 〈ebi(t + t0) · ebi(t0)〉i,t0
(5)

C(t) ) a0 exp(-t/τ0) + a1 exp(-t/τ1) +
(1 - a0 - a1) exp(-t/τ2)

(6)

τ ) a0τ0 + a1τ1 + (1 - a0 - a1)τ2 (7)
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K (above the dynamical transition temperature), C(t) decays
rapidly (<50 ps) to ∼0.5, but the decay is much slower at
lower T.

There is good agreement between the fitted curves of eq
6 and the data (Figure 6A). Figure 7 and Table 3 present
the temperature dependence of the resulting fitted parameters.
At low T (e 180 K), the process associated with relaxation
time τ2 dominates, with a weight factor, 1 - a0 - a1 ≈ 1. A
decrease of 1 - a0 - a1 (i.e., an increase of a0 and/or a1) is
observed for T > 180 K, indicating the activation of additional
relaxation processes. For T g 240 K, the three components
are approximately equally weighted.

The temperature dependences of the weights and values
of τ0 and τ1 behave very similarly to each other, with the
weight of the τ1 component being larger and the values being
∼10 times larger than τ0. τ0 and τ1 have broad maxima at
∼260 and 210 K, respectively. For temperatures T e 180
K, the τ1 component jumps to high values, accompanied by
a drop in its weight.

The relaxation times τ, derived by eq 7, are given in Figure
6B. Relaxation times at 300 K from the full sets of
simulations at this temperature are 31 ( 3, 35 ( 3, and 32
( 6 ps for TIP3P, TIP4P, and TIP5P, respectively, and rise
by 2 orders of magnitude as the temperature decreases to
160 K.

At temperatures T > T*, glass-forming liquids exhibit an
Arrhenius relaxation mechanism τ ∝ exp(- E�/kBT) due to
the behavior of the � relaxation which, at T*, splits into a
fast � relaxation and a slow R relaxation.112,113 The R
relaxation may often be described with a Vogel-Fulcher-
Tammann (VFT) equation over the range Tg < T < T*, i.e.,

with fitting parameters τc, A, and T0. Cooperativity of
�-relaxation events has been suggested as the origin of the
R relaxation. A similar VFT relationship between τ and T
has been used in glass physics,112 where T0 has been
hypothesized to be the Kauzmann temperature and A ) (E�/
R)[(T* - T0)/T*] with E� as the activation energy for the �
relaxations. The Kauzmann temperature is the temperature
at which the entropies of the supercooled liquid and the
corresponding crystal are in principle equal.113,114

Angell proposed a “fragile-to-strong” classification of
liquids in which relaxation times of “strong” liquids follow

Table 2. Diffusion Constants in Units of 10-5 cm2/s Calculated Using the Einstein Relation for TIP3P, TIP4P, and TIP5P
from a 30 Å Cubic Water Box with the Same Electrostatic Treatment As in the Protein Simulation

T/K TIP3P TIP4P TIP5P

150 0.0018 ( 0.0000 0.0018 ( 0.0002 0.0007 ( 0.0001
160 0.0043 ( 0.0002 0.0016 ( 0.0002 0.0007 ( 0.0002
170 0.0171 ( 0.0007 0.0025 ( 0.0002 0.0009 ( 0.0001
180 0.0444 ( 0.0033 0.0036 ( 0.0001 0.0009 ( 0.0000
190 0.116 ( 0.0045 0.0086 ( 0.0011 0.0009 ( 0.0001
200 0.3104 ( 0.0075 0.0193 ( 0.0004 0.0014 ( 0.0000
210 0.5058 ( 0.0146 0.04 ( 0.0007 0.0028 ( 0.0004
220 0.8463 ( 0.0032 0.1306 ( 0.0026 0.003 ( 0.0001
230 1.243 ( 0.0177 0.2699 ( 0.0010 0.0073 ( 0.0016
240 1.7191 ( 0.0464 0.4948 ( 0.0044 0.0202 ( 0.0002
250 2.3816 ( 0.0269 0.8021 ( 0.0017 0.0459 ( 0.0072
260 2.8328 ( 0.0261 1.1895 ( 0.0040 0.2601 ( 0.0001
280 3.9614 ( 0.1640 2.1882 ( 0.0674 1.1849 ( 0.0100
300 5.4596 ( 0.0158 3.595 ( 0.0581 2.8162 ( 0.0190

Figure 5. Fraction of residues exhibiting anharmonic
dynamics.

Figure 6. (A) Protein hydration water dipole orientational
autocorrelation functions (eq 5) for TIP3P and eq 6 fitted
to data from eq 5. TIP4P and TIP5P data are similar. (B)
Reorientational relaxation lifetimes τ (eq 7) fitted with the
Vogel-Fulcher-Tammann equation (eq 8).

τ(T) ) τc exp( A
T - T0

) (8)
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an Arrhenius trend (e.g., SiO2), whereas “fragile” liquids
deviate from such a behavior.115 The VFT relation describes
well the present data for T > 160 K, although the fitted
parameter values were subject to large errors, thus classifying
the protein hydration shell water as a “fragile” liquid in
Angell’s scheme.

3.5. Local Orientational Ordering. The local orienta-
tional ordering of water dipoles can be quantified by the
distance-dependent Kirkwood G factor, defined as follows:116

with

where µbi denotes a unit vector in the direction of the dipole
moment of molecule i. GK, h(r) is equal to two if a pair of
water dipoles is parallel. Elevated GK, h(r) therefore corre-
sponds to high angular correlations between water molecules.

Figure 8 shows G
K, h
rmax(0.2(T), as a function of temperature

for different water models, averaged over 0.2 Å around rmax,
where rmax is the most probable near neighbor distance, taken
to be equal to the position of the first peak in the water
oxygen-oxygen radial distribution function gOO(r) (∼2.8 Å).
Other simulation studies obtained similar values for GK, h

rmax(T)
at ∼2.8 Å and 300 K.117,118

A systematic decrease in GK, h
rmax(0.2(T) is evident above 200

K for all water models in the hydration layer of myoglobin
(in the hydrated power model), associated with the increased
diffusion (see Figure 3B). Although GK, h

rmax(0.2(T) obtained for
a myoglobin solution is slightly higher than that of the
hydrated powder model, the temperature dependence of
GK, h

rmax(0.2(T) shows a similar trend to that of the hydrated
powder model. The observed higher values of GK, h

rmax(0.2(T) in
myoglobin solution can be attributed to the fact that all the
water molecules (both bulk and interfacial) have complete
first coordination shells in solution, while in the powder
model some can have partial coordination shells. The results
reported in Figures 3A,B and 8 are consistent with dynamical
coupling between the protein and the solvent since the
transition consistently occurs at ∼220 K, captured by all TIP
water models investigated here.

4. Conclusions

The effect of the variation of the water model on the
temperature dependence of protein and hydration water
dynamics has been investigated here by performing molecular
dynamics simulations of hydrated myoglobin. Both protein
and water properties were analyzed, including the time-
averaged structures of the protein, the average mean-square
displacements of the protein and water atoms, the solvent
reorientational relaxation times, and pair angular correlations
between the water molecules.

Figure 7. Fitted parameter values a0, a1, 1 - a0 - a1, τ0, τ1, and τ2 from eq 6. Lines connect points as a guide to the eye.
Numerical values are given in Table 3.

GK,h(r) ) 〈µfi · Mb (r)〉 (9)

Mb (r) ) ∑
rijer

µfj (10)
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Variation of the water model between TIP3P, TIP4P, and
TIP5P leads to the same time-averaged structures of the
protein to within statistical error. Also, for all three water
models, the temperature-dependent mean-square displace-
ment exhibits the well-known dynamical transition at Tg ≈
220 K. Furthermore, it has been previously shown that the
SPC/E water model119 with the GROMOS protein force

field120 also reproduces the Tg protein dynamical transition
at the same temperature.103

Mid-infrared pump-probe spectroscopy on the dynamics
of HDO in H2O yielded an orientational lifetime of τPP )
2.5 ps for bulk water and τPP > 10 ps for “immobilized”
water in the solvation shell of tetramethylurea,33,121 which
corresponds to a retardation factor of at least 4. The bulk
water relaxation time τD was derived to be 8.8 ps from
molecular dynamics studies and 7 ps from experiments on
dielectric relaxation, both at 303 K.122 [Pump-probe experi-
ments measure different lifetimes than dielectric relaxation
experiments or the present simulation data: whereas the
lifetime τPP from pump-probe experiments is related to the
second-order correlation function 〈P2(cos θ(t))〉 (where P2

is the second-order Legendre polynomial), the lifetimes τD

from dielectric relaxation and the present work are deter-
mined by the first-order correlation function 〈P1(cos θ(t))〉.
The ratio between τPP and τD depends on the details of
molecular diffusion: τPP ) 3τD for simple rotational diffusion
but is different for other types of dynamics.123]

Experiments and simulations have shown that the reori-
entational dynamics of protein hydration water is slowed
down relative to the bulk, e.g.,5,26,27,34,36,40 with the slowing
down being influenced by heterogeneous surface roughness
and charge distribution.21,24,39,40,111

Table 3. Fitted Parameter Values for eq 6a

T/K TIP3P TIP4P TIP5P T/K TIP3P TIP4P TIP5P

a0

160 0.08 0.10 0.09

τ0

160 0.00 1.88 5.11
170 0.08 0.08 0.11 170 0.10 0.11 7.15
180 0.09 0.09 0.08 180 0.15 0.18 0.21
190 0.11 0.10 0.08 190 0.41 0.17 0.31
200 0.14 0.12 0.09 200 0.83 0.41 0.29
210 0.16 0.15 0.12 210 1.06 0.91 0.78
220 0.21 0.18 0.14 220 1.74 1.26 0.74
230 0.23 0.19 0.18 230 1.66 1.01 1.38
240 0.29 0.24 0.24 240 2.18 1.66 2.06
260 0.40 0.33 0.25 260 2.60 1.85 1.11
280 0.42 0.38 0.28 280 1.63 1.39 0.69
300 0.30 0.32 0.29 300 0.44 0.55 0.43

a1

160 0.06 0.00 0.00

τ1

160 78.22 1049.77 2710.67
170 0.06 0.05 0.00 170 25.05 27.77 1984.47
180 0.07 0.08 0.08 180 26.10 48.92 45.39
190 0.14 0.11 0.09 190 53.70 41.52 42.55
200 0.20 0.14 0.12 200 59.20 61.70 37.20
210 0.24 0.27 0.18 210 56.04 79.61 63.44
220 0.31 0.30 0.27 220 50.97 64.38 51.01
230 0.38 0.35 0.33 230 45.34 44.00 53.98
240 0.41 0.40 0.39 240 42.57 44.90 49.49
260 0.40 0.41 0.44 260 38.17 29.87 24.68
280 0.39 0.44 0.43 280 22.27 19.51 12.89
300 0.43 0.45 0.43 300 7.32 10.09 7.46

1 - a0 - a1

160 0.86 0.90 0.91

τ2

160 2819.49 3498.03 3679.43
170 0.87 0.87 0.89 170 1714.96 1939.45 3007.36
180 0.84 0.83 0.84 180 1535.37 1245.80 1650.42
190 0.75 0.79 0.83 190 963.95 1182.51 1538.97
200 0.66 0.73 0.78 200 890.55 1020.11 1156.62
210 0.60 0.58 0.69 210 610.75 968.10 1007.51
220 0.48 0.52 0.59 220 580.03 736.41 838.47
230 0.40 0.46 0.49 230 594.33 690.84 741.91
240 0.30 0.35 0.38 240 515.06 443.10 431.47
260 0.20 0.26 0.31 260 398.39 349.69 280.67
280 0.19 0.18 0.29 280 269.09 235.99 123.27
300 0.27 0.23 0.28 300 86.83 119.99 86.76

a τ1, τ2, and τ3 in ps.

Figure 8. Local orientational ordering of water dipoles
measured with the distance-dependent Kirkwood G-factor
GK, h

rmax(0.2(T) averaged over 0.2 Å around the maximum of the
oxygen-oxygen radial distribution function as a function of
temperature for different water models in the hydration shell
(“SHELL”) and for “BULK” TIP3P. GK, h

rmax(0.2(T) for “BULK” TIP3P
is scaled by c ) 0.89 (see text). Lines connect points as a
guide to the eye.
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A recent measurement of cell water dynamics estimates
the rotational correlation time for water directly interacting
with biomolecular surfaces to be 27 ps.14 The present protein
hydration water relaxation times at 300 K are 31 ( 3, 35 (
3, and 32 ( 6 ps for TIP3P, TIP4P, and TIP5P, respectively.
These times are very similar to each other and to the values
in ref 14 and are approximately a factor of 4 slower then
the bulk relaxation times measured in ref 122.

A decrease in the pair angular correlations between water
molecules in the protein hydration layer, calculated using
the Kirkwood G factor, accompanies the dynamical transition.

Taken together, the present results suggest that the global
dynamical properties of the protein and hydration water are
not significantly affected by variation of the water models
among TIP3P, TIP4P, and TIP5P. Although these models
have documented different bulk phase properties, they behave
similarly on the protein surface for the quantities investigated.

Broadly speaking, the present work has served two
purposes. First, the relative invariance of the simulation-
derived temperature-dependent protein and water dynamics
to the water potential used bolsters the argument for the
reliability of the simulation analyses of these phenomena
previously published using only one water potent-
ial.8,9,41-43,48,57,68-70,77,86,96,124-127 Second, the results in-
dicate that, although general interchangeability of water
potentials in protein simulations is not expected and cannot
be assumed, for some purposes at least it is safe to choose
between TIP3P, TIP4P, and TIP5P as the water potential
used in protein simulations with CHARMM.
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Abstract: A constant pH replica exchange molecular dynamics (REMD) method is proposed
and implemented to improve coupled protonation and conformational state sampling. By mixing
conformational sampling at constant pH (with discrete protonation states) with a temperature
ladder, this method avoids conformational trapping. Our method was tested and applied to seven
different biological systems. The constant pH REMD not only predicted pKa correctly for small,
model compounds but also converged faster than constant pH molecular dynamics (MD). We
further tested our constant pH REMD on a heptapeptide from the ovomucoid third domain
(OMTKY3). Although constant pH REMD and MD produced very close pKa values, the constant
pH REMD showed its advantage in the efficiency of conformational and protonation state
samplings.

Introduction

Solution pH is a very important thermodynamic variable that
affects protein structure, function, and dynamics.1-3 Many
biological phenomena such as protein folding/misfolding,4-6

substrate docking,7,8 and enzyme catalysis9-11 are pH-
dependent. Examples include amyloid fibril formation12 such
as misassembly of prion proteins,13 ATP synthesis,14 and
pH-dependent partial R-helical formation of a 13-residue
N-terminal fragment from ribonuclease A.4,5 This pH-
dependence of structure and dynamics comes from changes
in the ratio of protonation states for the different residues at
different solution pH values.

The pH value at which a particular titratable residue side
chain has equal population of protonated and deprotonated
states is called the pKa value of that side chain.15-18 The
pKa value of a titratable side chain can be highly affected
by the environment of that titratable side chain such as
protein environment polarity. An ionizable side chain in the
interior of a protein can have a different pKa value from the
isolated amino acid in solution.18 For example, Asp26 of
thioredoxin, which lies in a deep pocket of the protein, has
a pKa value of 7.5, while the intrinsic pKa value of aspartic
acid is 4.0.19 Furthermore, a charged side chain can favor
different protonation states in order to stabilize the protein

structure by forming a salt bridge.20 The conformation and
protonation distributions are highly coupled:21-23 changes
in either of them can affect the other one.

Due to the importance of solution pH, Molecular Dynam-
ics (MD) simulations have been used to study its effect on
protein structure and dynamics. Other popular theoretical
methods developed to calculate (predict) pKa values include
the electrostatic continuum dielectric model and the Poisson-
Boltzmann Equation (PBE),17,24-27 free energy calculation
methods,16,28-30 and empirical methods.31,32 More details
on computer simulation of pKa prediction and pH dependence
of protein structure and dynamics can be found in recent
studies.33-51 The traditional way of studying the effect of
pH is setting a constant protonation state before a simulation
is carried out. The major problem with this method is that it
decouples the correlation between conformation and pro-
tonation state, yielding a wrong population of protonation
states, especially when the solution pH is close to the pKa

of that titratable site. Furthermore, assigning protonation
states before a simulation often involves a guess of proton-
ation state based on our experience.

Constant-pH molecular dynamics (constant-pH MD) meth-
ods were developed in order to correlate the protein
conformation and protonation state. The purpose of constant-
pH MD is to describe protonation equilibrium correctly at a
given pH. One category of constant-pH MD methods uses a* Corresponding author e-mail: roitberg@ufl.edu.
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continuous protonation parameter. Earlier models include a
grand canonical MD algorithm developed by Mertz and
Pettitt52 in 1994 and a method introduced by Baptista et al.35

in 1997. In the Mertz and Pettitt model, protons are allowed
to be exchanged between a titratable side chain and water
molecules. Baptista et al. used a potential of mean force to
treat protonation and conformation simultaneously. Later,
Börjesson and Hünenberger53,54 developed a continuous
protonation variable model in which the protonation fraction
is adjusted by weak coupling to a proton bath, using an
explicit solvent. More recently, the continuous protonation
state model was further developed by the Brooks group.39-43,55

They called their constant-pH MD algorithm continuous
constant-pH molecular dynamics (CPHMD). In the CPHMD
method, Lee et al.55 applied λ-dynamics56 to the protonation
coordinate and used the Generalized Born (GB) implicit
solvent model. They chose a λ variable to control the
protonation fraction and introduced an artificial potential
barrier between protonated and deprotonated states. The
potential is a biasing potential to increase the residency time
close to protonation/deprotonation states, and it centered at
the half-way point of titration (λ ) 1/2). The CPHMD
method was then extended by incorporating an improved GB
model and replica exchange molecular dynamics (REMD)
algorithm for better sampling.40-43 The applications of
CPHMD and replica exchange CPHMD included predicting
pKa values of various proteins,40 studying proton tautomer-
ism39 and pH-dependent protein folding and folding inter-
mediates of the villin headpiece domain.42,43

In addition to continuous protonation state models,
discrete protonation state methods have also been devel-
oped to study the pH dependence of protein structure and
dynamics.36,46-49,57-63 The discrete protonation state
models utilize a hybrid molecular dynamics and Monte
Carlo (hybrid MD/MC) method. Protein conformations are
sampled by molecular dynamics, and protonation states
are sampled using a Monte Carlo scheme periodically
during a MD simulation. A new protonation state is
selected after a user-defined number of MD steps, and
the free energy difference between the old and the new
state is calculated. The Metropolis criterion64 is used to
accept or reject the protonation change. Various solvent
models and protonation state energy algorithms were used
in discrete protonation state constant pH MD simulations.
The Baptista group36,46-49 used the Poisson-Boltzmann
(PB) equation to calculate protonation energies while their
MD was done in explicit solvent. Walczak and An-
tosiewicz63 also employed the PB equation to determine
protonation energy, but they used Langevin dynamics to
propagate coordinates between MC steps. Bürgi et al.57

calculated the transition energy between two protonation
states by using thermodynamic integration (TI) method
and explicit solvent. More recently, Mongan et al.62

developed a method combining the GB model65,66 and the
discrete protonation state model. In Mongan’s method, the
GB model was used in protonation state transition energy
as well as solvation free energy calculations. Therefore,
solvent models in conformational and protonation state
sampling are consistent, and the computational cost is

small. This model was later coupled with accelerated
molecular dynamics67,68 to achieve better conformational
sampling.69 Dlugosz and Antosiewicz also used the
discrete protonation state method to study succinic acid58

and a heptapeptide derived from the ovomucoid third
domain (OMTKY3).60,61 This heptapeptide corresponds
to residue 26-32 of OMTKY3 and has the sequence of
acetyl-Ser-Asp-Asn-Lys-Thr-Tyr-Gly-methylamine.
Nuclear magnetic resonance (NMR) experiments indicated
the pKa of Asp is 3.6, 0.4 pKa unit lower than the value
of blocked Asp dipeptide.61 In their studies, the conven-
tional molecular dynamics (MD) simulations were carried
out to sample peptide conformations. Dlugosz and An-
tosiewicz sampled protonation states using the PB equation
and used analytical continuum electrostatics to treat
solvation effects. Their method predicted the pKa to be
4.24.

Due to the correlation between conformation and proton-
ation sampling, correct sampling of protonation states
requires accurate sampling of protein conformations. Hence,
generalized ensemble methods70-73 such as the multicanoni-
cal ensemble algorithm,74,75 simulated tempering,76 and
replica exchange molecular dynamics (REMD)77 should be
used to avoid kinetic trapping which comes from low rates
of barrier crossing in constant temperature MD simulations.
These methods make the system perform a random walk in
temperature or energy space which allows the system under
study to easily overcome energy barriers and hence reduces
the problem of kinetic trapping. REMD, the MD version of
parallel tempering (PT),78 has the advantage of a-priori
known weight factors, such as Boltzmann weights. REMD
has been used in many studies of protein structure and
dynamics and proven to drastically increase rates of con-
vergence toward a proper equilibrium distribution. Khando-
gin et al. applied the REMD algorithm to the continuous
protonation state constant-pH method and named it REX-
CPHMD. They applied REX-CPHMD to pKa predictions and
pH-dependent protein dynamics such as folding and
aggregations.40-43

In this paper, we present a study of conformation and
protonation state sampling using an REMD algorithm on the
discrete protonation state model proposed by Mongan et al.
We first tested our method on the basis of five dipeptides
and a model peptide having the sequence Ala-Asp-Phe-
Asp-Ala (ADFDA). The two ends of model peptide
ADFDA were not capped, so the two ionizable side chains
would have different environments. Then our method was
applied to a heptapeptide from OMTKY3, the same hep-
tapeptide that Dlugosz and Antosiewicz studied in their
paper.60,61 Our purpose is to show that the REMD algorithm
coupled with a discrete protonation state description can
greatly improve pH-dependent protein conformation and
protonation state sampling.

Methods

A. Constant-pH MD Algorithm in AMBER. A detailed
description of the discrete protonation state model can be
found in the paper of Mongan et al.62 This algorithm employs
discrete protonation states, MC sampling of protonation
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states, and the use of a GB model in MD and MC. Given a
protein with N titratable sites, the discrete protonation state
model means protonation states of a protein are described
by a vector n ) (n1, n2, ..., nN) where each ni is some integer
representing the protonation state of titratable residue i. In
AMBER, five amino acids are designed to be titratable:
aspartate, glutamate, histidine, lysine, and tyrosine. For each
titratable residue, different protonation states have different
partial charges on the side chain. This model also includes
syn and anti forms of protons for the aspartate and glutamate
side chains as well as the δ and ε proton locations for
histidine.

The goal of constant-pH MD is to describe equilibrium
between protonated and deprotonated forms correctly at a
given pH. In the discrete protonation model, the populations
of each form are sampled by the MC method periodically
during a MD simulation. At each Monte Carlo step, a
titratable site and a new protonation state for that site are
chosen randomly, and the transition free energy at this fixed
configuration is used to evaluate the MC move.

Considering a titratable site A in a protein environment,
its protonated form is protA-H and the deprotonated form is
protA-. The equilibrium between the two forms is governed
by their free energy difference. This free energy difference
is the ensemble average of different configurations. However,
the free energy difference cannot be computed by a molecular
mechanics (MM) model since the transition between two
forms deals with bond breaking/forming and solvation of a
proton which involves quantum mechanical effects.

The above problems can be solved by using a reference
compound. The reference compound has the same titratable
side chain as protA-H but with a known pKa value (pKa,ref).
Following Mongan et al.,62 we assume the transition free
energy can be divided into the quantum mechanics (QM)
part and the molecular mechanics (MM) part. We further
assume that the quantum mechanical energy components are
the same between the reference compound and the protA-
H. Since the pKa of the reference compound is known, its
transition free energy from the deprotonated form to the
protonated form at a given pH is

So the QM component of the transition free energy can
be expressed as

where ∆Gref,MM is the molecular mechanics contribution to
the free energy of the protonation reaction for that reference
compound. In practice, the QM component of the transition
free energy also contains errors from MM calculations, so it
is actually better called a non-MM component. Since the
approximation of the QM component of the transition free
energy is

then the transition free energy from protA- to protA-H can
be calculated as

∆G ) kBT ln 10(pH - pKa,ref) + ∆GMM - ∆Gref,MM (4)

where ∆GMM is the molecular mechanics contribution
(electrostatic interactions in nature) to the free energy of
the protein titratable site. Hence, by using a reference
compound, the QM effects are not needed. Effectively,
we compute ∆pKa relative to the reference compound.
Computing ∆pKa can also help canceling some errors
introduced by the GB solvation model through the use of
∆Gref,MM. In AMBER, a reference compound is a blocked
dipeptide amino acid possessing a titratable side chain (for
example, acetyl-Asp-methylamine). Five reference com-
pounds were constructed corresponding to five titratable
residues. The values of ∆Gref,MM for each reference
compound are obtained from thermodynamic integration
calculations at 300 K and set as internal parameters in
AMBER.62,79 The ∆GMM is calculated by taking the
difference between the potential energy with the charges
of the current protonation state and the potential energy
with the charges of the new protonation state (i.e., ∆GMM

is approximately ∆H by averaging over configurations).
The ∆G from eq 4 is used to decide if a MC move in

protonation space should be accepted or rejected. If the
transition is accepted, MD steps are carried out to sample
conformational space in the new protonation state. If the MC
attempt is rejected, MD steps are also carried out with no
change to the protonation state.

B. Titration Curve and pKa Prediction Calculation. The
titration curve of an ideal titratable site having no interac-
tion with other titratable groups follows the Henderson-
Hasselbalch (HH) equation:

pKa ) pH - log( [A-]
[HA]) (5)

Molecular dynamics runs are assumed to be ergodic; thus
the ratio of time that a titratable site spends in protonated
and deprotonated states can be used as concentrations. The
analytical form of the titration curve can be obtained by
exponentiating both sides of the HH equation. A more general-
ized form of the HH equation which studies an ionizable residue
interacting with another one can be written as

pKa ) pH - nlog( [A-]
[HA]) (6)

So the titration curve of an interacting ionizable residue
can be expressed as

s ) 1

1 + 10n·(pKa-pH)
(7)

where s is the fraction of deprotonation and n is the Hill
coefficient. A Hill plot, which can be obtained by plotting
log([A-]/[HA]) as a function of pH, is used to study titration
behavior. The HH equation (including its generalized form)
will be represented as a straight line in a Hill plot. The x
intercept is the pKa value, and the slope is the Hill coefficient
which reflects interactions between titratable residues.

C. Replica Exchange Molecular Dynamics (REMD).
A detailed description of the REMD algorithm can be found
in the papers of Sugita and Okamoto.77 In REMD, N
noninteracting copies (replicas) of a system are simulated at

∆Gref ) kBT ln 10(pH - pKa,ref) (1)

∆Gref,QM ) ∆Gref - ∆Gref,MM (2)

∆Gref,QM ) ∆Gprotein,QM (3)
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N different temperatures (one each). Regular molecular
dynamics is performed, and periodically an exchange of
conformation between two (usually adjacent) temperatures
is attempted. Suppose replica i at temperature Tn and replica
j at temperature Tm are attempting to exchange; the following
satisfies the detailed balance condition:

Pn(i) Pm(j) w(i f j) ) Pm(i) Pn(j) w(j f i) (8)

Here, w(ifj) is the transition probability between two states
i and j and Pn(i) is the population of state i at temperature n
(in REMD assumed Boltzmann weighted). If the Metropolis
criterion is applied, the exchange probability is obtained as

w(i f j) ) min{1, exp[(�m - �n)(E(q[i]) - E(q[j]))]}

(9)

Here, q[i] is the molecular configuration of state i, E is the
potential energy, and � ) 1/kBT. If the exchange between
two replicas is accepted, the temperatures of the two replicas
will be swapped and velocities rescaled to the new temper-
atures by multiplying all the old velocities by the square root
of the new temperature to old temperature ratio:

Vnew ) Vold�Tnew

Told
(10)

In the case of constant pH molecular dynamics, the
potential energy of the system depends not only on the
protein structure but also on the protein protonation state.
Likewise, when coupling the REMD algorithm with constant-
pH MD, one can either attempt to exchange molecular
structures only or swap both structures and protonation states
at the same time. For simplicity, let us consider two replicas
where replica 0 has temperature T0, protein structure q0, and
protonation state n0, while replica 1 has temperature T1,
structure q1, and protonation state n1. A diagrammatic
description of the two exchange algorithms is shown in
Figure 1. The first way of performing an exchange attempt
is that replica 0 tries to jump from state (q0, n0) to state (q1,
n0) at temperature T0 in one Monte Carlo step. Similarly,

replica 1 attempts to transit from state (q1, n1) to state (q0,
n1) at temperature T1. Protonation states are kept at exchange
attempts and only change during dynamics. Therefore, the
detailed balance equation now becomes

w(�0q0n0, �1q1n1 f �0q1n0, �1q0n1)

w(�0q1n0, �1q0n1 f �0q0n0, �1q1n1)
)

exp(-�0E(q0, n0)) exp(-�1E(q1, n1))

exp(-�0E(q1, n0)) exp(-�1E(q0, n1))
(11)

Here, w(�0q0n0,�1q1n1f�0q1n0,�1q0n1) is the transition prob-
ability of swapping structures. If the Metropolis criterion is
used, this exchange probability can be written as

w(�0q0n0, �1q1n1 f �0q1n0, �1q0n1) ) min{1, exp(-∆)}

(12)

and

∆ ) �0(E(q0, n0) - E(q1, n0)) - �1(E(q0, n1) - E(q1, n1))

(13)

where �0 ) 1/kBT0, �1 ) 1/kBT1, and E is the potential energy.
Here, if the protonation states of two adjacent replicas at an
exchange attempt are the same, the exchange probability of
our constant pH REMD will be equivalent to the conven-
tional REMD exchange probability. However, if it is not the
case, four potential energy terms are needed to calculate
exchange probability. Under this circumstance, the constant-
pH REMD becomes a REMD algorithm that combines both
temperature and Hamiltonian REMD algorithms.

One possible concern of exchanging only structures would
be the role of kinetic energy, especially when n0 and n1 are
different. In the REMD algorithm developed by Sugita and
Okamoto, the kinetic energy terms in the Boltzmann factors
cancel each other on average through velocity rescaling (eq
10). Only potential energies are required to compute ex-
change probabilities. There is a problem in canceling kinetic
energy terms when the numbers of particles of two systems
attempting to exchange are not the same. However, according
to the constant-pH MD algorithm proposed by Mongan et
al.,62 a proton does not leave the molecule but becomes a
dummy atom when an ionizable side chain is in a deprotonated
state. Furthermore, that dummy atom retains its position and
velocity, which are controlled by molecular dynamics. Hence,
the kinetic energy contributions to the Boltzmann weight will
be canceled out during exchange probability calculation, leaving
only potential energy useful for the calculation.

The second possibility consists of exchanging protonation
states as well as molecular structures at REMD Monte Carlo
moves. For instance, replica 0 attempts to move from state
(q0, n0) to state (q1, n1) at temperatures T0 in one MC move,
and replica 1 attempts to jump from state (q1, n1) to state
(q0, n0) at temperature T1. The detailed balance equation now
can be written as

w(�0q0n0, �1q1n1 f �0q1n1, �1q0n0)

w(�0q1n1, �1q0n0 f �0q0n0, �1q1n1)
)

w(�1q1n1 f �1q0n0)

w(�1q0n0 f �1q1n1)
·
w(�0q0n0 f �0q1n1)

w(�0q1n1 f �0q0n0)
(14)

Figure 1. Diagrams displaying exchanging algorithms in
constant-pH REMD. (A) Only molecular structures (denoted as
q) are attempted to exchange. In this case, protonation states
are not touched at an exchange attempt. (B) Both molecular
structures (denoted as q) and protonation states (denoted as n)
are attempted to exchange at the same time. Metropolis criterion
is applied in both algorithms to evaluate transitions.
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This equation states that the exchange probability is the
product of MC transition probabilities at temperatures T0 and
T1. If the protonation states of two adjacent replicas are the
same at an exchange attempt, the exchange probability of
constant-pH REMD becomes the exchange probability of
conventional temperature-based REMD. If n0 and n1 are
different, then each MC transition is essentially the proton-
ation state change step in constant-pH MD, plus a structural
transition. For example, consider the MC transition at
temperature T0

w(�0q0n0 f �0q1n1) ) min{1, exp(-∆1)} (15)

where

∆1 ) �0[E(q1, n0) - E(q0, n0)] + (pH - pKa,ref) +
�0[Eelec(q1, n1) - Eelec(q1, n0)] - �0∆Gref,MM (16)

The first term in ∆1 derives from the transition in
configuration at fixed protonation state n0, and the rest
corresponds to protonation state change at fixed structure
q1. Eelec represents the electrostatic component of potential
energy. Similarly, the transition probability of a MC jump
at T1 can be expressed as

w(�1q1n1 f �1q0n0) ) min{1, exp(-∆2)} (17)

where

∆2 ) �1[E(q0, n1) - E(q1, n1)] - (pH - pKa,ref) -
�1[Eelec(q0, n1) - Eelec(q0, n0)] + �1∆Gref,MM (18)

Therefore, according to eq 14, the exchange probability can
be written as

w(�0q0n0, �1q1n1 f �0q1n1, �1q0n0) ) min{1, exp(-∆′)}
(19)

and

∆′ ) ∆ + �0[Eelec(q1, n1) - Eelec(q1, n0)] -
�1[Eelec(q0, n1) - Eelec(q0, n0)] + (�0 - �1)·∆Gref,MM (20)

where ∆ is the same quantity as in eq 13.
The exchange probability calculation in the second method

of coupling REMD and constant-pH MD utilizes the same
number of energy evaluations required by the first method
since obtaining electrostatic potential energies does not
require extra energy calculations. The advantage of imple-
menting the second exchanging protocol (exchange both
structures and protonation states) over the first one (exchange
structures only) should not be significant because it is the
conformational sampling at higher temperature that greatly
improves conformational sampling at lower temperatures.
Allowing protonation states to change at exchange attempts
does not provide extra gains in conformational sampling
since the protonation state space is well sampled during the

MD propagation. Therefore, only the first method of
performing exchanges was implemented.

D. Simulation Details. For our study, constant pH REMD
simulations were carried out first on five reference com-
pounds: blocked aspartate, glutamate, histidine, lysine, and
tyrosine, to test our method and implementation. The
experimental pKa values of those reference compounds are
known80 and listed in Table 1. We later performed constant
pH REMD simulations on a model peptide ADFDA
(Ala-Asp-Phe-Asp-Ala, unblocked termini) and a hep-
tapeptide derived from OMTKY3 (residues 26 to 32 with
blocked termini). Four replicas were used in the reference
compounds and ADFDA REMD simulations. The temper-
atures were 240, 300, 370, and 460 K for all six molecules.
The pH range for the study of acidic side chains was sampled
from 2.5 to 6, and the pH range of histidine is from 5.5 to
8. The basic side chains were titrated from pH 9 to 12. An
interval of 0.5 was chosen for all titrations.

Eight replicas were chosen for the heptapeptide with a
temperature range from 250 to 480 K. A total of 10 ns was
used for each replica in all REMD simulations, and an
exchange was attempted every 2 ps. A MC move to change
the protonation state was attempted every 10 fs. A second
set of REMD runs was done with the same overall conditions
but different initial structures in order to check simulation
convergence.

To compare conformational and protonation state sam-
pling, 100 ns of constant pH MD simulations were carried
out for the aspartate reference compound and ADFDA, at
the same pH values as in the REMD runs. For the
heptapeptide, one set of 10 ns constant pH MD simulations
was done at each pH value simulated by the REMD method.

Constant pH REMD and MD simulations were done using
the AMBER 10 molecular simulation suite.81 The AMBER
ff99SB force field82 was used in all the simulations. The
SHAKE algorithm83 was used to constrain the bonds
connecting hydrogen atoms in all the simulations which
allowed use of a 2 fs time step. The OBC generalized Born
implicit solvent model66 was used to model the water
environment in all our calculations. The Berendsen thermo-
stat,84 with a relaxation time of 2 ps, was used to keep the
replica temperatures around their target values. The salt
concentration (Debye-Huckel based) was set at 0.1 M. The
cutoff for nonbonded interaction and the Born radii was 30
Å.

E. Cluster Analysis. Cluster analysis was done using the
Moil-View program85 in order to compare conformational
sampling.86,87 The MD and REMD trajectories (having same
number of frames) at 300 K and under the same solvent pH
were combined following a procedure introduced in the paper
of Okur et al. Then, the combined trajectory was clustered
on the basis of peptide backbone atoms’ root-mean-square

Table 1. The REMD pKa Predictions of Reference Compoundsa

pKa aspartate glutamate histidine lysine tyrosine

REMD 3.97 (0.01) 4.41 (0.01) 6.40 (0.03) 10.42 (0.01) 9.61 (0.01)
reference 4.0 4.4 6.5 10.4 9.6

a The numbers in parentheses are the standard errors.
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deviations (RMSDs). The population fraction corresponding
to each cluster was obtained for MD and REMD simulation.
The correlation coefficient values which represent the cor-
relations between MD and REMD cluster population were
calculated at each solution pH value by doing linear
regression. A high correlation between MD and REMD
cluster populations indicates that the structure ensembles are
close to each other. This method provides a direct comparison
of global conformational sampling between MD and REMD
simulations. The same technique was used when studying
the convergence of constant pH REMD and MD trajectories.
A cluster cutoff RMSD of 1.5 Å is chosen for both ADFDA
and the heptapeptide during our analysis.

F. Local Conformational Sampling and Its Conver-
gence to the Final State. In our study, the local conforma-
tional sampling was examined by comparing the probability
density of the backbone dihedral angle pair (�, Ψ). Es-
sentially, we are comparing the Ramachandran plot of a
residue. Each (�, Ψ) probability density was computed by
binning � and Ψ angle pairs 10° × 10°. These two-
dimensional histograms were normalized into populations,
and the contours were plotted. The metric used to evaluate
(�, Ψ) probability density convergence was the root-mean-
squared deviation (RMSD) between the cumulative (�, Ψ)
histogram and the one produced by using all configurations.
Each cumulative histogram was constructed by using (�, Ψ)
pairs up to the current time and following the same algorithm
mentioned earlier in this section.

Results and Discussion

A. Reference Compounds. We first applied our constant
pH REMD method to the reference compounds. Table 1
shows the pKa values predicted by REMD simulations (10
ns for each replica) as well as the reference pKa values. All
our pKa values were calculated by fitting to the HH equation.
Agreement between constant pH REMD predictions and the
reference values can be seen.

The pH titration curves of the same reference compounds
showed agreement between MD (100 ns) and REMD
simulations. Figure 2 demonstrates the REMD and MD
titration curves of aspartic acid reference compound as an
example.

We further studied the convergence of protonation states
sampling. REMD and MD protonation fractions were plotted
with respect to MC attempts for the aspartate reference
compound at all pH values. Figure 3A demonstrates the
protonated fraction versus time at pH 4 as one example.
According to Figure 3A, it suggests that, although the final
pKa predictions are the same for REMD and MD simulations,
the protonation state sampling during REMD simulations
clearly converges faster than that in a MD run.

B. Model Peptide ADFDA. The model peptide ADFDA
(as zwitterion) was chosen as a more stringent test of our
constant pH REMD method. The charged termini will
provide a different electrostatic environment for each titrat-
able Asp residue, and hence a correct constant pH REMD
model should reflect this difference between titration curves
of the two Asp residues. The Asp2 residue is closer to the
NH3

+, so the deprotonated state is favored, and the pKa value
of Asp2 residue should shift below 4.0 (which is the pKa of
the reference aspartic dipeptide). The Asp4 residue is closer

Figure 2. Titration curves of blocked aspartate amino acid
from 100 ns MD at 300 K and REMD runs. Agreement can
be seen between MD and REMD simulations.

Figure 3. Cumulative average protonation fraction of a
titratable residue vs Monte Carlo (MC) steps. (A) Aspartic acid
reference compound at pH ) 4. (B) Asp2 in model peptide
ADFDA at pH ) 4.
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to the COO- negative charge, and hence the pKa value should
shift above 4.0.

The titration curves of the model peptide ADFDA from
REMD simulations are shown in Figure 4. We can clearly
see that Asp2 and Asp4 have different titration curves from
each other and from the reference compound. The pKa value
and Hill coefficient for each Asp residue were obtained by
fitting titration curves to a Hill plot. The results are shown
in Table 2. The REMD pKa predictions reflect the difference
between Asp2 and Asp4 due to different peptide electrostatic
environments. We also displayed the MD titration curves of
Asp2 and Asp4 in Figure 4 and listed the MD pKa predictions
and corresponding Hill coefficients in Table 2. The titration
curve of the Asp2 residue only showed a small difference
between MD and REMD simulations. But we can see
differences in titration behaviors of Asp4 between MD and
REMD calculations when the solution pH is below 5.
Interestingly, Lee et al. studied blocked Asp-Asp peptide
using the CPHMD method,55 reporting different Hill coef-
ficients for each of the two Asp residues.

Convergence rates of Asp2 titration behavior were com-
pared between REMD and MD calculations due to the fact
that Asp2 titration curves are very close. The cumulative
protonated fractions versus MC attempts at pH 4 are shown
in Figure 3B. Faster convergence in protonation state
sampling can be seen for REMD simulation even though
both REMD and MD calculations resulted in the same final
protonated fraction. Clearly, our constant pH REMD method
accelerates the convergence of sampling of protonation states.

In addition to protonation state sampling, we also evaluated
the conformational sampling in constant pH MD and REMD

simulations. First, distributions of backbone � and Ψ angle
pairs (Ramachandran plots) of residues Asp2, Phe3, and Asp4
in ADFDA at each solution pH were studied. The regions
in Ramachandran plots sampled by MD and REMD simula-
tions are the same. Ramachandran plots for residue Asp2 at
pH 4 are shown in Figure 5 as an example.

Since the Ramachandran plots only represent local con-
formational sampling, we also evaluated global conforma-
tional sampling by clustering MD and REMD trajectories
and comparing the cluster populations. The MD and REMD
cluster population R2 values are listed in Table 3. A plot of
cluster populations from MD and REMD trajectories at a
solution pH of 4 is shown in Figure 6A as an example. The
large R2 values indicate that the MD and REMD sampled

Figure 4. The titration curves of the model peptide ADFDA
at 300 K from both MD and REMD simulations. MD simulation
time was 100, and 10 ns were chosen for each replica for
REMD runs.

Table 2. pKa Predictions and Hill Coefficients Fitted from
the HH Equation

Asp2 Asp4

pKa Hill coefficient pKa Hill coefficient

REMD 3.74 0.87 4.38 0.67
MD 3.76 0.89 4.54 0.85

Figure 5. Backbone dihedral angle (�, Ψ) normalized
probability density (Ramachandran plots) for Asp2 at pH 4 in
ADFDA. Ramachandran plots at other solution pH values are
similar. For Asp2, constant-pH MD and REMD sampled the
same local backbone conformational space. Phe3 and Asp4
Ramachandran plots also display the same trend.

Table 3. Correlation Coefficient between MD and REMD
Cluster Populationsa

pH ) 2.5 pH ) 3 pH ) 3.5 pH ) 4

R2 0.94 0.90 0.79 0.93

pH ) 4.5 pH ) 5 pH ) 5.5 pH ) 6

R2 0.85 0.98 0.92 0.96

a The R2 values were calculated by linear regression.
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the same conformational space and generated the same
structure ensemble. The small size of ADFDA and simple
structure of each residue make 100 ns long enough for MD
to sample the relevant conformations.

We further studied the convergence of REMD simulations
by comparing global conformation distribution between two
REMD simulations starting from two different structures.
Cluster populations of the two REMD simulations at solution
pH 4 are displayed in Figure 6B. The R2 value is 0.959 at
pH 4. This large correlation tells us that the two REMD
simulations provide the same structure ensemble, and hence
the two simulations are converged.

C. Heptapeptide Derived from OMTKY3. We first
compared the protonation state sampling between constant
pH REMD and MD simulations. Titration curves of Asp3,
Lys5, and Tyr7 from two sets of simulations are plotted in
Figure 7A and B. For each titratable residue, titration curves
generated by constant pH REMD and MD are close to each
other. Since the pKa value of Asp3 in this heptapeptide is

experimentally determined to be 3.6, it will be interesting
to evaluate how our predicted values compare to the
experimental result. The pKa values of Asp3 were calculated
on the basis of Hill’s plots, which are displayed in Figure
7C. The predicted pKa value is 3.7 for both REMD and MD
simulations, and they are in excellent agreement with the

Figure 6. Cluster populations of ADFDA at 300 K. (A) MD
vs REMD at pH 4, (B) two REMD runs from different starting
structures at pH 4. Large correlation shown in Figure 6B
suggests that the REMD runs are converged. Large correla-
tions between two independent REMD runs are also observed
at other solution pH values. Correlations between MD and
REMD simulations can be found in Table. 3.

Figure 7. (A and B) Titration curves of Asp3, Lys5, and Tyr7
in the heptapeptide derived from protein OMTKY3. (C) Hill’s
plots of Asp3. The pKa values of Asp3 are found through Hill’s
plots.
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experimental pKa value. Following the same procedures, our
predicted pKa values of Lys5 (10.6 for both REMD and MD)
and Tyr7 (9.9 and 9.8 for REMD and MD respectively) were

obtained. Not surprisingly, the REMD and MD schemes
yielded essentially the same predicted pKa values for Lys5
and Tyr7.

Although the final pKa predictions are the same for
constant pH REMD and MD simulations, constant pH
REMD showed a clear advantage in the convergence of
protonation state sampling. Again, we chose the cumulative
average protonation fraction vs MC steps to reflect proton-
ation state sampling convergence for all three titratable
residues. Several representative plots are shown in Figure
8. The trend that constant pH REMD simulations produce
faster convergence in protonation fraction is universal.
Therefore, it is very clear that constant pH REMD method
is better than constant pH MD in protonation state sampling.

Conformational sampling is an important issue in constant
pH studies. We first looked at the conformational sampling
on peptide backbones. We evaluated backbone conforma-
tional sampling through Ramachandran plots. Six residues
(from Ser2 to Tyr7) are studied here. Not surprisingly,
Ramachandran plots from constant pH REMD and MD
simulations are very close, suggesting that the overall local
conformational samplings are similar. The Ramachandran
plots of Asp3 at pH 4 are shown in Figure 9 as examples.
The only exception is Tyr7 in acidic pH values. Tyr7 can
visit the left-handed R-helix conformation during constant
pH REMD runs but is not able to do that in constant pH

Figure 8. Cumulative average protonation fraction of a
titratable residue vs MC steps.

Figure 9. Dihedral angle (�, Ψ) probability densities of Asp3
at pH 4. (A) Constant-pH MD results; (B) constant-pH REMD
results. All others also show a very similar trend.
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MD runs. In general, constant pH REMD and MD yielded
the same Ramachandran plots for the heptapeptide.

As demonstrated earlier, the overall samplings of (�, Ψ)
distribution by constant pH REMD and MD are similar for
Ser2 to Thr6. It is interesting to determine how fast each
sampling scheme reaches the final distribution. We studied
the evolution of backbone conformational sampling based
on cumulative data as we did in the case of protonation state
sampling convergence. As described in the Methods subsec-
tion F, the RMSD between the (�, Ψ) probability distribution
up to current time versus total simulation time was calculated.
The smaller a RMSD is, the closer a probability distribution
reaches to the final distribution. Deviations were calculated
starting from the second nanosecond with time intervals
incremented by 100 ps. The cumulative time-dependence
RMSD of Asp3 and Lys5 are also shown in Figure 10 as
examples. As seen in the figures, these curves decrease faster
in constant pH REMD simulations. Figure 10 suggests that,
although the final (�, Ψ) probability distributions are similar

between constant pH REMD and MD simulations, the
constant pH REMD simulation clearly reaches the final state
faster.

Cluster analysis was also applied to study the convergence
of conformation sampling in the heptapeptide. By comparing
cluster populations between the first and second half of one
trajectory, one could check the convergence of that simula-
tion. The two halves of a structural ensemble should yield
the same populations in each cluster if convergence is
reached. For example, for simulations at pH 4, both constant
pH REMD and MD yield about 20 clusters, and the
correlations coefficients are calculated through a linear
regression. Cluster population plots and correlation coef-
ficients are shown in Figure 11. A much higher correlation
coefficient can be seen in constant pH REMD simulation,

Figure 10. The root-mean-square deviations (RMSDs) be-
tween the cumulative (�, Ψ) probability density up to current
time and the (�, Ψ) probability density produced by the entire
simulation. (�, Ψ) probability density convergence behaviors
at other pH values also show that REMD runs converge to
final distribution faster.

Figure 11. Cluster population at 300 K from constant pH MD
and REMD simulations at pH ) 4. Cluster analysis is
performed using the entire simulation. The populations in each
cluster from the first and second halves of the trajectory are
compared and plotted. Ideally, a converged trajectory should
yield a correlation coefficient to be 1. (A) Constant pH MD.
(B) Constant pH REMD. A much higher correlation coefficient
can be seen in constant pH REMD simulation, suggesting
much better convergence is achieved by the constant pH
REMD run.
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suggesting the two halves of the constant pH REMD
simulation at pH 4 populate each cluster much more similarly
than the corresponding constant pH MD does. Hence, much
better convergence is achieved by the constant pH REMD
run.

Conclusion

In our work, we have applied the replica exchange molecular
dynamics (REMD) algorithm to the discrete protonation state
model developed by Mongan et al.62 in order to study pH-
dependent protein structure and dynamics. Seven small
peptides were selected to test our constant pH REMD
method. Constant pH molecular dynamics (MD) simulations
were run on the same peptides for comparison. The constant
REMD method results are encouraging. The constant REMD
method can predict pKa values in agreement with literature
and experimental results. The constant pH REMD method
also displays an advantage in convergence behaviors during
protonation states and conformational sampling.

The REMD algorithm has been proven beneficial to study
pH-dependent protein structures. Our future work will include
studies of pH-dependent protein dynamics and application
of this constant pH REMD to large proteins.
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Abstract: The replacement of standard molecular mechanics force fields by inexpensive
molecular orbital (QM′) methods in multiscale models has many advantages, e.g., a more
straightforward description of mutual polarization and charge transfer between layers. The
ONIOM(QM:QM′) scheme with mechanical embedding can combine any two methods without
prior parametrization or significant coding effort. In this scheme, the environmental effect is
evaluated fully at the QM′ level, and the accuracy therefore depends on how well the low-level
QM′ method describes the changes in electron density of the reacting region. To examine the
applicability of the QM:QM′ approach, we perform case studies with density-functional tight-
binding (DFTB) as the low-level QM′ method in two-layer ONIOM(B3LYP/6-31G(d):DFTB)
models. The investigated systems include simple amino acid models, one nonheme iron enzyme
mimic, and the enzymatic reactions of Zn-�-lactamase and trypsin. For the last example, we
also illustrate the use of a three-layer ONIOM(B3LYP/6-31G(d):DFTB:Amber96) model. The
ONIOM extension, compared to the QM calculation for the small model system, improves the
relative energies, but high accuracy (deviations below 1 kcal/mol) is not achieved even with
relatively large QM models. Polarization effects are fairly well described using DFTB, but in
some cases QM and QM′ methods converge to different electronic states. We discuss when
the QM:QM′ approach is appropriate and the possibilities of estimating the quality of the ONIOM
extension without having to make explicit benchmarks of the entire system.

I. Introduction

Over the three decades following their first implementation,1

the quantum mechanics/molecular mechanics (QM/MM)
methods have seen great success in a wide spectrum of
applications, including biological reactions and materials
science.2-5 The success of the QM/MM methods is rooted

in their multiscale nature, in which the system is partitioned
into different regions treated at appropriate levels of theory.
Only the core region, i.e., the QM region, is treated with a
computationally expensive QM method that can describe
chemical reactions, e.g., ab initio wave function, density
functional, or semiempirical methods, while the rest of the
system, i.e., the MM region, is treated with MM methods
that are often thousands of times faster than QM methods.
This compromise between accuracy and computational
efficiency makes it possible to study systems that are
computationally prohibitive to the pure QM methods.

The success of QM/MM has stimulated our development
of the multiscale ONIOM method.6-12 In two-layer ONIOM,
the high-level method (QM) is applied only to a selected
model system, i.e., the QM region with link atoms.10,13 The
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low-level method is applied to both the model and the real
system. The latter is equivalent to the entire system and
includes both the QM and MM regions of generic QM/MM
models. The energy of the target real,high calculation is then
approximated by an extrapolation scheme. An advantage of
the ONIOM scheme is that all calculations are made on
complete systems, which makes it possible to combine any
methods, including molecular orbital methods, without prior
parametrization or significant coding efforts. The method can
also easily be extended to an arbitrary number of layers,
although the present implementation is limited to three
layers.9,14-16 The ONIOM method has been successfully
utilized in a wide range of applications, including transition
metal catalysis, carbon nanotube chemistry, and enzymatic
catalysis.17,18

Although the ONIOM method is different in design and
implementation compared to generic QM/MM methods, there
are also many similarities. When comparing these methods,
we use the general terms QM region and MM region to
represent different partitions of the system. One common
concern is the boundary between QM and MM regions, and
how to treat the interactions between the two. Some issues
arising from the use of two fundamentally different physical
descriptions of the system can be listed as follows: (1) the
exchange interaction between the QM region and the MM
region, which is partially included in the parametrized van
der Waals interaction between the two regions, (2) the charge
transfer between the QM and the MM region, (3) the
polarization of the QM electron density induced by the MM
atoms, and (4) the polarization of the MM atoms by QM
and other MM atoms. Among these four issues, the last one
is often considered the most severe and important.19-25

To properly address the polarization of MM atoms, the
most straightforward approach (but by no means trivial) is
to develop a polarizable force field.19,20,26 In recent years,
several approaches have been adopted to develop such force
fields, e.g., the fluctuation charge model19,20 and explicit
polarization potential.27 These models can partially alleviate
the issues connected with the neglect of polarization effects,
but they are not without problems.19,20 For example, dis-
sociated diatomic molecules bear finite charges on both
atoms. This has been explicitly addressed by the Martinez
group by using the QTPIE model, a generalization of the
flucq model.21,23,24 Although there is much progress, the
performance of currently proposed polarizable force field
models remains to be seen.

Development of accurate force fields for biological systems
is further complicated by the large number of parameters.22,28

QM/MM calculations have also been extended to include
charge transfer between QM and MM regions using the
principle of chemical potential equilibration.29 A drawback
of these methods is that they require multiple QM iterations
to reach consistency between QM and MM charges, which
leads to significant increases in computational cost.

An alternative approach is to describe the entire system
by quantum mechanics. Large systems can be treated entirely
by high-level QM methods by dividing them into frag-
ments,30-32 but these methods invariably spend the largest
amount of time calculating the nonreacting part of the system.

Savings in computational time can be achieved by a QM/
QM′ approach, where a less expensive molecular orbital
method, QM′, is used to describe the environment. In early
work, Cortona proposed to combine different density func-
tionals based on superposition of atomic densities.33 Other
groups have used the QM/QM′ approach to embed an
expensive correlated wave function calculation in the envi-
ronment of a relatively fast DFT method.34-36 To be able
to treat very large systems, Gogonea et al. constructed a
hybrid DFT/semiempirical Hamiltonian based on the idea
of equilibration of chemical potentials combined with the
divide and conquer method.30,37 The approach allows for
mutual polarization and charge transfer but requires an
iterative approach to equilibrate the chemical potential. Cui
et al. have also coupled DFT with semiempirical methods,
both in an iterative fashion and in the ONIOM formalism.38

The properties of the ONIOM method make it very
straightforward to design QM:QM′ models.7,10,11,39 As no
parametrization is required to combine different methods,
the selection of quantum mechanical methods can be made
to fit each specific chemical process.14,16,40,41 We are
interested in reactions in complex systems, e.g., transition
metal enzymes. For these systems, the compromise is often
to use the best possible method to calculate the reaction
energy and use a relatively cheap method to describe the
environmental effects. In the present study, QM is a density
functional method, while QM′ is the density functional tight
binding method (DFTB). In the ONIOM(QM:QM′) scheme
with mechanical embedding (ME), the model,QM calcula-
tions are independent of the QM′ electron density, and there
is no need for multiple iterations of the QM region. This
makes the QM:QM′-ME approach cost-efficient for systems
that require expensive QM schemes, as it minimizes the
number of QM iterations.

A limitation in the mechanical embedding scheme is that
the environmental effects are evaluated only at the QM′ (low)
level, as the difference between real,QM′ and model,QM′
electron densities. The QM′ method must therefore be able
to describe the changes in electron density of the reacting
region; e.g., if an electron transfer reaction occurs in the
model,QM system, the same process should occur also in
the layers described by QM′. The applicability of the QM:
QM′ scheme thus depends heavily on the QM′ description
of the environmental effect on a specific reaction, and it is
difficult to perform comprehensive benchmark tests. The
purpose of this investigation is therefore to demonstrate the
advantages and limitations of the QM:QM′ method by
applying it to a few illustrative examples. The resultant
understanding of the principles of the ONIOM scheme should
help in the design of more reliable QM:QM′ methods for a
wide range of systems than before.

Another important aspect of the QM:QM′ scheme is that
QM′ calculation is performed for the entire real system,
which means that parametrized methods used as QM′ must
have parameters applicable also for the reactive region. In
the present paper, for reactions including transition metals,
we propose to use a density functional method as the high-
level QM method and the density-functional tight-binding
(DFTB) method42-44 as the low-level QM′ method. The
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DFTB method is a second-order approximation of DFT;45

this combination can be expected to give a similar perfor-
mance to pure DFT methods.46,47 Since DFTB is 100-1000
times faster than DFT, the ONIOM combination can be
applied to a much larger system than a pure DFT method
can be applied to. We have developed DFTB parameters for
many of the first-row transition metal elements48 and have
also implemented a DFTB code in the Gaussian program,
which enables us to use the full functionalities of this
program for DFTB calculations.47

We have previously illustrated the applicability of the
DFT:DFTB approach for transition metal systems by apply-
ing it to a nonheme enzyme (isopenicillin N synthase).48

DFTB has also been used as a low layer in B3LYP:DFTB
and MP2:DFTB combinations for copper- and titanium-
containing systems, with errors typically less than 2 kcal/
mol.49 The choice of DFTB as the QM′ method for proteins
is supported by the good performance for geometries and
relative energies in biological systems.50-52

The QM:QM′-ME approach is efficient only when the
cost of the QM calculation for the model system is higher
than the cost of the QM′ calculation for the real system.
For very large systems, it is therefore useful to make a three-
layer partition of the system, i.e., QM:QM′:MM.9 As a
computationally cheap QM′ method can be utilized economi-
cally with thousands of atoms in many applications, this
method pushes the boundary between QM and MM away
from the reaction center, which is expected to largely reduce
the issues caused by the QM:MM boundary mentioned
above. The performance of three-layer ONIOM has been
tested by our group before.14-16 Other three-layer approaches
have been used to describe, e.g., spectral tuning in protein
environments.53,54

In this study, we test both two-layer ONIOM(B3LYP:
DFTB) and three-layer ONIOM(B3LYP:DFTB:MM) mod-
els. In section II, we discuss how to evaluate ONIOM in
terms of its performance compared to the high-level calcula-
tion of the real system. In the following section, several
carefully chosen examples are presented, which range from
proton affinity calculations of titratable amino acids to an
active site model of Zn-�-lactamase, a nonheme iron catalase
mimic, and finally to the acylation process in trypsin. A
discussion of the advantages and limitations of the ONI-
OM(QM:QM′) scheme is presented in section IV before the
conclusions in section V.

II. Computational Details

A. ONIOM Calculation Evaluation. ONIOM uses an
extrapolation scheme to approximate the costly target
calculation, a high (QM)-level treatment of the entire real
system:

where ∆E refers to the energy of reaction, E(product) -
E(reactant), or the activation energy, E(transition state) -
E(reactant).

The error ∆D in ∆E in the ONIOM approximation, relative
to the real,high target calculation, can be written as

A convenient measure for evaluating ONIOM calculations
is the ∆S value that describes the environmental effect at
each computational level:11

∆Shigh is “the substituent effect” on the energetics when the
real system is approximated by the model system at the given
high-level method, i.e., a measure of environmental effect;
∆Slow is the corresponding value for the low-level method.
Using eqs 1-4, the error in the ONIOM approximation can
be conveniently expressed in the form of ∆S values:

If the low-level method describes the environmental effect
in the same way as the high-level method (∆Slow ) ∆Shigh),
the ONIOM energy is exact, i.e., becomes the same as the
target calculation, ∆Ereal,high, with ∆D ) 0. The error can
also be small if the total effect of the environment is very
small (∆S ≈ 0) at each level; in this case, a high-level
calculation of the model system is enough, and there is no
need for an ONIOM extension. To distinguish the situation
where the error is small due to small environmental effects
from the situation where the ONIOM extrapolation scheme
is accurate, we introduce the ONIOM error score (OES):

A small absolute value of the error score means that the
ONIOM setup is appropriate. If the absolute value of the
error score is <1, the ONIOM calculation improves the result
compared to the model calculation. If the absolute value is
>1, the addition of the real system makes the relative energies
even worse. It is possible that the model,high calculation
gives the right result by neglecting two different environ-
mental effects with opposite sign at the two different levels.
In these cases, an ONIOM model could show a larger error
but still give a qualitatively more correct description of the
system. The ONIOM error score is therefore mainly of use
when evaluating isolated or incremental effects.

B. Computational Details. Calculations have been per-
formed using a development version of the Gaussian 03
package55 in which the DFTB method has been imple-
mented.47 Tests of the accuracy of the ONIOM model are
made against the target real,high calculation for all systems,
and to simplify the analysis, all comparisons between
methods are made at the same geometry. A previous QM:
DFTB test by Iordanov showed that geometry errors were
in general smaller than energetic errors.49

In most calculations, the high-level method is B3LYP/6-
31G(d), mainly because DFTB is parametrized against DFT
with a double-� basis set. The contribution from the DFTB
layer only reflects the environmental effect, and assuming

∆EONIOM ) ∆Emodel,high + ∆Ereal,low - ∆Emodel,low

(1)

∆D ) ∆Ereal,high - ∆EONIOM (2)

∆Shigh ) ∆Ereal,high - ∆Emodel,high (3)

∆Slow ) ∆Ereal,low - ∆Emodel,low (4)

∆D ) ∆Ereal,high - ∆EONIOM

) ∆Ereal,high - (∆Emodel,high + ∆Ereal,low - ∆Emodel,low)

) ∆Shigh - ∆Slow

(5)

OES ) ∆D/∆Shigh (6)
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the selected high-level method gives a good description of
that effect, the ONIOM error should not be very sensitive
to the choice of high-level methods. In cases where the
environmental effects are basis-set-dependent, e.g., in the
calculation of proton affinities, calculations have also been
made with larger basis sets.

III. Results

The selected systems represent a wide range of applications,
from simple amino acid models to medium-sized models of
transition metal systems and a full protein. The purpose of
calculating proton affinities for amino acids is to illustrate
the general principles of the QM:QM′ approach for reactions
with clear environmental effects. Tests of medium-sized
models include transition metal systems, one enzymatic
reaction, Zn-�-lactamase, and an iron catalase mimic. The
latter example shows how the presence of multiple electronic
states affects the applicability of the QM:QM′ scheme.
Finally, we apply the three-layer QM:QM′:MM model to
trypsin to illustrate that the method can be used for full
enzymatic systems.

A. Proton Affinities of Amino Acids and Peptidess
Effect of Improved Treatment of Side Chains. In active-
site QM models of enzymatic reactions, amino acid residues
are often represented by truncated models of their side chains;
e.g., acetate is used as a model for the negative residue Asp.56

Here, we evaluate the benefit of an additional QM′ layer to
represent the left-out part of the side chain when calculating
the gas phase proton affinity of six titratable side chains:
arginine, lysine, histidine, aspartate, glutamate, and cysteine.
Proton affinities are very sensitive to environmental effects
and good candidates for evaluating different methods.57

Amino Acid Monomers. In the first set of calculations, the
real systems are the side chains, with truncated backbone
bonds capped by hydrogen atoms. Several model systems
are designed by making different cuts in each side chain,
see Figure 1. Proton affinities with pure DFTB have been
calculated using an energy of H+ of 141.9 kcal/mol.58

ONIOM results are not affected by this value as it cancels
in the (Ereal,low - Emodel,low) contribution. Results do not
include corrections for basis set superposition error (BSSE).
The ∆Shigh values are not likely to be much affected by BSSE,
as the substituents are made in sites away from the proton.
Geometries are optimized using ONIOM separately for each

size of the model system, and using B3LYP/6-31G(d) for
the reference calculation. The energies from the respective
real,high calculations for each ONIOM model can therefore
be used to assess the quality of the ONIOM geometry
optimization.

Results are summarized in Table 1. The ONIOM results
are significant improvements compared to the model,high
calculations (using the real,high calculations as a reference).
As an example, the error for an acetate model (M-2) of
glutamate is 10.8 kcal/mol at the model,B3LYP level and
decreases to 2.2 kcal/mol with the additional DFTB layer
(ONIOM error score of 0.21). For residues where the base
is negative, i.e., Asp, Glu, and Cys, the ONIOM errors do
not consistently decrease as the size of the model system
increases. The remaining ONIOM error for the largest model
systems comes from an underestimation of the effect of the
backbone of 2-4 kcal/mol in DFTB compared to DFT. In
the smallest model system, this error is partly canceled by a
difference between DFTB and DFT in describing the effect
of adding the first methyl group. This error cancellation gives
a smaller apparent ONIOM error for the smallest model
systems compared to the larger model systems.

In contrast, residues whose base is neutral, i.e., His, Lys,
and Arg, show lower errors when the size of the model
system increases, and errors for cuts three or more bonds
away from the proton are ∼1 kcal/mol or less. ONIOM
optimization also gives overall good performance for ge-
ometries with typical deviations in real,high energy between
different geometries of <1 kcal/mol. However, the artificially
truncated backbone is not restricted and can adapt different
conformations, which may lead to jumps in the calculated
proton affinity. This explains the differences in the calculated
proton affinity of the real,B3LYP system between Lys model
M-2 and the full model, as well as differences between Arg
model M-4 and the full model, see Table 1.

Tripeptides. To better include the effect of the peptide
backbone, two tests were made for tripeptides. Histidine was
chosen as a representative of the “neutral base” group, and
glutamate was chosen as a representative of the “negative
base” group. For the Gly-Glu-Gly (GEG) tripepeptide, the
error when using acetate as a model (M-2) is 28.2 kcal/mol
at the B3LYP level, and adding the DFTB layer reduces the
error to 0.7 kcal/mol. Results are similar also for other cut
positions, see Table 1. For the Gly-His-Gly (GHG)

Figure 1. ONIOM(QM:QM′) partitions in amino acid side chains. Lines labeled M-1 to M-4 illustrate model cuts, with the part
to the right being part of the model system.
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tripeptide, the error of an imidazole model (M-2) is 10.6
kcal/mol, and the error is reduced to 1.3 kcal/mol in ONIOM.
These results indicate that DFTB fairly well describes the
effects of a DFT calculation with a double-� basis.

Extending the basis set from 6-31G(d) to 6-31+G(d),
which includes diffuse functions, has large effects on the
∆S value (environmental effect) for the negative Gly-
Glu-Gly system (from -25.3 to -18.4 kcal/mol), see Table
2. The DFTB ∆S value is closer to the B3LYP value without
diffuse functions, and consequently the ONIOM error
increases by 7 kcal/mol when going from the smallest to
the largest basis set. Further increasing the basis to triple-�
quality (6-311++(2df,2pd)) has a very limited effect.

The effect of diffuse functions is particularly large in the
present case because the negatively charged model system
is not well described with the small 6-31G(d) basis set; e.g.,
an acetate model system has occupied orbitals with positive
eigenvalues. Adding diffuse functions thus stabilizes the
acetate group relative to its base, leading to a significant basis
set effect on the proton affinity. For better balanced systems,
the effect of the environment is less basis-set-dependent, as
seen by the results for the Gly-His-Gly (GHG) tripeptide
in Table 2.

Most QM calculations of enzyme active sites use truncated
amino acid models, and considering the large effects of the
backbone on the calculated proton affinities (-18.4 kcal/

Table 1. Proton Affinities (kcal/mol) of Selected Amino Acids Calculated Using ONIOM B3LYP/6-31G(d):DFTBa

real
system

model
system

B3LYP
(real) ONIOM

B3LYP
(model)

DFTB
(real)

DFTB
(model) ∆Shigh ∆D OES

Glu M-1 355.6 355.2 362.5 358.4 365.7 -6.9 0.4 -0.05
M-2 355.6 357.9 366.5 358.0 366.6 -10.8 -2.2 0.21
M-3 355.3 357.5 364.8 358.4 365.7 -9.5 -2.2 0.23
full 354.7 358.0

Asp M-1 352.3 352.8 362.5 356.0 365.7 -10.2 -0.5 0.05
M-2 352.1 355.5 366.3 355.8 366.6 -14.1 -3.3 0.24
full 352.0 355.7

Cys M-1 353.2 350.4 363.0 343.9 356.5 -9.7 2.9 -0.29
M-2 353.4 357.1 369.1 344.1 356.1 -15.7 -3.7 0.23
full 352.9 344.3

His M-1 247.2 252.6 218.3 239.5 205.2 28.9 -5.5 -0.19
M-2 246.2 244.4 236.6 239.5 231.7 9.6 1.9 0.19
M-3 246.4 245.2 240.6 239.5 234.9 5.8 1.2 0.20
full 246.5 239.2

Lys M-1 233.5 231.7 217.2 213.0 198.5 16.3 1.8 0.11
M-2 233.8 233.1 226.8 212.3 206.0 7.0 0.7 0.10
full 230.5 212.5

Arg M-1 258.0 259.3 239.8 251.4 231.8 18.2 -1.4 -0.08
M-2 256.8 255.1 249.2 248.9 243.0 7.6 1.7 0.22
M-3 254.1 253.7 253.9 246.9 247.1 0.2 0.5 2.38
M-4 257.0 256.9 255.5 250.2 248.7 1.5 0.0 0.03
full 253.9 250.5

Tripeptides
GEG M-1 338.9 336.3 363.3 339.5 366.5 -24.4 2.6 -0.11

M-2 338.7 339.4 366.8 339.2 366.7 -28.2 -0.7 0.03
M-3 338.8 339.6 367.0 339.5 366.9 -28.2 -0.8 0.03
full 338.2 340.2

GHG M-2 246.5 247.8 235.9 243.3 231.4 10.6 -1.3 -0.12
full 248.5 242.1

a Separate values for B3LYP/6-31G(d) and DFTB applied to real and model systems are also listed. For each model, all energy
calculations are performed at the ONIOM optimized geometry. The real,B3LYP and real,DFTB results therefore also vary with the ONIOM
partition. For descriptions of the different computational models, see Figure 1. ∆Shigh, ∆D, and OES (ONIOM error score) are defined in
section II.A. One-letter amino acid codes are used for the tripepeptides.

Table 2. Proton Affinities (kcal/mol) for Two Tripeptides Using ONIOM(B3LYP:DFTB) with Different Size of the Basis Set in
the B3LYP Calculationa

real
system

QM (high)
basis

model
system

B3LYP
(real) ONIOM

B3LYP
(model)

DFTB
(real)

DFTB
(model) ∆Shigh ∆D OES

GEG 6-31G(d) M-1 338.2 337.7 363.6 340.2 366.1 -25.3 0.6 -0.02
6-31+G(d) M-1 326.8 319.2 345.1 340.2 366.1 -18.4 7.5 -0.41
6-311++G M-1 331.8 324.2 350.1 340.2 366.1 -18.4 7.6 -0.41
(2df, 2pd)

GHG 6-31G(d) M-2 248.5 246.3 234.9 242.1 230.8 13.6 2.2 0.16
6-31+G(d) M-2 242.6 241.1 229.8 242.1 230.8 12.9 1.6 0.12
6-311++G M-2 245.8 242.9 231.5 242.1 230.8 14.3 3.0 0.21
(2df, 2pd)

a The separate values for B3LYP and DFTB applied to real and model systems are also listed. Calculations are performed as single point
on B3LYP/6-31G(d) optimized geometries. ∆Shigh, ∆D, and OES (ONIOM error score) are defined in section II.A. One-letter amino acid
codes are used for the tripepeptides, and ONIOM cuts are shown in Figure 2.
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mol for Gly-Glu-Gly (GEG) with the largest basis, see
Table 2) raises the question whether there is a significant
error in the relative energies of proton transfer processes in
active-site models. Comparing only the relative proton
affinities of the model,high systems to those of the real,high
systems for the tripeptides Gly-Glu-Gly and Gly-His-Gly
(GHG) would give a difference in proton transfer energy of
more than 30 kcal/mol. However, in the combined system,
see Figure 2, the deviation between the model,high and the
real,high calculation is only 1.8 kcal/mol, because that
reaction does not include changes in the charge of the system.
For this system, the use of ONIOM does not improve the
result (deviation of -1.7 kcal/mol compared to the
model,high value).

B. Zn-�-lactamasesVarious Active Site Models. En-
zyme catalysis is an attractive area for multiscale models,
and the B3LYP/6-31G(d):DFTB combination is therefore
evaluated for an enzymatic reaction, the hydrolysis of
N-methylazetidinone in a mononuclear Zn-�-lactamase.
Production of �-lactamase is considered the primary route
in which bacteria acquire resistance to the common �-lactam
antibiotics such as penicillins and cephalosporins. DFTB
calculations of Zn active sites give relatively good agreement
with B3LYP for distances and most reaction energies.59

Modeling of substrate binding in a dinuclear Zn-�-lactamase
shows relatively similar Zn-ligand distances for DFTB/MM
simulations compared to B3LYP calculations (usually within
0.1 Å for reactants and intermediates).60,61

The reaction pathway and the initial coordinates were
obtained from an active-site study by Diaz et al.62 In their
HF/6-31G(d) calculations, the reaction goes through five
stationary points. As seen in Scheme 1, from 1(Reactant), a
hydroxyl group bound to Zn performs a nucleophilic attack
on the carbonyl of the four-membered �-lactam ring 2(TS).
The ring is still intact in the tetrahedral intermediate 3(INT),
and cleavage of the �-lactam C-N bond 4(TS) is initiated
by proton transfer from His210 to the substrate nitrogen. The
reaction also leads to a proton transfer from the Zn-
coordinated hydroxo group to Asp90, leading to the final
state 5(Product). At the B3LYP/6-31G(d) level, the reaction
goes directly from 2(TS) to 5(Product) without any inter-
mediates.62

To design a stringent test, a minimum-sized model system
(model Z-1) was used, as shown in Figure 3. All ONIOM
cuts have to be made through formal single bonds, and Asp90
is modeled as formic acid and the histidine residues as

methylamine. This leaves 38 atoms in the model system
(including link hydrogens). Calculations were initially per-
formed at the HF optimized geometries because they cover
a larger part of the reaction coordinate, see Figure 4 and
Table S1 in Supporting Information.

The ONIOM energies for model Z-1 are improvements
over the DFTB results (mean average deviation (MAD) for
the 4 states in Figure 4 decreases to 4.3 kcal/mol from 10.6
kcal/mol), but only slightly better than the model,B3LYP
calculations (MAD of 5.5 kcal/mol). The relatively large
errors probably come from an inappropriate model partition,
especially the use of methylamines as histidines in the model
system. The 5-membered imidazole ring is conjugated while
the model methylamine is not. Cuts in conjugated systems
can be done in ONIOM, but they are in general more
challenging. Similar partitions gave significant errors in the
calculation of proton affinities, see Table 2. Errors can be
systematically decreased by increasing the size of the model
system. If the histidines that coordinate Zn are fully included
in the model system (Z-2), the ONIOM error is reduced to
3.4 kcal/mol. Moving the proton-donating His210 into the
model system (Z-3) further decreases the ONIOM deviation
to 1.4 kcal/mol.

ONIOM deviations do not correlate with errors in the
DFTB method itself. For 3(INT), the DFTB result is within
3 kcal/mol of the B3LYP value, but the ONIOM deviation
in the small Z-1 model is 5.2 kcal/mol. For 5(Product), the
DFTB deviation is 28 kcal/mol, but the ONIOM error is only
0.3 kcal/mol.

In the next step, we optimize the three stationary points
on the B3LYP potential energy surface, 1(Reactant), 2(TS),
and 5(Product), with both B3LYP and ONIOM(B3LYP:
DFTB) using model Z-1; the results are shown in Figure 5.
As shown in Table 3, two optimized geometries give only
small energy difference up to 0.7 kcal/mol for either state at
either level of calculations, indicating that the ONIOM
geometry optimization is quite reliable for the reaction
energetics.

C. Reaction between Hydrogen Peroxide and a
Nonheme Iron Catalase Mimic. Redox-active transition-
metal centers present special challenges in modeling due to
the presence of nearly degenerate electronic states, which
affects both the accuracy and the convergence properties of

Figure 2. Proton transfer between two tripeptides, Gly-
Glu-Gly and Gly-His-Gly. Lines M-1 and M-2 illustrate the
used model cuts (labels match the cuts made for the single
amino acid systems in Figure 1). Atoms in ball-and-stick are
included in the model system, while atoms in stick representa-
tion are part of the real system.

Scheme 1. Reaction Mechanism for a Mononuclear
Zn-�-lactamase Adapted from Ref 62
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the electronic structure calculations. To extend the tests of
the ONIOM(B3LYP:DFTB) approach to redox-active sys-
tems, we study the reaction between hydrogen peroxide and
an inorganic catalase mimic, the dibenzotetraaza[14]-

annulene-FeIII complex ([Fe(C24H22N4O4)]+),63 see Figure
6. The ONIOM model is formed by truncating the conjugated
ligand at bonds that can formally be assigned as single bonds.

QM:QM′ calculations of transition metal systems are
challenging as three separate calculations of the transition
metal system have to be performed. The three calculations
must all converge to the same electronic state. Otherwise,
the low-level method describes a different state from the
high-level method, and the environmental effect in the
real,low calculation becomes qualitatively incorrect. Despite
these challenges, a previous test of a redox reaction in a
nonheme transition metal enzyme gave reasonable results
for the B3LYP:DFTB method.48 With this in mind, it is of
great interest to understand under what circumstances that
QM:QM′ methods can be applied to transition metal systems.

The reaction mechanism of the catalase mimic has been
previously studied by DFT methods.64,65 The present inves-
tigation follows the reaction pathway in ref 64. A flaw in
that study is that the additional axial (proximal) ligand was
not taken into account.65 For the present purpose, this is not
critical because the comparison between methods should be
valid even if the test system is not an ideal representation of
an experimental situation.

According to ref 64, the reaction between hydrogen
peroxide and the iron complex goes through nine stationary
points and eventually leads to formation of water and an
Fe(IV)-oxo species. The potential energy profiles from the
full B3LYP calculation as well as ONIOM and model,B3LYP
calculations are shown in Figure 7. Full results are given in
Table 4. All calculations are performed on the quartet surface,

Figure 3. ONIOM models (Z-1 to Z-3) of the active site in a mononuclear Zn-�-lactamase. Atoms in the model system are
shown in ball-and-stick representation, while atoms in the real system are shown in stick representation. Atoms with coordinates
frozen during optimizations are marked with X.

Figure 4. DFTB, ONIOM(B3LYP/6-31G(d):DFTB), and B3LYP/
6-31G(d) energies for hydrolysis of N-methylazetidinone in
mononuclear Zn-�-lactamase in Scheme 1. Illustrations of
ONIOM models Z-1 to Z-3 are given in Figure 3.

Figure 5. Optimized structure of 2(TS) with B3LYP and
ONIOM(B3LYP:DFTB) for model Z-1. Selected distances (in
Å) are given at B3LYP/6-31G(d) level with ONIOM(B3LYP/
6-31G(d):DFTB) results in parentheses. The total RMSD
between the two structures is 0.124 Å.

Figure 6. ONIOM division for the dibenzotetraaza-
[14]annulene-FeIII complex. Atoms in the model system are
shown in ball-and-stick representation, while atoms in the real
system are shown in stick representation.
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and results are evaluated at the B3LYP/6-31G(d) geometries.
Transition states have not been fully optimized; instead, the
Fe-O, O-O, and O-H distances were taken from the study
of Wang et al.64 and kept frozen during the optimization.
There are differences in the reported B3LYP potential energy
surface in Figure 7 and the corresponding values in ref 64,
and they come from differences in basis set between the two
studies, as well as the neglect of zero-point energy in the
present study.

The mean absolute deviation between B3LYP:DFTB and
the target B3LYP results are 6.3 kcal/mol, and the maximum
deviation is 13.2 kcal/mol, see Table 4. The performance of
the B3LYP:DFTB method is much better than that of the
stand-alone DFTB method, but the deviation is still too large
to be acceptable in mechanistic studies. Adding the low-
level correction in stationary points gives worse results than
obtained by the model,B3LYP calculation, as seen from the
large ONIOM error scores in Table 4.

To understand the ONIOM deviations, we compare the
electronic structures obtained in the four separate calcula-
tions: real,high; model,high; real,low; and model,low, as
shown in Table 5. At the first stationary point 1, which is
the catalyst before addition of hydrogen peroxide, the full
B3LYP calculation (real,high) corresponds to an intermediate
spin triplet Fe(II) which resulted from reduction of its formal
Fe(III) state by an electron transfer from the annulene ligand.
The reason for this electron transfer is probably the lack of
the distal ligand.65 The spin on iron couples ferromagnetically
with the spin of the unpaired electron of the ligand to form

a quartet state. The present assignment agrees with the results
in ref 64 (unpaired electrons in dz2, dxz, and the ligand b1u

orbitals). The corresponding porphyrin-FeIII complex does
not oxidize the ligand,66 probably because the electron
affinity is lower for the annulene ligand than for the
porphyrin.64 In B3LYP, the electronic structure of the model
system is rather similar to that of the real system, see Table
5. The DFTB calculation of the real system gives a
description more similar to an intermediate-spin quartet
Fe(III) system; i.e., the oxidation of the ligand does not occur
fully in DFTB. On the other hand, DFTB calculation for the
model system converges to a high-spin quintet Fe(II) state
that couples antiferromagnetically with the spin on the ligand,
instead of an intermediate-spin Fe(II) state with ferromagnetic
coupling to the ligand spin as in the B3LYP calculation, see
Table 5. Thus, the ONIOM subtraction scheme provides the
triplet Fe(II) state for the model system, but with the
substituent effect evaluated using DFTB between the quartet
Fe(III) real system and the quintet Fe(II) + ligand radical
model system. This does not correspond exactly to the desired
triplet Fe(II) state in the real,B3LYP calculations, and the
QM:QM′ extrapolation scheme does not work as intended
for this system.

The situation is similar for the stationary point 2. Table 5
shows that real,DFTB and model,B3LYP give the quartet
Fe(III) state, while model,DFTB gives the high-spin quintet
Fe(II) state. Again the ONIOM scheme does not result in
the correct description of the triplet Fe(II) state in the
real,B3LYP calculations.

Table 3. B3LYP/6-31G(d) and ONIOM (B3LYP/6-31G(d):DFTB) Energies (in kcal/mol) for the Hydrolysis of
N-Methylazetidinone in Mononuclear Zn-�-lactamase at B3LYP and ONIOM Optimized Geometries

model state
B3LYP
(real) ONIOM

B3LYP
(model)

DFTB
(real)

DFT
(model) ∆Shigh ∆D OES

Geometries Obtained at the B3LYP/6-31G(d) Level
Z-1 1 0.0 0.0 0.0 0.0 0.0 NA NA NA

2(TS) 16.2 10.1 12.3 2.2 4.4 3.9 6.1 1.57
5(Prod) -30.0 -29.7 -36.5 -55.0 -61.8 6.5 -0.3 -0.05

Geometries Obtained at the ONIOM(B3LYP/6-31G(d):DFTB) Level
Z-1 1 0.0 0.0 0.0 0.0 0.0 NA NA NA

2(TS) 15.6 11.4 10.0 2.4 1.0 5.6 4.2 0.76
5(Prod) -30.2 -31.1 -35.7 -55.0 -59.6 5.6 0.9 0.16

Figure 7. B3LYP/6-31G(d) and ONIOM (B3LYP/6-31G(d):DFTB) potential energy profiles for the formation of a high-valent
ferryl-oxo species in a catalase mimic. The ONIOM system is shown in Figure 6.
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D. The Acylation Process in TrypsinsTwo- and
Three-Layer Calculations. The target of the ONIOM(QM:
QM′) approach is to describe full enzymatic systems, but
for systems with tens of thousands of atoms, the time required
for the QM′ calculation would be very high. As an
intermediate stage, the three-layer ONIOM(QM:QM′:MM)
approach offers an efficient alternative. The three-layer QM:
QM′:MM energy is obtained from five subcalculations:

We illustrate the use of the three-layer approach for peptide
cleavage in serine proteases. This reaction is one of the most
well-known enzymatic reactions and appears in many
biochemistry textbooks. Scheme 2 shows the proposed
mechanism for the first half of the reaction, the acylation
step.

An important motif in these enzymes is a conserved
Ser-His-Asp triad, known as the catalytic triad. Ser195
performs a nucleophilic attack on the substrate peptide and
transfers a proton to His57 (INT1). The negative Asp102
significantly stabilizes the proton transfer reaction by polar-
izing His57. The nucleophilic attack of serine leads to the
formation of an oxyanion in the substrate peptide chain, and
this species is stabilized by a second important catalytic
motif, the “oxyanion hole”. This motif provides hydrogen
bonds to the peptide carbonyl, interactions that increase in
strength as the charge of the oxygen increases. In the next
step, the peptide C-N bond breaks, and the newly formed
N-terminal group accepts the proton from His57 (INT2). This
completes the acylation part of the reaction.

ActiVe-Site QM:QM′ Models. As the full enzyme cannot
be benchmarked by QM calculations, we start with active-
site models. To identify the effects of different catalytic
motifs, we use three two-layer ONIOM systems (T-1 to T-3),

Table 4. Relative Energies (in kcal/mol) for the Reaction between Hydrogen Peroxide and the Iron Complex
Dibenzotetraaza[14]Annulene-FeIII Calculated Using ONIOM(B3LYP/6-31G(d):DFTB)a

stationary
point

B3LYP
(real) ONIOM

B3LYP
(model)

DFTB
(real)

DFTB
(model) ∆Shigh ∆D OES

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 -10.8 -6.8 -5.7 -24.5 -23.4 -5.2 -4.1 0.79
3 0.8 -5.6 1.9 -33.6 -26.2 -1.1 6.4 -5.93
4 -15.4 -16.1 -16.1 -55.9 -55.9 0.8 0.8 0.98
5 -7.6 -1.7 -8.5 -29.2 -36.0 0.9 -5.9 -6.89
6 -15.2 -17.9 -17.3 -57.5 -56.9 2.1 2.7 1.27
7 -6.9 -15.4 -12.8 -75.5 -72.9 5.8 8.5 1.45
8 -42.4 -33.3 -40.8 -91.2 -98.7 -1.6 -9.1 5.76
9 -33.3 -20.1 -31.5 -86.3 -97.7 -1.8 -13.2 7.52
mean absolute

error
2.4 6.3

a The separate values for B3LYP/6-31G(d) and DFTB applied to real and model systems are also listed. The different stationary points
are shown in Figure 7. All calculations are performed at B3LYP/6-31G(d) optimized geometries.

Table 5. Mulliken Spin Populations and Assigned Charges for the Formal Annulene-FeIII Complexa

Mulliken spin population/assigned state label

point group real,B3LYP real,DFTB model,B3LYP model,DFTB

1 Fe 2.16 /triplet Fe(II) 3.39 /quartet Fe(III) 2.00 /triplet Fe(II) 4.10 /quintet Fe(II)
ligand 0.85/L-1 -0.39/L-2 1.00/L-1 -1.10/L-1

2 Fe 2.18/triplet Fe(II) 3.33/quartet Fe(III) 2.54/quartet Fe(III) 4.01 /quintet Fe(II)
ligand 0.80/L-1 -0.35/L-2 0.42/L-2 -1.03/L-1

H2O2 0.03/0 0.03/0 0.04/0 0.02/0

a Only the first two stationary points in the reaction with hydrogen peroxide are listed. The assigned states are based on the number of
unpaired electrons and should be taken as labels rather than exact assignment of states.

Scheme 2. Textbook Mechanism for the Acylation Step in Serine Proteases

EONIOM ) Emodel,QM + EIntermediate,QM′ - Emodel,QM′ +
EReal,MM - EIntermediate,MM (7)
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with different model and real selections, as shown in Figure
8. T-1 (47 atoms in the model system, 51 atoms in the real
system) includes the catalytic triad and four amino acids of
the substrate peptide, but one of the peptide units, Cys14B,
is only part of the real system to test how the QM′ layer
handles through-bond interactions. T-2 (51 atoms in the
model system, 65 atoms in the real system) is created by
adding the groups that stabilize the oxyanion hole. The
environmental effect comes from two hydrogen bonds from
the protein backbone. In DFTB, hydrogen bond distances
are underestimated by about 0.1 Å on average, and hydrogen
bonding energies are systematically underestimated by 1-2
kcal/mol.51 To isolate the effect of this new motif, all atoms
in the T-1 system are placed in the model system. ONIOM
T-3 (65 atoms in the model system, 71 atoms in the real
system) is created by adding a part of the backbone that
forms a hydrogen bond with the amide NH group of the
substrate peptide. Again, the new group is treated by QM′,
while all the atoms from system T-2 are placed in the model
system, see Figure 8.

Neglect of the surrounding protein makes the secondary
structures unstable, and to avoid comparing different local
minima, all calculations have been performed at the B3LYP/
6-31G(d) optimized geometries of the full T-3 system. In
this system, the relative energies of INT1 and INT2 are 27.3
and 12.6 kcal/mol, respectively. INT1 is not a stationary
point for the B3LYP/6-31G(d) optimization, and the structure
is obtained by freezing the newly formed O-C distance at
1.513 Å (from ref 67). The relative energies are higher than
expected for an enzymatic pathway and do not change
significantly when applying a larger basis or a PCM solvent

correction. It is possible that the reaction pathway is different
in the present model than in the QM/MM free-energy
perturbation calculations by Ishida and Kato,67 but the exact
reaction pathway is not critical for the comparison of QM
and ONIOM(QM:QM′) results.

Results for the different B3LYP:DFTB models are given in
Table 6. Results for AM1 and MM (Amber96) are given in
the Supporting Information (Table S2). For INT1, the largest
error (4.7 kcal/mol) comes from the treatment of the oxyanion
hole with DFTB (T-2). At the B3LYP/6-31G(d) level, the
addition of the oxyanion hole stabilizes INT1 by 7.2 kcal/mol
(∆Shigh ) -7.2 kcal/mol), which reflects one of the important
enzymatic effects in the serine proteases. However, the DFTB
layer gives a larger stabilization (∆Slow ) -11.9 kcal/mol),
leading to an ONIOM error of 4.7 kcal/mol.

The errors for the serine protease are much larger than
those observed for a simple proton transfer reaction in which
DFTB can well account for environmental effects of 23 kcal/
mol with an error of only 1.2 kcal/mol.47 The results illustrate
that, as the environmental effect is calculated at the low-
level only, not only must the low-level method be able to
describe the electronic polarization effect but it must also
be able to properly describe the changes in electronic
structure of the reacting region. In DFTB, the electrostatic
interactions are calculated using Mulliken charges,43 and we
therefore use Mulliken charges to discuss changes in charge
distribution. In the reactant, DFTB assigns a Mulliken charge
of -0.593 to the oxygen (O-1 in Figure 8), close to the value
from B3LYP (-0.591), see Table 7. In INT1, DFTB assigns
a much higher negative charge to the oxygen (-0.910) than
the B3LYP calculation (-0.732), and it is not surprising that

Figure 8. ONIOM divisions for an active-site model of trypsin. A and B in the amino acid labels refer to different peptide chains.
Atoms in the model system are shown in ball-and-stick representation, while atoms in the real system are shown in stick
representation. Hydrogen bonds are marked with dashed lines as they appear in the extended systems. Atoms with coordinates
frozen at the X-ray structure are marked with X in model T-3.

Table 6. Reaction Energies (in kcal/mol, Relative to the Reactant) for the Acylation Process in Trypsin Calculated Using
ONIOM B3LYP/6-31G(d):DFTBa

model state
B3LYP
(real) ONIOM

B3LYP
(model)

DFTB
(real)

DFTB
(model) ∆Shigh ∆D OES

T-1 INT1 30.5 27.6 28.0 29.9 30.4 2.4 2.9 1.17
INT2 2.8 4.6 8.1 2.0 5.6 -5.3 -1.7 0.32

T-2 INT1 23.3 18.6 30.5 18.1 29.9 -7.2 4.7 -0.66
INT2 11.6 8.4 2.8 7.6 2.0 8.8 3.3 0.37

T-3 INT1 27.3 24.8 23.3 19.5 18.1 4.0 2.5 0.63
INT2 12.6 11.7 11.6 7.6 7.6 0.9 0.9 0.92

a The separate values for B3LYP/6-31G(d) and DFTB applied to real and model systems are also listed. The different models are shown
in Figure 8.
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the stabilizing effect of the oxyanion hole is overestimated
in the DFTB calculation. In INT2, the charge distributions
are similar for B3LYP and DFTB, and ONIOM also gives
smaller errors.

Full Protein QM:QM′:MM Models. To illustrate the
applicability of the three-layer ONIOM (DFT:DFTB:MM)
models for realistic system sizes, we designed an ONIOM
model of trypsin that includes the entire protein and parts of
the solvent shell. The initial structure for trypsin was taken
from the PDB file 1TAW.68 On the basis of a check of the
structure with WHAT IF,69 the terminal part of the Gln30
side chain was rotated. pKa values from PropKa suggested
all His residues were singly protonated.70 His40 and His91
were assigned as Hisε, and His57 was assigned as Hisδ. The
protein was solvated in a flexible water box of approximate
dimension 60 × 57 × 74 Å3 using periodic boundary
conditions. Seven chloride ions and four sodium ions were
added in random positions in the solvent to achieve neutrality.
With the pure MM method using the Amber96 force field,
the system was minimized using a conjugate gradient method
for 5000 steps, followed by 0.5 ns equilibration at 298 K
with a constrained backbone and 1 ns without constraints,
using the program NAMD 2.6.71 After equilibration, an initial
QM:MM real system was selected by including all protein
atoms and all solvent molecules with at least one atom within
5 Å of the protein, totaling 6327 atoms. The selection
includes one charged sodium atom from the solvation shell
located in the vicinity of residue Phe34B at a position 16.3
Å from the peptide bond that is cleaved. Atoms more than
15 Å from any atom in the initial 88-atom model system
were kept frozen in the optimizations. The 88-atom model
system includes selected parts of residues Ala56, His57,
Asp102, Cys191, Gly192, Gly193, Asp194, and Ser195 in
chain A and residues Arg15, Ala16, Met17, Gly36, and
Gly37 in chain B. Three stationary points are included in
the test: the reactant, the oxyanion structure (INT1), and the
intermediate with a cleaved C-N bond (INT2).

The 6327 atom protein structure was initially optimized
at the B3LYP:MM level with a model QM system size of
88 atoms, see Figure 9. The QM selection is similar to the
71-atom active-site model (T-3 real system) but includes
hydrogen-bonding groups whose mobility caused problems
with geometry optimization in the active-site model. From
the optimized reactant structure, the serine residue is moved
toward the carbonyl of the peptide, until the O-C distance
is 1.513 Å. This distance is frozen when the structure is
reoptimized to form INT1. INT2 is formed from INT1 by
elongating the peptide C-N bond and then freely optimizing
all reaction coordinates. In studies of reaction mechanisms,
the different stationary points should connect along the same
potential energy surface to avoid effects from artificial

changes in protein geometry during the optimizations. This
typically requires several iterations between reactant and
product until there no longer are any conformational changes
in the surrounding protein. However, in the present study,
we are mainly interested in the performance of different
methods applied to the same stationary state, and going from
reactant to product in a single step should still give relevant
results.

The results of the new 88-atom model system are similar
to those of the 71-atom active-site model. As an example,
the relative energy of INT1 is 27.0 and 27.3 kcal/mol,
respectively, see Table 8. In all the calculations, the
geometries optimized at the two-layer B3LYP/6-31G(d):MM
level with 88 QM atoms are used.

First, as shown in Table 8, the QM system is extended to
215 atoms, and the performance of DFTB(215) and
B3LYP(88):DFTB(215) (division D in Table 8) is compared
to B3LYP(215) (division B in Table 8). The performance
of the DFTB layer can be assessed by comparing the ∆S
values for the 215-atom subsystem minus the 88-atom
subsystem (column 7 in Table 8). The deviations are +2.4
kcal/mol for INT1 and -4.8 kcal/mol for INT2.

Next, we compare the effects of using DFTB in the 795-
atom subsystem instead of MM. In the present example, this
DFTB layer is made up of the residues closest to the active
site, but they can also be chosen on the basis of an evaluation
of the protein effects in a previous QM:MM calculation. A
comparison of the B3LYP(215):DFTB(793):MM (division
A) and B3LYP(215):MM (division B) models shows that in
INT1 there is a relatively small effect, and a small difference
(1.5 kcal/mol) between the two methods, see column 8 in
Table 8. However, for INT2, the difference between the
DFTB and the MM description of the environmental effect
is big ∼12 kcal/mol. The situation for B3LYP(88):DFTB(793):
MM (division C) and B3LYP(88):DFTB(215):MM (division
D) models as well as for DFTB(793):MM (division E) and

Table 7. Mulliken Charges for the Backbone Oxo Group of
Arg15B That Becomes an Oxyanion in INT1a

ONIOM state
B3LYP
(real)

DFTB
(real)

B3LYP
(model)

DFTB
(model)

T-2 Reac -0.591 -0.593 -0.575 -0.558
INT1 -0.732 -0.910 -0.730 -0.915
INT2 -0.529 -0.569 -0.510 -0.510

a The oxygen is labeled O-1 in Figure 8.

Figure 9. ONIOM protein model of trypsin with 88 atoms in
the model system (ball-and-stick representation), 215 atoms
in the intermediate system (ball-and-stick and stick represen-
tations), and the real system (full protein) in cartoon represen-
tation.
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DFTB(215):MM (division F) is exactly the same as this
effective is simply additive.

The large environmental effect at the MM level is partly
due to changes in the structure, e.g., the orientation of a
distant water (Wat39 in 1TAW numbering). These are simple
artifacts of the optimization approach; i.e., different local
MM minima are found for different intermediates. This
would not be acceptable in a calculation of reaction energies,
but as this is an ONIOM evaluation, no additional efforts
were made to properly explore the MM energy landscape.
From an ONIOM perspective, the most interesting data are
the large differences between the DFTB and the MM
description. Part of this difference probably comes from
different relative energies for the artificial changes in protein
geometry. Another effect is that the 793-atom DFTB
subsystem allows transfer of charges and mutual polarization
between the 215-atom subsystem and the 793-minus-215-
atom layer, effects that are not included in the mechanical
embedding MM method.72

IV. Discussion

The simple calculations of proton affinities for amino acids
illustrate important points about the B3LYP:DFTB models.
The DFTB layer significantly improves the results compared
to the model systems and gives good results also when the
environmental effects are large. However, errors are not
systematic; i.e., they do not decrease as the size of the model
system increases. For the tripeptide systems, errors are 1-2
kcal/mol even for small model systems. As a comparison,
errors of a carefully parametrized frozen orbital scheme are
∼1 kcal/mol for cuts in the backbone of the peptide chain.57

For reactions where the environmental effect is basis-set-
dependent, e.g., proton affinities of negative residues, the
DFTB layer gives better results when combined with a
double-� calculation, at which level DFTB is parametrized,
compared to the triple-� calculation. These large effects are
due to well-known problems of describing negative ions with

an insufficient basis set., e.g., positive eigenvalues of
occupied orbitals. However, for systems where the environ-
mental effect is relatively independent of the basis set, e.g.,
proton affinities of positive residues, the DFTB layer works
well independent of the basis set used in the QM calculation.

The QM:QM′ model of the nonheme catalase mimic
illustrates an important point. The ONIOM method fails
when QM and QM′ give different descriptions of the
electronic state of the transition metal. This is unrelated to
the model selection and can only be fixed by choosing more
appropriate computational methods. Prior to the use of a QM:
QM′ model, it is thus important to compare the electronic
structure of the proposed model system with QM and QM′.
Although B3LYP/6-31G(d) and DFTB give different ener-
gies for spin splitting energies of transition metal compounds,
the two methods will often describe the same spin state as
the multiplicity of the QM′ calculation is assigned at the start
of the calculation. Problems with different electronic states
should therefore only occur in systems with several electronic
states for a given multiplicity. In the present example, the
ligand radical could couple ferromagnetically with intermedi-
ate-spin iron or antiferromagnetically to high-spin iron. In
our parametrization study, spin splittings of 13 Fe compounds
had a mean average deviation of 15.2 kcal/mol and a
maximum deviation of 34.3 kcal/mol when DFTB results
were compared to B3LYP/SDD+6/31G(d).48 This error is
in the range of the difference between GGA and hybrid DFT
functionals. However, in ONIOM, the requirement is only
that the low-level method gives the same state as the high-
level method, and out of the 67 complexes in ref 48, B3LYP
and DFTB predict the same spin state in 52 cases.

Even in systems without open-shell species, the active-
site B3LYP:DFTB models show some significant errors. In
these tests, the reference real,high calculations must be
affordable, and the tested systems are therefore always
smaller, and the errors larger, than expected for normal
applications. However, the trypsin calculations show that

Table 8. The ONIOM Relative Energies and Their Components ∆E and ∆S (in kcal/mol, relative to the Reactant) for
Different Two- and Three-Layer Models of Structures INT1 and INT2 of Trypsina

systems and methodsb ∆Ec ∆Sd

division 88 215 793 full 88 215-88 793-215 full-793 ONIOMe

INT1
A B3LYP B3LYP DFTB Amber 27.0 -4.3 1.2 5.0 29.0
B B3LYP B3LYP Amber Amber 27.0 -4.3 -0.3 5.0 27.5
C B3LYP DFTB DFTB Amber 27.0 -1.8 1.2 5.0 31.4
D B3LYP DFTB Amber Amber 27.0 -1.8 -0.3 5.0 29.9
E DFTB DFTB DFTB Amber 31.3 -1.8 1.2 5.0 35.7
F DFTB DFTB Amber Amber 31.3 -1.8 -0.3 5.0 34.2

INT2
A B3LYP B3LYP DFTB Amber 14.2 0.6 -0.8 2.7 16.7
B B3LYP B3LYP Amber Amber 14.2 0.6 -12.4 2.7 5.1
C B3LYP DFTB DFTB Amber 14.2 -4.3 -0.8 2.7 11.8
D B3LYP DFTB Amber Amber 14.2 -4.3 -12.4 2.7 0.3
E DFTB DFTB DFTB Amber 12.5 -4.3 -0.8 2.7 10.1
F DFTB DFTB Amber Amber 12.5 -4.3 -12.4 2.7 -1.4

a The full systems are formally divided into 88, 215, and 793 subsystems in Figure 9, and the method used for each subsystem is
identified. ∆E is for the 88 atom system at the highest level, and ∆S is the difference between the two subsystems at the given level.
b B3LYP is B3LYP/6-31G(d), and Amber is Amber96. c ∆E is the energy for the smallest 88 system at the highest level of the given division.
d For instance, 1.2 in the row 4, column 8 represents ∆S793-215,DFTB ) ∆E793,DFTB - ∆E215,DFTB. e ONIOM energy is the sum of five
contributions from column 6 to 9.
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chemical accuracy (∼1 kcal/mol) is not achieved even with
relatively large QM models. For trypsin, these errors come
from different descriptions of the charge distribution of the
model system, e.g., of the oxyanion intermediate. This
weakness of the mechanical embedding approach should be
balanced against the savings in computational time.

When testing the applicability of a QM:QM′ model prior
to its use, the first priority is to investigate if the reaction is
qualitatively correctly described by the QM′ method. This
can be done by comparing the electronic structure of the
two methods, e.g., through population analysis, or by
comparing changes in dipole moment. Another possibility
is to make small ONIOM models and investigate the
environmental effects of a single polarizing residue. If the
effect of this residue is not qualitatively correct, the ONIOM
model is not likely to give good results for any system
selection.

More accurate results can be achieved by primarily using
the QM:QM′ approach for optimizations. An important part
of this paper is to show the possibility to fully optimize
transition states with the QM:QM′ method. The energy can
then be evaluated in a single-point calculation with a high-
level QM method. For these calculations, the flexibility of
the ONIOM method makes it possible to combine a larger
basis set for the model system with a medium-sized basis
set or low-cost method for the surrounding.

An interesting alternative to improve the description of
electrostatic effects in QM:QM′ is the newly developed
ONIOM(QM:QM′)-EE scheme.73 In this scheme, the
environmental effect at real,low is adjusted by the difference
in response between QM and QM′ methods to a point charge
environment obtained at the real,QM′ level. QM:QM′-EE
improves the DFT:HF results for several tested reactions.74

As parts of the problem with the DFT:DFTB approach come
fromadifferentdescriptionof thereactive region,ONIOM-EE
should improve the accuracy also with DFTB as the low-
level method. However, the calculated environmental charges
are geometry-dependent, and evaluation of QM:QM′-EE
forces requires solutions of iterative coupled-perturbed
equations, similar to coupled-perturbed Hartree-Fock.73 This
increases the cost of the real,low calculation approximately
by a factor of 2, but it also means that not all methods can
be directly used as low-layer methods. At the moment, QM:
QM′-EE is only available with HF and DFT in the low
layer.

We have also illustrated the use of a three-layer QM:QM′:
MM model of an enzymatic system. Compared to standard
QM/MM models, the scheme can be used in several different
ways. In the trypsin model, parts of the MM system were
replaced by DFTB, which in principle should lead to a better
description of the environmental effect. It is also possible to
reduce the size of the model system to allow for an improved
description of the reactive region by correlated ab initio
methods, e.g., CCSD(T) or MRCI.

Optimization of large three-layer models is still difficult.
QM:MM optimizations are performed with microiterations
where the MM system is optimized using a first-order
algorithm. If a DFTB layer of ∼1000 atoms is optimized
together with the MM part, several hundred QM′ energy and

gradient evaluations will be performed for each QM iteration.
The computational time for the QM′ calculations will then
become higher than the time required for the QM calculation.
A second alternative is to optimize the QM′ layer together
with the QM region in a second-order algorithm. The
drawbacks are that the optimization algorithm becomes more
costly, and more importantly, the number of macroiterations
increases. This leads to an increase in the number of QM
calculations required to reach geometry convergence. Higher
efficiency might be reached with a hybrid technique that uses
three different optimization levels, but such a scheme has
yet to be implemented.

V. Conclusions
The ONIOM(QM:QM′) scheme with mechanical embedding
is cost-efficient as it only requires a single QM evaluation
at each geometry. The drawback is that all environmental
effects are evaluated at the low (QM′) level, and the accuracy
of the scheme depends on how well the low-level QM′
method describes the environmental effects and the changes
in electron density during the reaction.

To illustrate the advantages and limitations of this method,
we have applied ONIOM(B3LYP:DFTB) and three-layer
ONIOM(B3LYP:DFT:MM) combinations to models of
enzymes and enzyme mimics. Although the DFTB layer
reduces a large part of the error in the underlying model
calculations, remaining errors of several kilocalories per mole
are not uncommon. The polarization effects are fairly well
described using DFTB, but the QM and QM′ methods do
not always describe the same electronic state throughout the
reaction, causing some difficulties.

Use of the QM:QM′ model requires an in-depth under-
standing of both the QM and the QM′ method, and the
applicability of the QM:QM′ scheme must be carefully
investigated in each application. Separate calculations of the
electronic structure using both QM and QM′ methods as well
as a test of small ONIOM systems offer a reasonable way
to test a QM:QM′ scheme without performing extensive
benchmark tests.

The good performance of the DFTB method for geom-
etries, together with the possibility to optimize transition
states with the QM:QM′ scheme, makes it an excellent tool
for exploration of geometries. Accurate energies can then
be obtained by single-point calculations using a high-level
method.
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Abstract: An ab initio computational method, based on the fragment molecular orbital (FMO)
method, for calculating nuclear magnetic resonance (NMR) chemical shifts has been developed
by introducing the concept of a merged fragment with a cutoff distance. Using point charges or
density based on electrostatic potential obtained from FMO calculations, the NMR calculations
(GIAO and CSGT) with the 6-31G(d) and 6-311G(d,p) basis sets were performed on R-helix
and �-sheet polypeptides. The cutoff distance defines the optimal merged fragment size for
NMR calculations. This method accurately reproduces electrostatic effects and magnetic
susceptibilities. The chemical shifts determined with a cutoff distance not shorter than 8 Å for
both R-helix and �-sheet polypeptides agree well with those calculated by conventional ab initio
NMR calculations.

1. Introduction

In the fields of chemical and biological research, nuclear
magnetic resonance (NMR) spectroscopy is one of the most
valuable experimental methods for determining chemical and
structural properties. Since NMR chemical shifts are very
sensitive to changes in the molecular structure, they are
widely used for monitoring the surrounding environment of
individual atoms. However, in the case of large biological

molecules, the process of obtaining the required signal-to-
noise ratio (SNR) when measuring NMR spectra is time-
consuming.

Several theoretical methods for computing NMR chemical
shifts of small organic molecules have been established.
These methods can be divided into two primary categories.
The first are ab initio methods dealing with gauge-
dependence problems such as the “gauge-including atomic
orbital” (GIAO)1,2 and the “continuous set of gauge trans-
formations” (CSGT).3 Those methods can reliably be applied
to structures of organic and inorganic compounds using
appropriate basis sets. However, when it comes to large
molecules such as proteins, the computational cost becomes
quite large, so not so many applications of ab initio methods
have been reported.4 The second category is empirical
methods that predict NMR chemical shifts in a very short
time using a large database. Nonetheless, because these
methods have not been parametrized to reproduce NMR
chemical shifts of an arbitrary molecule, they fail to predict
chemical shifts of some new specific compounds.
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The hybrid quantum-mechanical/molecular-mechanical
(QM/MM) method5,6 is a computational tool that can be used
to predict the NMR chemical shifts in large molecules. In
the QM/MM method, a part for calculating NMR chemical
shifts is described with QM methods, whereas the remaining
part is described with MM methods. Cui and Karplus
proposed a method for calculating chemical shifts using the
GIAO in the QM/MM framework.7 After carefully compar-
ing the results of the QM/MM model to those of full QM
calculations, they concluded that the former can provide good
descriptions of environmental effects on chemical shifts. The
error compared to full QM calculations is 1-2 ppm for heavy
atoms when the distance between the atom of interest in the
QM part and the MM part is more than 2.5 Å. The
importance of the contributions of the Pauli repulsion and
magnetic susceptibility is also evident from their studies. If
these contributions are neglected at distances of less than
2.5 Å,7 large errors occur. Similar results have also been
reported by Ishida,8 He et al.,9 and Sebastiani et al.10–12 For
example, Sebastiani and Rothlisberger10,11 have modified the
standard QM/MM interaction potential by including the Pauli
repulsion explicitly in the QM/MM interaction potential.
They concluded that the modified QM/MM interaction
potential can reproduce full QM results.

In contrast with these QM/MM NMR studies in which
the interactions between QM and MM regions have been
handled as described by Field et al.,13 a study by Gascón et
al.14,15 used the ONIOM16 electronic-embedding method to
calculate the NMR data of large molecules, and their
calculation results agreed well with experimental measure-
ments. Hall et al.17 have recently used a three-layer ONIOM
(B3LYP:HF:AMBER) scheme to calculate the NMR chemi-
cal shifts of the retinal chromophore in rhodopsin.

In addition to the partial quantum-mechanical description,
there are some fragment-based methods where the whole
system is described quantum mechanically.18–25 The frag-
ment molecular orbital (FMO) method26–31 is one of such
fragment-based methods applied to ab initio calculations32–36

of large molecules. Sekino et al.37 have developed the FMO2-
NMR method, where the FMO many-body expansion has
been applied to the computation of chemical shifts.

We recently developed an ab initio method38 based on
FMO1 for computing the NMR response in protein systems.
This method involves inexpensive single-fragment NMR
calculations including the electrostatic effects from other
fragments. Our method38 of computing NMR chemical shifts
consists of two parts. First, a molecular system is divided
into various fragments, and the electron densities of these
fragments are obtained by carrying out FMO calculations.
Second, for the neighboring dimer fragments in the electro-
static potential (ESP) of other fragments, nuclear magnetic
shielding constants are computed with GIAO and/or CSGT
methods. Here, the chemical shift, δ, is related to the nuclear
magnetic shielding tensor, σ, by a reference standard, σ0,
as39 δ ) (σ0 - σiso)/(1 - σ0) × 106 ≈ (σ0 - σiso) × 106,
where the absolute isotropic shielding constant, σiso ) Tr(σ)/
3.

Although this method can reasonably reproduce experi-
mental and conventional ab initio calculated chemical shifts,

errors of 2 ppm for 13C, 4.5 ppm for 15N, and 0.8 ppm for
1H are still larger than the desired level, namely, below 0.5
ppm for heavy atoms and 0.1 ppm for hydrogen atoms.38

Furthermore, these calculations have been less accurate in
predicting anisotropic shielding constants.38 We previously
used our method38 to calculate chemical shifts of a � sheet.40

However, the errors were even larger than those stated above
because of a lack of accuracy in reproducing the electrostatic
effects and magnetic susceptibilities.

Previous quantum chemical and experimental studies41–44

on NMR chemical shifts in various chemical environments
have indicated that the electrostatic effect and magnetic
susceptibility arise not only from covalent-bond interactions
but also from weaker interactions such as hydrogen bonds,
the susceptibility of conjugated carbon groups, and the
polarization of the surrounding environment. These studies
have emphasized that, to accurately reproduce the electron
distributions around atoms, the inclusion of these interactions
is crucial.

Other sources of error due to our method38 may arise from
border atoms, i.e., atoms on the border of two fragments.
We have analyzed the influence of border atoms on the ESP
around them. When the positions of border atoms are far
enough away from the atom of interest, our method38

reproduced the ESP of the conventional ab initio method.
However, when these distances are shorter, the method yields
relatively inaccurate ESP, resulting in large errors in chemical
shifts.

The purpose of the present study was to develop a new
methodsusing a new cutoff-distance-based fragmentation
schemesthat can accurately reproduce conventional ab initio
isotropic and anisotropic shielding constants. This method
adopts the effective framework of the FMO1 method, which
is conceptually similar to the multilayer structure of QM/
MM. Unlike the QM/MM method, the effect of the MM part
is described by the ESP derived from quantum mechanics.
The main difference of the cutoff-distance-based method
from our previous method for computing nuclear magnetic
shielding constants from the electronic structure of neighbor-
ing dimer fragments38 is that a cutoff distance to define the
size of merged fragments is introduced to calculate nuclear
magnetic shielding constants. The density matrix of a merged
fragment describes the electrostatic response better than that
of a dimer fragment. In addition, the cumbersome use of
the two fragmentation schemes in our previous method is
eliminated. Using the cutoff-distance-based method, we
assessed the dependence of nuclear magnetic shielding
constants on cutoff distance, basis sets, and polypeptide
structures. Excellent agreement between the shielding con-
stants of the cutoff-distance-based method with those of the
conventional ab initio method is attained when the cutoff
distance is g8 Å. The isotropic shielding constants of all
the tested heavy atoms (13C and 15N) and 1H atoms obtained
by the cutoff-distance-based method with a cutoff distance
of 8 Å reproduce the values obtained with the conventional
ab initio method (CSGT) within 0.24 ppm and 0.11 ppm,
respectively.
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2. Theory

2.1. FMO Method. The FMO method28,45 developed by
Kitaura et al. is designed to calculate the electronic state of
large systems within the ab initio framework. First, a large
system is divided into N fragments (monomers). The total
energy is then given by

where energy EI of monomer I and energy EIJ of dimer IJ (a
pair of monomers I and J) are summed. At the RHF level,
the contributions of the monomer and dimer to the total
energy can be calculated by

where superscript x represents a monomer (x ) I) or a dimer
(x ) IJ); µ, ν, F, and σ denote atomic orbitals; ZA and RA

correspond to the charge and the position of atom A; and
DK is the density matrix of fragment K. The Fock matrix,
F̃x, consists of the sum of one-electron term H̃µν

x and two-
electron term Gx. Note that, in addition to the conventional
one-electron term (Hµν

x in eq 4), there are two more terms
on the right-hand side of eq 4, i.e., the ESP Vµν

x arising from
other fragment K and the orbital projection operator, Pµν

i ,
which is made up of hybridized orbital �i

h with γ ) 106

hartree for all orbitals.26

Prior to the FMO calculations, the fragment borders are
first defined appropriately.45 The ESP is then obtained by
iteratively solving the Fock equation of each monomer (eq
2 with x ) I) until the energy of the monomers with the
ESP of other fragments converge. Finally, every dimer (eq
2, x ) IJ) is calculated once by using the ESP (eq 6 with x
) IJ) obtained by the previous monomer FMO calculations.
In the case of a polypeptide, a two-body expansion with a
two residues per fragment division is a reasonable compro-
mise between the attained accuracy and the computational
cost incurred.45 The FMO method has been widely used to

study interactions such as dipole-dipole and π-π interac-
tions in biomolecular systems.32,33,46

2.2. GIAO and CSGT Methods. Chemical shifts can be
evaluated theoretically by adding the contribution of the
external magnetic field described by a vector potential to a
Hamiltonian. Doing so, however, faces a new problem.
Because the size of a basis set is finite, the calculated
chemical shifts depend on the location of the gauge origin
of the vector potential. To find a numerical solution to the
nuclear magnetic shielding tensor which does not depend
on the choice of the gauge origin, two methods have been
established, i.e., GIAO1,2 and CSGT.3 With the GIAO
method, the nuclear magnetic shielding tensor σR� is calcu-
lated from eq 9 as the mixed partial derivative of energy E
with respect to external magnetic field B and nuclear
magnetic moment µ. The dependence of the gauge origin is
mostly eliminated by using field-dependent atomic orbitals.

In the CSGT method, J(1)(r), the linear response of the
current density induced by the external magnetic field B at
the position r is determined using r as the gauge origin. The
shielding at the nuclear position rN is obtained by integrating
the magnetic field (induction) generated by the induced
current at rN (eq 10).

2.3. NMR Computational Models. In a previous work,
by combining the FMO method with either the GIAO or CSGT
method, we developed two computational models for calculating
the nuclear magnetic shielding tensor of large biomolecular
systems, namely, model I and model II.38 For both models, the
Fock matrices of the monomers are calculated using the ESP
of other fragments for close fragments within about 5 Å;
otherwise, point charges are used. The two models differ in
regard to the calculation of the Fock matrices of the dimers
which are used to calculate chemical shifts. In model I, the dimer
shielding tensors are calculated using a point charge ESP; that
is, the point charge ESP from other fragments is constructed
from the density matrix of monomers (Mulliken charges). Model
II uses the ESP of other fragments without approximation. Fock
matrices of dimers that are built on neighboring monomer pairs
along the sequence of a given polypeptide are calculated by
solving eq 2 for dimer IJ (usually, |I - J| ) 1). CPHF equations
are then directly solved by using the Fock matrix to obtain the
shielding tensor of the atoms in the dimer. GIAO is used in
model I, whereas CSGT is used in both models I and II.38

Our previous tests38 established that models I and II could
reproduce the conventional quantum-chemical isotropic-
shielding constants fairly well. Although model I could be
applied to very large molecules, it created a larger error than
model II because of the point-charge approximation. How-
ever, neither model could avoid larger errors in the case of
the anisotropic shielding constants in comparison to those
of conventional calculations. In fact, it is more difficult to
evaluate anisotropic values than isotropic ones. Stikoff and

E ) ∑
I

N

EI + ∑
I>J

N

(EIJ - EI - EJ) (1)

F
∼ xCx ) SxCxε

∼x (2)

F
∼ x ) H

∼ x + Gx (3)

H
∼

µν
x ) Hµν

x + Vµν
x + γ ∑

i∈x

Pµν
i (4)

Pµν
i ) 〈µ|�i

h〉〈�i
h|ν〉 (5)

Vµν
x ) ∑

K*x
{ ∑

A∈K
〈µ|- 1

4πε0

ZAe2

|r - RA| |ν〉 +

∑
Fσ∈K

DFσ
K (µν|Fσ)} (6)

(µν|Fσ) )
e2

4πε0
∫ dr1 dr2 	µ(r1) 	ν(r1)|r1 - r2

-1	F(r2) 	σ(r2) (7)

Ex )
1
2

Tr{Dx(H
∼ x + F

∼ x)} + ENuc
x (8)

σR� ) ∂
2E

∂µR∂B�
(9)

σR�(rN) ) -
µ0

4π ∫ d3r[∂J(1)(r)
∂B�

×
rN - r

|rN - r|3]R (10)
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Case47 have already mentioned this difficulty; in particular,
they stated that electrostatic effects (such as electrostatic
polarization of bonds and noncovalent bond interactions) and
magnetic susceptibilities (such as ring-current effects) of
neighboring groups are the main reasons for the deviation
in the nuclear magnetic shielding tensor.

In the following, we present a method by introducing a
cutoff distance to determine the optimal fragment size in
models I and II to achieve an accurate description of the
electrostatic effects and magnetic susceptibilities. A sche-
matic explanation of the new NMR computational method
is shown in Figure 1. The point charges and the density
matrix of each fragment (monomer) are first obtained by
FMO-monomer (called FMO1) calculations (Figure 1a). A
merged fragment is then constructed by assembling all the

monomers within a cutoff distance (defined as Lcutoff) from
the center of mass (denoted by Ra) of the residue under
investigation (Figure 1b). Distance RIa between given
monomer I and examined residue a is chosen as the closest
distance between atoms in I and the center of mass of a as
follows:

where Ri is the position of the ith atom in the Ith monomer.
A merged fragment (denoted as Q(Lcutoff)) including all the
monomers within a given distance (eq 11) from residue a is
then created. In other words, if at least one of the atoms of
the monomer is inside the area RIa e Lcutoff, that monomer
is assigned to the merged fragment, Q(Lcutoff). The ESP,

Figure 1. Schematics of models I and II. The procedure of the calculation of models I and II consisting of three steps. Model
I, step I (a): FMO1 calculations are performed (the backbone of a peptide is shown as an example). Each fragment consists of
two residues, which is indicated by the gray area surrounded by a red dashed line. Step II (b): A cutoff distance (circled by the
blue dashed line), measured from the center of mass of the target residue (indicated by pink oval), is used to build a merged
fragment (enclosed by the silver dashed line). Step II (c): The merged fragment in the field of point charges given by FMO1 is
calculated. Step III: NMR calculation of the merged fragment is performed using the density matrix from step II. Only chemical
shifts of the target residue (pink oval) are retained. The NMR results for the entire molecule are obtained by repeating steps II
and III for each residue. Model II, steps I and III are the same as for model I. Instead of step II (c) in model I, the merged
fragment is calculated in the external Coulomb field determined by fragment densities from FMO1 (step II (d)), shown by schematic
lobes.

RIa ) min
i∈I

{|Ri - Ra|} (11)
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Vµν
Q(Lcutoff), of fragment Q(Lcutoff) in models I (eq 12) and II (eq

13) is expressed as

where ZA
K is the atomic population of atom A on the Kth

monomer. (See also Figure 1c and d for models I and II,
respectively.) Subsequently, the Fock matrix of Q(Lcutoff) is
evaluated using the ESP in eqs 12 and 13.

Finally, to obtain magnetic shielding tensors, the Fock
matrix is used to solve the CPHF equations. Here, the new
cutoff-distance-based method is denoted as “FMO1(merged)”
(where “merged” stands for the use of a merged fragment),
whereas the dimer-based method in the previous work38 is
denoted as “FMO1(dimer).”

3. Computational Details

3.1. Structural Modeling of Polypeptides. The R-helix
and �-sheet, which are the two basic secondary structural
elements in proteins, were selected to evaluate the perfor-
mance of the FMO1(merged) method. An R-helix peptide
was chosen from one of the R-helices (residues 241 to 272
of chain A) in bovine rhodopsin (Protein Data Bank code:
1HZX48). This R-helix structure is stabilized by the hydrogen
bonds in its main chain (Figure 2). The �-sheet peptide was
extracted from residues 198 to 229 in the green fluorescent
protein (PDB code: 1Q4B49). The �-sheet structure is formed
from two �-strands, which are connected by a loop structure.
As shown in Figure 2, the �-sheet has a more extended
structure than the R-helix.

Hydrogen atoms were added to both the R-helix and
�-sheet in a pH ) 7 environment by using the leap module
in Amber 8.50 These two structures were minimized with
the steepest decent and conjugated gradient methods for 2500
steps by using the Amber99 force field.51 After that,
MOZYME52 with the AM153 Hamiltonian in MOPAC200754

was used to optimize these two peptides with a threshold
value of 10 Å in the NDDO approximation. The same �-sheet
structure was employed in ref 40, where the accuracy of the
chemical shifts calculated by FMO1(dimer)/model I and
FMO1(dimer)/model II was assessed.

3.2. FMO1(merged) Calculations. The computational
process for FMO1(merged)/model I and FMO1(merged)/

model II consists of three steps. It is explained in regard
to model I as follows. Step I: The polypeptide is divided
into several fragments (monomers) by assigning two
adjacent residues to one fragment. The electron density
of all monomers is computed by performing an FMO
calculation at the monomer level (FMO1 calculations).
The point charges of all atoms are estimated by using the
Mulliken approximation.55 Step II: For each residue,
Q(Lcutoff) is determined by using Lcutoff. Using the ESP of
eq 12, the wave function of Q(Lcutoff) is obtained. Step
III: Using the wave function obtained in step II, CPHF
calculations are performed with GIAO or CSGT methods
to determine the NMR magnetic shielding tensors of
Q(Lcutoff).

In regard to model II, steps I and III are the same as for
model I. The difference from model I appears in step II.
According to eq 13, the monomer density matrices are used
to evaluate the ESP outside Lcutoff. The CSGT method is used
for model II (see section 2.3).

To obtain the NMR shielding tensors of the polypeptide,
steps II and III are performed for all the residues. The
isotropic and anisotropic shielding constants are evaluated
from the shielding tensors. The anisotropic shielding
constant is defined as

where σ1, σ2, and σ3 are the eigenvalues of nuclear
magnetic shielding tensor σ, and σ3 is the largest of these.

The dependence of shielding constants on Lcutoff (6, 8, and
10 Å) used in FMO1(merged)/model I and FMO1(merged)/
model II is investigated. For comparison, the shielding constants
calculated without the Vµν

Q(Lcutoff) term, that is, the shielding
constants of the merged molecule surrounded by neither point
changes nor the ESP of other fragments, are shown. Further-

Vµν
Q(Lcutoff) ) ∑

K∉Q(Lcutoff)
{ ∑

A∈K
〈µ|- 1

4πε0

ZAe2

|r - RA| |ν〉 +

∑
A∈K

〈µ| 1
4πε0

ZA
Ke2

|r - RA| |ν〉} (12)

Vµν
Q(Lcutoff) ) ∑

K∉Q(Lcutoff)
{ ∑

A∈K
〈µ|- 1

4πε0

ZAe2

|r - RA| |ν〉 +

∑
Fσ∈K

DFσ
K (µν|Fσ)} (13)

F
∼ Q(Lcutoff) ) H

∼ Q(Lcutoff) + GQ(Lcutoff) (14)

H
∼

µν
Q(Lcutoff) ) Hµν

Q(Lcutoff) + Vµν
Q(Lcutoff) + γ ∑

i∈Q(Lcutoff)

Pµν
i (15)

Figure 2. (a) R-Helix and (b) �-sheet polypeptide structures
used for calculating NMR chemical shifts in this study. Peptide
sequence of the R-helix is Ala-Thr-Thr-Gln-Lys-Ala-Glu-Lys-
Glu-Val-Thr-Arg-Met-Val-Ile-Ile-Met-Val-Ile-Ala-Phe-Leu-Ile-
Cys-Trp-Leu-Pro-Tyr-Ala-Gly-Val-Ala. Peptide sequence of
the �-sheet is Asn-His-Tyr-Leu-Ser-Thr-Gln-Ser-Ala-Leu-Ser-
Lys-Asp-Pro-Asn-Glu-Lys-Arg-Asp-His-Met-Val-Leu-Leu-Glu-
Phe-Val-Thr-Ala-Ala-Gly-Ile.

∆σ ) σ3 - (σ1 + σ2)/2 (16)
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more, the effect of basis sets (6-31G(d) and 6-311G(d,p)) on
the shielding constants was tested. The FMO and NMR (GIAO

and CSGT) calculations were performed using GAMESS56 and
Gaussian 03,57 respectively. In the following, the errors of

Figure 3. Mean error of isotropic shielding constants as a function of cutoff distances obtained by FMO1(merged)/model I with
CSGT calculations (6-31G(d)) in the case of the R-helix (solid line with squares) and the �-sheet (dashed line with circles).
(a)13CR, (b) 13C�, (c) 15N, and (d) 1H atoms.

Figure 4. Mean error of isotropic shielding constants as a function of cutoff distances obtained by FMO1(merged)/model II with
CSGT calculations (6-31G(d)) in the case of the R-helix (solid line with squares) and the �-sheet (dashed line with circles).
(a)13CR, (b) 13C�, (c) 15N, and (d) 1H atoms.
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shielding constants are reported as deviations compared to the
shielding constants by conventional ab initio methods.

4. Results and Discussion

4.1. Accuracy Comparison of FMO1(merged) and
FMO1(dimer). The errors in shielding constants using
FMO1(merged) are much smaller than those obtained with
the previously developed FMO1(dimer). These errors are

summarized in Tables 1-4. In the case of FMO1(merged)/
model I, both the isotropic and anisotropic shielding constants
of carbon atoms (13CR and 13C�) agree well with those
determined by conventional ab initio NMR calculations.
Although FMO1(dimer)/model II gives isotropic shielding
constants with a larger maximum error (less than 3.88 ppm)
and mean error (less than 0.89 ppm),40 FMO1(merged)/
model II with CSGT (Lcutoff ) 10 Å) reduces the maximum

Table 1. Quality of Absolute Isotropic NMR Shielding Constants (in ppm) of 13CR, 13C�, 15N, and 1H Atoms in the R-Helix and
�-Sheet Calculated with FMO1(merged)/model I by Using CSGT and the 6-31G(d) Basis Set

atoms 13CR
13C�

15N 1H

cutoff (Å) 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0

R-Helix in Bovine Rhodopsin 1HZX (residues 241-272)
max error 0.58 0.33 0.26 0.41 0.31 0.31 2.19 2.19 1.16 0.26 0.20 0.17
mean error 0.20 0.15 0.12 0.16 0.12 0.11 0.51 0.49 0.33 0.11 0.09 0.07
standard deviation 0.14 0.09 0.08 0.11 0.08 0.08 0.40 0.39 0.26 0.07 0.06 0.04

�-Sheet in Green Fluorescent Protein 1Q4B (residues 198-229)
max error 1.74 0.26 0.26 0.92 0.49 0.41 3.56 3.01 2.21 0.31 0.14 0.11
mean error 0.49 0.12 0.09 0.21 0.12 0.09 1.38 1.04 0.92 0.10 0.06 0.04
standard deviation 0.54 0.08 0.07 0.20 0.11 0.09 0.96 0.78 0.63 0.08 0.03 0.03

Table 2. Quality of Absolute Anisotropic NMR Shielding Constants (in ppm) of 13CR, 13C�, 15N, and 1H Atoms in the R-Helix
and �-Sheet Calculated with FMO1(merged)/model I by Using CSGT and the 6-31G(d) Basis Set

atoms 13CR
13C�

15 N 1H

cutoff (Å) 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0

R-Helix in Bovine Rhodopsin 1HZX (residues 241-272)
max error 1.42 1.42 0.77 0.99 0.62 0.62 1.52 1.52 1.06 1.96 1.37 0.70
mean error 0.67 0.48 0.32 0.29 0.21 0.17 0.59 0.47 0.36 1.10 0.68 0.43
standard deviation 0.35 0.32 0.22 0.25 0.19 0.14 0.41 0.35 0.25 0.54 0.31 0.17

�-Sheet in Green Fluorescent Protein 1Q4B (residues 198-229)
max error 2.40 1.54 1.13 1.92 0.72 0.59 2.98 2.07 1.60 2.56 1.03 0.85
mean error 1.02 0.65 0.45 0.54 0.25 0.17 0.95 0.47 0.37 0.64 0.42 0.27
standard deviation 0.62 0.37 0.28 0.46 0.19 0.15 0.77 0.44 0.32 0.56 0.28 0.20

Table 3. Quality of Absolute Isotropic NMR Shielding Constants (in ppm) of 13CR, 13C�, 15N, and 1H Atoms in the R-Helix and
�-Sheet Calculated with FMO1(merged)/model II by Using CSGT and the 6-31G(d) Basis Set

atoms 13CR
13C�

15 N 1H

cutoff (Å) 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0

R-Helix in Bovine Rhodopsin 1HZX (residues 241-272)
max error 0.18 0.12 0.12 0.13 0.13 0.10 0.24 0.20 0.20 0.15 0.09 0.08
mean error 0.06 0.04 0.04 0.05 0.05 0.05 0.08 0.06 0.06 0.08 0.05 0.04
standard deviation 0.04 0.03 0.03 0.03 0.03 0.03 0.06 0.05 0.05 0.04 0.03 0.02

�-Sheet in Green Fluorescent Protein 1Q4B (residues 198-229)
max error 0.26 0.15 0.15 0.48 0.16 0.15 0.68 0.24 0.24 0.29 0.11 0.09
mean error 0.11 0.05 0.05 0.13 0.06 0.05 0.15 0.11 0.09 0.08 0.05 0.04
standard deviation 0.07 0.04 0.03 0.13 0.04 0.04 0.15 0.07 0.07 0.07 0.03 0.02

Table 4. Quality of Absolute Anisotropic NMR Shielding Constants (in ppm) of 13CR, 13C�, 15N, and 1H Atoms in the R-Helix
and �-Sheet Calculated with FMO1(merged)/model II by Using CSGT and the 6-31G(d) Basis Set

atoms 13CR
13C�

15 N 1H

cutoff (Å) 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0

R-Helix in Bovine Rhodopsin 1HZX (residues 241-272)
max error 0.77 0.77 0.48 0.77 0.47 0.47 0.90 0.77 0.54 1.86 1.36 0.71
mean error 0.44 0.32 0.21 0.26 0.19 0.13 0.42 0.32 0.20 1.08 0.67 0.42
standard deviation 0.20 0.15 0.11 0.18 0.14 0.11 0.25 0.21 0.15 0.53 0.30 0.18

�-Sheet in Green Fluorescent Protein 1Q4B (residues 198-229)
max error 2.44 1.07 0.85 1.27 0.69 0.53 1.71 0.69 0.61 2.21 0.93 0.73
mean error 1.05 0.52 0.36 0.45 0.25 0.14 0.75 0.37 0.28 0.57 0.37 0.24
standard deviation 0.60 0.26 0.21 0.33 0.16 0.13 0.47 0.19 0.15 0.49 0.24 0.18
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and absolute mean errors of isotropic shielding constants of
carbon atoms in the �-sheet, i.e., to less than 0.15 and 0.05
ppm, respectively, with the 6-31G(d) basis set (Table 3). And
it obtains a maximum error of less than 0.85 ppm and a mean
error of less than 0.36 ppm with this basis set for the
anisotropic shielding constants of carbon atoms (Table 4).
These errors for the anisotropic shielding constants are, again,
much smaller than those with FMO1(dimer)/model II.
Similarly to the case of model II, the errors for FMO1(merged)/
model I (Tables 1 and 2) are much smaller than those for
the FMO1(dimer)/model I calculations on 13C atoms.

The errors of the shielding constants for 15N and 1H atoms
by using FMO1(merged) are remarkably reduced. For
example, the maximum errors in isotropic shielding constants
(determined by using FMO1 (merged)/with model II (CSGT)
(Lcutoff ) 10 Å) with the 6-31G(d) basis set) of the �-sheet
are 0.24 and 0.09 ppm for 15N and 1H, respectively (Table
3). In contrast, the previously reported40 maximum errors
in isotropic shielding constants (determined by using
FMO1(dimer)/model II (CSGT) with the same basis sets)
were 7.51 and 0.96 ppm for 15N and 1H, respectively.
Because the shielding constants of these two atoms are more
sensitive to the surrounding chemical environment than that
of 13C atoms, such a large error must have been produced
by the inaccuracy of the FMO1(dimer) models in reproducing
the surrounding chemical environment.

These results indicate that FMO1(merged) provides a much
more accurate electrostatic description and magnetic sus-
ceptibilities around the atom of interest than those provided
by FMO1(dimer). This improved accuracy is discussed
further in sections 4.5 to 4.8.

4.2. Effect of Cutoff Distance. The effect of cutoff
distance on the accuracy of shielding constants is investigated
in the following. This investigation focused on two questions:

First, how large should the cutoff distance be to accurately
reproduce conventional ab initio results? Second, does the
effect of cutoff distance depend on the choice of polypeptide
structures?

The shielding constants of the R-helix structure were
calculated by using FMO1(merged)/model I with CSGT and
the 6-31G(d) basis set. The calculation results are compared
with the results obtained with the conventional ab initio
method in Tables 1 and 2. For the most environmentally
sensitive anisotropic shielding constants of the R-helix, the
larger the Lcutoff (from 6 to 10 Å), the smaller the mean error.
A similar trend is also found in regard to the isotropic
shielding constants.

The shielding constants of the �-sheet were also calculated
using FMO1(merged)/model I. The errors of anisotropic
shielding constants for 1H atoms in the �-sheet are smaller
than those for 1H atoms in the R-helix, while those for 13C
and 15N atoms in the �-sheet are slightly larger. A signifi-
cantly larger decrease in mean error is found in the case of
the �-sheet than in the case of the R-helix when Lcutoff

increased from 6 to 8 Å (Figure 3). In contrast, when the
cutoff distance increases from 8 to 10 Å, the decrease in the
mean error in the isotropic values for the R-helix and �-sheet
is almost the same. A similar decrease in error is also found
for the shielding constants of 13CR, 13C�, and 15N atoms
calculated with FMO1(merged)/model II (Figure 4). For 1H
atoms, the decrease in error is almost the same from 6 to 10
Å.

We suggest that the cutoff-distance dependency of the
chemical shifts is due to the secondary structures. The
structure of the �-sheet is more extended than that of the
R-helix. Therefore, in regard to the total number of residues
sequentially along the polypeptide (counted from the residue
where the chemical shifts are calculated to the residue at

Table 5. Quality of Absolute Isotropic NMR Shielding Constants (in ppm) of 13CR, 13C�, 15N, and 1H Atoms in the R-Helix and
�-Sheet Calculated with FMO1(merged) without the Vµν

Q(Lcutoff) Term by Using CSGT and the 6-31G(d) Basis Set

atoms 13CR
13C�

15 N 1H

cutoff (Å) 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0

R-Helix in Bovine Rhodopsin 1HZX (residues 241-272)
max error 0.51 0.31 0.31 0.40 0.40 0.28 2.13 1.18 1.01 0.48 0.19 0.19
mean error 0.16 0.10 0.08 0.12 0.10 0.08 0.64 0.41 0.26 0.16 0.07 0.07
standard deviation 0.11 0.10 0.08 0.11 0.10 0.08 0.48 0.34 0.22 0.11 0.05 0.04

�-Sheet in Green Fluorescent Protein 1Q4B (residues 198-229)
max error 3.00 0.64 0.42 1.24 0.55 0.41 7.52 4.46 2.85 0.32 0.20 0.18
mean error 0.64 0.11 0.07 0.22 0.10 0.08 1.53 1.07 0.94 0.10 0.04 0.03
standard deviation 0.74 0.12 0.06 0.27 0.12 0.10 1.81 1.02 0.59 0.08 0.04 0.04

Table 6. Quality of Absolute Anisotropic NMR Shielding Constants (in ppm) of 13CR, 13C�, 15N, and 1H Atoms in the R-Helix
and �-Sheet Calculated with FMO1(merged) without the Vµν

Q(Lcutoff) Term by Using CSGT and the 6-31G(d) Basis Set

atoms 13CR
13C�

15 N 1H

cutoff (Å) 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0

R-Helix in Bovine Rhodopsin 1HZX (residues 241-272)
max error 1.33 1.17 0.71 1.00 0.60 0.58 1.00 0.75 0.78 2.04 1.40 0.79
mean error 0.64 0.37 0.31 0.31 0.21 0.16 0.40 0.31 0.30 1.16 0.70 0.44
standard deviation 0.38 0.25 0.26 0.26 0.20 0.14 0.26 0.20 0.22 0.59 0.31 0.19

�-Sheet in Green Fluorescent Protein 1Q4B (residues 198-229)
max error 2.24 1.24 1.04 3.42 0.81 0.68 3.13 2.27 1.74 2.67 1.02 0.86
mean error 1.00 0.55 0.40 0.76 0.34 0.20 0.92 0.48 0.33 0.65 0.41 0.27
standard deviation 0.58 0.33 0.28 0.67 0.21 0.16 0.76 0.41 0.31 0.59 0.28 0.22

NMR Chemical-Shift Calculations J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1435



the FMO boundary), the number is larger in the R-helix than
in the �-sheet. In other words, if the same cutoff distance is
used for the R-helix and the �-sheet, the effect of the FMO
boundary is larger for the �-sheet than for the R-helix. The
effect of the FMO boundary, however, is sufficiently small
for the cutoff distance of 8 Å; thus, the magnitude of errors
is similar for the R-helix and �-sheet for Lcutoff g 8 Å.

4.3. Effect of Basis Sets. To assess the dependence of
the cutoff distance on the type of basis set, basis sets

6-31G(d) and 6-311G(d,p) were used. (As is well-known,
a large basis set is needed to obtain accurate chemical-
shift values.) The shielding constants of the R-helix and
�-sheet polypeptides, which were calculated with the
6-311G(d,p) basis set and FMO1(merged) and the con-
ventional method, are compared (Tables S1-S4, Support-
ing Information). The magnitude of errors for Lcutoff ) 8
Å is converged to small values irrespective of the size of
the basis set. The magnitude of errors for Lcutoff ) 6 Å in

Figure 5. Charge density on the surface specified by three atoms (C, O, and N) of the peptide bond between His2 and Tyr3
in the �-sheet. The magnitude of the charge density is expressed in proportion to the intensity of the color (red), which is indicated
as the gradation of the color at the top of each panel. The unit is in e/(a0)3, where a0 is the Bohr radius and the area is 15.7 ×
15.7 Å2. FMO1(merged)/model I results obtained using CSGT (6-31G(d)) with Lcutoff values of (a) 6 Å, (c) 8 Å, and (e) 10 Å and
FMO1(merged)/model II results obtained using CSGT (6-31G(d)) with Lcutoff values of (b) 6 Å, (d) 8 Å, and (f) 10 Å. (g) Results
of conventional ab initio calculation using CSGT (6-31G(d)). One of the border atoms at the fragment boundary is represented
as a light-green transparent sphere and indicated by an arrow for each panel. (h) Residues within Lcutoff from the center of mass
of Try3 are shown.
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the case of basis set 6-311G(d,p) is larger than that in the
case of basis set 6-31G(d). Accordingly, Lcutoff g 8 Å is
recommended as the appropriate value.

4.4. Comparison of Accuracy of Models I and II. Model
I produces a larger error than model II due to the point-
charge approximation. For example, the maximum error of
15N isotropic shielding constants relative to the conventional
ab initio values is 1.16-2.19 ppm with a mean error of
0.33-0.51 ppm (Table 1) in the case of the FMO1(merged)/
model I calculation of the R-helix with the 6-31G(d) basis
set. The maximum absolute error of 15N isotropic shielding
constants is about 300%-400% larger than the other errors
of the 15N isotropic shielding constants for the R-helix. In
contrast, FMO1(merged)/model II gives shielding constants
that are in excellent agreement with the conventional ab initio
results (maximum errors, 0.20-0.24 ppm; mean errors,
0.06-0.08 ppm for 15N isotropic shielding constants of the
R-helix (Table 3)).

The accuracy of shielding constants calculated by
FMO1(merged)/model I and FMO1(merged)/model II with
different values of Lcutoff for basis set 6-31G(d) was analyzed.
Model II provides much more accurate results than model I
especially for isotropic values. For example, the mean error
in the isotropic shielding constants of 15N in the R-helix
calculated with model II (εjModel-II) for Lcutoff ) 6 Å is
significantly reduced compared to that calculated with model
I (εjModel-I) by a factor of εjModel-I/εjModel-II ) 6.38 (Tables 1
and 3). The larger error with model I is due to the use of
Mulliken charges. This causes somewhat larger errors,
especially for 15N and 1H atoms. The ineffectiveness of the
use of Mulliken charges is clearly indicated by comparing
the errors given by FMO1(merged)/model I (Tables 1 and
2) and FMO1(merged) without the Vµν

Q(Lcutoff) term (Tables 5
and 6). The errors with FMO1(merged)/model I are similar
to those with FMO1(merged) without the Vµν

Q(Lcutoff) term. In
contrast, the errors in isotropic shielding constants calculated

Figure 6. Differences between charge densities determined by FMO1(merged) and conventional ab initio calculations (6-31G(d))
given in Figure 5. The differences are calculated as ∆F ) FFMO1(merged) - Fconventional. The magnitude of the difference in charge
density is expressed in proportion to the intensity of the colors (red for positive values and blue for negative valuse), which are
indicated as the gradation of the colors at the top of each panel. The unit is e/(a0)3, where a0 is the Bohr radius. Area is 15.7 ×
15.7 Å2. The FMO1(merged) calculation results are obtained using model I with CSGT with Lcutoff values of (a) 6 Å, (c) 8 Å, and
(e) 10 Å and model II with CSGT with Lcutoff values of (b) 6 Å, (d) 8 Å, and (f) 10 Å. One of the border atoms at the fragment
boundary is represented as a light-green transparent sphere and indicated by an arrow for each panel.
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by FMO1(dimer)/model I are smaller than those calculated
by FMO1(dimer) without the Vµν

Q(Lcutoff) term. This is due to
the fact that the effect of the ESP created by the surrounding
fragments is large in the FMO1(dimer) calculations but is
relatively smaller in FMO1(merged) calculations at least for
Lcutoff g 6 Å. Thus, to improve the results calculated by
FMO1(merged) for large cutoff distances, the ESP due to
the surrounding fragments has to be reproduced with a high
degree of precision.

4.5. Charge-Density Distribution. To examine the elec-
tronic structures obtained by models I and II, the distribution
of the charge density in the critical area was analyzed, i.e.,
around the Tyr3 residue in the �-sheet, in which the
maximum error in the isotropic values of 15N was found (see
Figure 5 and Table S9, Supporting Information).

The charge distribution calculated with FMO1(merged)
on the surface specified by three atoms (C, O, and N) of the
peptide bond between His2 and Tyr3 in the �-sheet is given
in Figure 5a-f. The magnitude of the charge density is
expressed in proportion to the intensity of the color (red).
The charge distributions are indistinguishable from those
determined by the conventional ab initio calculations (Figure

5g), except for the charge distributions in the areas on the
right in Figure 5a and b (Lcutoff ) 6 Å).

To clarify the difference between the charge distributions
calculated in the case of three Lcutoff values in both models,
the difference in charge densities (∆F ) FFMO1(merged) -
Fconventional) is given in Figure 6. As also shown in Figure 5,
the change in the distribution of charge density is due to the
change in Lcutoff from 6 to 8 Å (Figures 6a and b for an Lcutoff

of 6 Å and c and d for an Lcutoff of 8 Å), whereas the change
is small when Lcutoff is increased from 8 to 10 Å (Figures 6e
and f). Although the difference between models I and II is
not clear in Figure 5, it is obvious in Figure 6, which plots
error ∆F. There is a large deviation in the charge density
around the heavy atoms. The deviation in the case of model
I (Figure 6a, c, and e) is more complicated than that in the
case of model II (Figures 6b, d, and f).

The charge distributions along the CR-N and N-H bonds
of Tyr3 in the �-sheet were examined in more detail (Figure
7). The charge densities calculated with FMO1(merged)/
model I and FMO1(merged)/model II are almost identical
with those calculated with the conventional ab initio method
for all cutoff distances. Moreover, the differences in charge

Figure 7. Charge densities plotted along CR-N and N-H bonds. Results calculated with the conventional ab initio method and
FMO1(merged)/model I with CSGT(6-31G(d)) (a) along the CR-N bond and (b) along the N-H bond. Results calculated with
the conventional ab initio method and the FMO1(merged)/model II with CSGT (6-31G(d)) (c) along the CR-N bond and (d)
along the N-H bond. Because the curves are hard to distinguish at the scale shown, the differences are shown in Figure 8.
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density, ∆F, at Lcutoff ) 6, 8, and 10 Å for CR-N and N-H
bonds (shown in Figure 8) determined by FMO1(merged)
(both models I and II) and conventional ab initio calculations
are also in excellent agreement. (Note that the scale of the
vertical axis in Figure 8 is much smaller than that in Figure
7.) However, it is worth noting that the cutoff-distance
dependence of charge distribution is significantly different
in the cases of models I and II. The charge distribution
calculated with model I strongly depends on Lcutoff. Increasing
Lcutoff from 6 to 8 Å substantially improves the descriptions
of the charge densities of CR and N atoms, whereas the
improvement is relatively small with increasing Lcutoff from
8 to 10 Å. In contrast, the distribution of charge density with
model II is almost independent of Lcutoff from 6 to 10 Å.
This result indicates that a small Lcutoff is good enough to
reproduce the charge-density distribution in the case of model
II. This is because the potential used in model II is calculated
from the more realistic density distributions instead of point
charges used in model I.

4.6. Electrostatic Potential. The charge-density distribu-
tion is mainly determined by ESP. The dependence of ESP
on the value of Lcutoff was therefore assessed. Around Tyr3,
the ESP obtained with FMO1(merged) (Figure 9a-f) is
compared to that obtained with conventional ab initio
calculations (Figure 9g). It is clear that ESP is well

reproduced in the proximity of Tyr3. However, large
differences in ESP determined by FMO1(merged) and the
conventional ab initio method are found in the right-hand
region far from Tyr3 for Lcutoff ) 6 Å (Figure 9a and b).
The ESP is greatly improved around the middle part on the
right as the Lcutoff increases from 6 to 8 Å (Figure 9c and d).
The ESP for Lcutoff ) 10 Å (Figure 9e and f) is almost
indistinguishable from that for conventional ab initio calcula-
tions (Figure 9g)). Moreover, the differences between model
I (Figures 9a, c, and e) and model II (Figures 9b, d, and f)
are not obvious.

The differences in ESP (∆V ) VFMO1(merged) - Vconventional)
along the CR-N and N-H bonds for Tyr3 in the �-sheet
are shown in Figure 10. Similar results to those described
above are obtained for the differences between ESP deter-
mined by the FMO1(merged) method and the conventional
ab initio method (Figure S1, Supporting Information). The
change in the color in the peripheral area of the polypeptide
in Figure 9e and f (with increasing Lcutoff from 8 to 10 Å)
corresponds to the change in the plateau height in Figure
10. The plateau-height change is due to the neutrality of the
system with Lcutoff ) 10 Å; i.e., the systems with Lcutoff ) 6
or 8 Å have a positive charge due to the existence of His2
(see Figure 5h), while the system with Lcutoff ) 10 Å is neutral
because of the existence of Glu25. The plateau-height

Figure 8. Difference between charge densities determined by FMO1(merged) and conventional ab initio calculations with CSGT
(6-31G(d)) (∆F ) FFMO1(merged) - Fconventional). ∆F of model I (a) along the CR-N bond and (b) along the N-H bond. ∆F of model
II (c) along the CR-N bond and (d) along the N-H bond.
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change, however, merely induces a shift in the potential near
Tyr3. Consequently, the charge distribution in Figure 8 only
changes slightly when Lcutoff increases from 8 Å and 10 Å.

4.7. Magnetic Susceptibility. The effects of magnetic
susceptibility are considered next. Previous studies58–62 using
ab initio calculations and some empirical approaches to
determine the contribution of magnetic susceptibilities to
chemical shifts have revealed that this contribution mostly
arises from the ring current near conjugated groups such as
benzene and carbonyl bonds. These effects have a large

influence on the shielding tensor when the distance between
observed atoms and the functional groups is smaller than
the size of the functional groups. Accordingly, the ring-
current effect was investigated by calculating the effect of
the phenyl group by performing an additional calculation
where a phenyl group is replaced by a hydrogen atom. (The
position of the hydrogen atom is optimized by AM1.)

As shown in Figure 11, the change in the isotropic
shielding constants (more than 0.1 ppm) due to the elimina-
tion of the phenyl group of Phe extends about 10 Å from

Figure 9. Electrostatic potential on the surface specified by three atoms (C, O, and N) of the peptide bond between His2 and
Tyr3 in the �-sheet (15.7 × 15.7 Å2). The magnitude of the ESP is expressed in proportion to the intensity of the colors (red for
positive values and blue for negative values), which are indicated as the gradation of the colors at the top of each panel. The
unit is e/(a0)3 where a0 is the Bohr radius. All ESP values are in atomic units. FMO1(merged) results obtained using model I with
CSGT (6-31G(d)) with an Lcutoff of (a) 6 Å, (c) 8 Å, and (e) 10 Å and model II with CSGT (6-31G(d)) with an Lcutoff of (b) 6 Å, (d)
8 Å, and (f) 10 Å. (g) Conventional ab initio calculation (6-31G(d)) results. One of the border atoms at the fragment boundary
is represented as a light green transparent sphere and indicated by an arrow for each panel.
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the center of the phenyl group. To confirm that the effect is
not due to the difference in charge density in the cases with
and without the phenyl group, the difference between the
charge-density distribution with and without the phenyl group
was assessed. Contours of the absolute values of the
differences in electron densities in the cases with or without

the phenyl group of Phe in the R-helix are shown in Figure
12. This figure indicates that the change in the charge density
is localized near the phenyl group and extends over a distance
of less than 10 Å. A similar result is obtained in the case of
the �-sheet (Figure S2, Supporting Information). Thus, the
difference in the isotropic shielding constants in Figure 11
at around 10 Å from the phenyl group is not due to the
change in the charge density but mainly due to the ring
current. Typically, a distance of about 10 Å from the phenyl
group to the atoms in the backbone corresponds to an Lcutoff

of 8 Å. Thus, an Lcutoff of 8 Å is an adequate distance to
achieve our target accuracy of 0.1 ppm.

4.8. FMO Boundary. The ability to predict the electronic
structure near the boundary region is discussed in the
following. An artificially determined boundary may not
reproduce the electronic structures accurately, considerably
influencing the shielding tensor of the atoms in the vicinity
of the boundary. The boundary region was thus examined
by analyzing the difference between charge densities deter-
mined by the FMO1(merged) and the conventional ab initio
method. As can be seen in Figure 6, charge densities by
model I have much larger deviations in the case of
conventional ab initio calculations compared to those
obtained with model II. For example, model I (Figure 6c)

Figure 10. Difference between ESPs determined by FMO1(merged) and conventional ab initio calculations with CSGT (6-
31G(d)) (∆V ) VFMO1(merged) - Vconventional). ∆V of model I (a) along the CR-N bond and (b) along the N-H bond. ∆V of model II
(c) along the CR-N bond and (d) along the N-H bond.

Figure 11. Absolute values of difference in isotropic shielding
constants in the cases with or without the phenyl group of
Phe in the R-helix and in the �-sheet. Distances from the
center of mass of six carbon atoms of the phenyl group to
CR, C�, N, and H are shown as abscissa.
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shows the largest differences in charge densities around the
boundary, i.e., about 0.0044 e/(a0)3, whereas model II (Figure
6d) gives values of about 0.0007 e/(a0)3. The large errors in
charge density near the boundary in the case of model I are
due to the point-charge approximation. However, because
model II uses the density matrix of surrounding monomers,
its quality is superior to that of model I, providing a more
accurate shielding tensor.

5. Summary

A new ab initio method for calculating NMR chemical
shiftssnamed “FMO1(merged)”shas been developed.
Chemical shifts for the R-helix and �-sheet are calculated
by using the point-charge environment (referred to as
model I) and the ESP of other fragments without ap-
proximation (model II). NMR shifts determined with
model I agree well with those calculated by conventional
ab initio methods (GAIO and CSGT). However, the
accuracy of the chemical shifts determined by model I is

similar to that of those determined by FMO1(merged)
without the Vµν

Q(Lcutoff) term, where the ESPs of other
fragments are completely neglected. Much better results
were obtained with model II; that is, it provides an
accurate description of the ESP and charge density around
all the atoms, which results in a much better accuracy in
the calculation of NMR chemical shifts. The conventional
ab initio NMR results were reproduced using FMO1(merged)/
model II with adequate cutoff distances (i.e., Lcutoff g 8
Å). This adequate value for the cutoff distance was
confirmed for 13CR, 13C�, 15N, and 1H atoms in R-helix
and �-sheet polypeptides with the 6-31G(d) and 6-311G(d,p)
basis sets. The proposed method extends the use of the
FMO method.
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(24) Suárez, E.; Dı́az, N.; Suárez, D. J. Chem. Theory Comput.
2009, 5, 1667–1679.

(25) Gordon, M. S.; Mullin, J. M.; Pruitt, S. R.; Roskop, L. B.;
Slipchenko, L. V.; Boatz, J. A. J. Phys. Chem. B 2009, 113,
9646–9663.

(26) Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M.
Chem. Phys. Lett. 1999, 313, 701–706.

(27) Fedorov, D. G.; Kitaura, K. J. Chem. Phys. 2005, 122,
054108.

(28) Fedorov, D. G.; Kitaura, K. J. Chem. Phys. 2005, 123,
134103.

(29) Fedorov, D. G.; Kitaura, K. J. Chem. Phys. 2004, 121, 2483–
2490.

(30) Fedorov, D. G.; Kitaura, K. J. Phys. Chem. A 2007, 111,
6904–6914.

(31) Fedorov, D. G.; Kitaura, K. The fragment molecular orbital
method: practical applications to large molecular systems;
CRC Press: Boca Raton, FL, 2009.

(32) Nakanishi, I.; Fedorov, D. G.; Kitaura, K. Proteins: Struct.,
Funct., Bioinf. 2007, 68, 145–158.

(33) He, X.; Fusti-Molnar, L.; Cui, G.; Merz, K. M. J. Phys. Chem.
B 2009, 113, 5290–5300.

(34) Yoshida, T.; Fujita, T.; Chuman, H. Curr. Comput.-Aided
Drug Des. 2009, 5, 38–55.

(35) Takematsu, K.; Fukuzawa, K.; Omagari, K.; Nakajima, S.;
Nakajima, K.; Mochizuki, Y.; Nakano, T.; Watanabe, H.;
Tanaka, S. J. Phys. Chem. B 2009, 113, 4991–4994.

(36) Sawada, T.; Fedorov, D. G.; Kitaura, K. Int. J. Quantum
Chem. 2009, 109, 2033–2045.

(37) Sekino, H.; Matsumura, N.; Sengoku, Y. Comput. Lett. 2007,
3, 423–430.

(38) Gao, Q.; Yokojima, S.; Kohno, T.; Ishida, T.; Fedorov, D. G.;
Kitaura, K.; Fujihira, M.; Nakamura, S. Chem. Phys. Lett.
2007, 445, 331–339.

(39) Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.;
Goodfellow, R.; Granger, P. Pure Appl. Chem. 2001, 73,
1795–1818.

(40) Yokojima, S.; Gao, Q.; Nakamura, S. AIP Conf. Proc. 2009,
1102, 164–167.

(41) Harris, R. K.; Jackson, P.; Merwin, L. H.; Say, B. J.; Hägele,
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Erratum

E2 and SN2 Reactions of X- + CH3CH2X (X ) F,
Cl); an ab Initio and DFT Benchmark Study. [J.
Chem. Theory Comput. 4, 929–940 (2008)]. By A. Patrı́cia
Bento, Miquel Solà, and F. Matthias Bickelhaupt*.

Page 933. In Table 1, the CCSD(T) value of the 1bPC
species at the CBS limit obtained from two-point fits (aug-
cc-pVTZ and aug-cc-pVQZ) is -34.27 kcal/mol and not
-37.39 kcal/mol as indicated in the original paper. Conclu-
sions are not affected, because they are based on the aug-
cc-pVQZ values and not on the CBS extrapolations.
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